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Abstract—Research into the problem of classification of sonar 

signals has been taken up as a challenging task for the neural 
networks. This paper investigates the design of an optimal classifier 
using a Multi layer Perceptron Neural Network (MLP NN) and 
Support Vector Machines (SVM). Results obtained using sonar data 
sets suggest that SVM classifier perform well in comparison with 
well-known MLP NN classifier. An average classification accuracy 
of 91.974% is achieved with SVM classifier and 90.3609% with 
MLP NN classifier, on the test instances. The area under the 
Receiver Operating Characteristics (ROC) curve for the proposed 
SVM classifier on test data set is found as 0.981183, which is very 
close to unity and this clearly confirms the excellent quality of the 
proposed classifier. The SVM classifier employed in this paper is 
implemented using kernel Adatron algorithm is seen to be robust and 
relatively insensitive to the parameter initialization in comparison to 
MLP NN. 
 

Keywords—Classification, MLP NN, backpropagation algorithm, 
SVM, Receiver Operating Characteristics.  

I. INTRODUCTION 

ATTERN recognition is formally defined as the process 
whereby a received pattern/signal is assigned to one of a 

prescribed number of classes (categories). The goal of pattern-
recognition is to build machines, called, classifiers, that will 
automatically assign measurements to classes. A natural way 
to make class assignment is to define the decision surface. The 
decision surface is not trivially determined for many real-
world problems. The central problem in pattern-recognition is 
to define the shape and placement of the boundary so that the 
class-assignment errors are minimized. In classification 
problem, the task is to assign new inputs to one of a number of 
discrete classes or categories. Here, the functions that we seek 
to approximate are the probabilities of membership of the 
different classes expressed as functions of the input variables. 

Neural networks have been employed efficiently as pattern 
classifiers in numerous applications [1]. These classifiers are 
non-parametric and make weaker assumptions on the shape of 
the underlying distributions of input data than traditional 
statistical classifiers. Therefore, they can prove more robust  
when the underlying statistics are unknown or the data are 
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generated by a nonlinear system. The motivation behind the 
use of neural network classifiers in sonar systems is the desire 
to emulate the remarkable perception and pattern recognition 
capabilities of humans and animals, such as the powerful 
ability of dolphins and bats to extract detailed information 
about their environments from acoustic returns [2]-[4]. 
Automatic sonar signals classification is a domain very rarely 
explored by neural networks and therefore, there is a need to 
develop automatic intelligent knowledge extraction. In view 
of this, design of optimal classifier for classification of sonar 
signals has been investigated in this paper using neural 
network. Performance of neural network classifiers is seen to 
be affected by the choice of the parameters of the network 
architecture, training algorithm, and input signals, as well as 
parameter initialization [5], [6].  

A neural network performs pattern recognition by first 
undergoing a training session, during which the network is 
repeatedly presented a set of input patterns along with the 
category to which each particular pattern belongs. Later, a 
new pattern is presented to the network that has not been seen 
before, but which belongs to the same population of patterns 
used to train the network. The network is able to identify the 
class of that particular pattern because of the information it 
has extracted from the training data. Pattern recognition 
performed by a neural network is statistical in nature, with the 
patterns being represented by points in a multidimensional 
decision space. The decision space is divided into regions, 
each one of which is associated with a class. The decision 
boundaries are determined by the training process. The 
construction of theses boundaries is made statistical by the 
inherent variability that exists within and between classes. 

Optimal design of classifier is investigated using MLP 
neural network on sonar database [7], [8]. The task is to train 
a classifier to discriminate between sonar signals bounced off 
a metal cylinder and those bounced off a rough cylindrical 
rock. Using the first 104 instances for training, they found that 
MLP NN (one hidden layer with 12 neurons) trained with 
standard backpropagation algorithm attained an average of 
about 84.7 % accuracy on the remaining 104 test instances.
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A new classification system based on statistical learning 
theory, called the Support Vector Machine (SVM) has 
recently been applied to the problem of signal classification 
[9]. The main idea behind this classification technique is to 
separate the classes with a surface that maximize the margin 
between them, using boundary data point to create the 
decision surface. We will restrict ourselves to the special case 
of pattern recognition, where the function is an indicator 
function. The proposed SVM classifier uses the idea of large 
margin classifiers for training. This decouples the capacity of 
the classifier from the input space and at the same time 
provides good generalization. This paper determines the 
optimal parameters of SVM-based classifier and compares the 
performance of MLP NN on the sonar data set collected from 
the published studies.  

The paper is organized as follows. In Section II the data 
partition schemes of sonar data is given in order to design a 
classifier. Various important performance measures to assess 
estimated neural network model are described in section III. 
Section IV describes design of optimal MLP NN for the 
binary classification task. In section V, SVM-based classifier 
was designed and it was tested on the test data set to see how 
robust it was. The analysis of designed SVM-based classifier 
is carried out on the basis of their validation performance with 
respect to the performance measures such as MSE, NMSE 
(normalized mean square error), r (correlation coefficients), 
percent classification accuracy and area under ROC curve on 
the testing instances. Finally, the conclusions are discussed in 
section VI; with a recommendation to use the proposed SVM-
based classifier. 

II. DATA DESCRIPTION 
The sonar data is obtained by Terry Sejnowski, now at the 

Salk Institute and the University of California at San Deigo. 
The data set was developed in collaboration with R. Paul 
Gorman of Allied-Signal Aerospace Technology Center. This 
is the data set used by Gorman and Sejnowski in their study of 
the classification of sonar signals using a neural network [7]. 
The data set, "sonar.data", is in the standard CMU Neural 
Network Benchmark format. The sonar database constitutes 
208 instances with 60 continuous-valued inputs and one 
output denoting the class of the instance. The first 104 
samples (1:104) are used for training; the next 104 samples 
(105:208) for testing and classifier comparison purpose. The 
second data set is generated from the first one through 
swapping of training and testing exemplars. That is, the 
samples used for training in data set1 are now used as testing 
data and the samples used for testing in data set 1 are now 
used for the purpose of training. This data set is referred to as 
data set 2. The fallowing Table I highlights the data partition 
schemes employed in order to design a classifier. This data set 
can be used in a number of different ways to test learning 
speed, quality of ultimate learning, ability to generalize, or 
combinations of these factors. 

III. PERFORMANCE MEASURES 
The estimated neural network models should be assessed on 

the basis of important performance measures. When used as a 
classifier, the MSE and NMSE of the neural network model 
on the test data set should be as low as possible The lower 
bound may be specified as an error threshold by the user. The 
correlation coefficient of the estimated model should ideally 
approach unity. The classification accuracies of the model 
should ideally approach 100 %. In addition, the area under 
ROC must come close to unity for reliable classification. In 
the following paragraphs, the performance measures used for 
validation of neural network model are explained. 

A. MSE (Mean Square Error): 
The formula for the mean squared error is: 
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Where P = number of output processing elements, N = 
number of exemplars in the data set, ijy = network output for 

exemplar i at processing element j, ijd = desired output for 
exemplar i at processing element j. 

B. NMSE (Normalized Mean Square Error): 
The normalized mean squared error is defined by the 

following formula: 
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Where P = number of output processing elements, N = 
number of exemplars in the data set, MSE = mean square 
error, ijd = desired output for exemplar i at processing element 
j. 

TABLE I 
DATA PARTITION SCHEME FOR NEURAL NETWORK BASED 

CLASSIFIER 
 

Data 
Partition 

Training instances Testing instances 
 

Set 1 
(Normal 
tagging ) 

1:104  (104 samples)  
“Metal Cylinder”samples = 49 
“Rock” samples= 55  

105:208  (104 samples) 
“Metal Cylinder” samples= 62  
“Rock” samples= 42 
 
 

Set  2 
(Reverse 
tagging ) 

105:208  (104 samples) 
“Metal Cylinder” samples= 

62  
“Rock” samples= 42  

1:104  (104 samples)  
“Metal Cylinder” samples= 49 
“Rock” samples= 55  
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TABLE II 
VARIABLE PARAMETERS OF MLP NN CLASSIFIER 

 
Parameter Typical Range 

 
Number of hidden layers (1,3) 
Number of hidden neurons (1,50) 
Learning-rate parameter (0,1) 
Momentum constant (0,1) 
Transfer function in output layer Tanh, lintanh, softmax, linear 
Learning Rule Momentum, conjugate-gradient, 

step, quick-propagation, delta bar 
delta, Levenberg Marquardt

C. Correlation coefficient (r): 
By definition, the correlation coefficient between a network 

output x and a desired output d is: 
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The size of the mean square error (MSE) can be used to 
determine how well the network output fits the desired output, 
but it doesn't necessarily reflect whether the two sets of data 
move in the same direction. For instance, by simply scaling 
the network output, we can change the MSE without changing 
the directionality of the data. The correlation coefficient (r) 
solves this problem. The correlation coefficient is confined to 
the range [-1, 1]. When r = 1 there is a perfect positive linear 
correlation between x and d, that is, they covary, which means 
that they vary by the same amount. When r = -1, there is a 
perfectly linear negative correlation between x and d, that is, 
they vary in opposite ways (when x increases, d decreases by 
the same amount). When r = 0 there is no correlation between 
x and d, i.e. the variables are called uncorrelated. Intermediate 
values describe partial correlations. For example, a correlation 
coefficient of 0.88 means that the fit of the model to the data 
is reasonably good.  

D. Receiver Operating Characteristics (ROC): 
Receiver Operating Characteristic (ROC) matrices are used 

to show how changing the detection threshold affects 
detections versus false alarms. If the threshold is set too high 
then the system will miss too many detection. Conversely, if 
the threshold is set too low then there will be too many false 
alarms. The percentage of detections classified correctly 
(Sensitivity or true positive rate) is plotted against the 
percentage of non-detections incorrectly classified as 
detections (i.e. false alarms or false positive rate) as a function 
of the detection threshold. ROC enables the user to evaluate a 
model in terms of the trade-offs between sensitivity and 
specificity. It is the best way to evaluate a detector. The 
performance of classification for test data set is assessed by 
calculating the area under the ROC curve (AZ). It is noticed 
that the values for Az range from 0.5 for chance to 1.0 for a 
perfect classifier. 

E. Confusion Matrices:  
A confusion matrix is a simple methodology for displaying 

the classification results of a network. The confusion matrix is 
defined by labeling the desired classification on the rows and 
the predicted classifications on the columns. For each 
exemplar, a 1 is added to the cell entry defined by (desired 

classification, predicted classification). Since we want the 
predicted classification to be the same as the desired 
classification, the ideal situation is to have all the exemplars 
end up on the diagonal cells of the matrix (the diagonal that 
connects the upper-left corner to the lower right). 

IV. DESIGN OF A MLP-BASED CLASSIFIER   
The configuration of the MLP NN is determined by the 

number of hidden layers, number of the neurons in each of the 
hidden layers, as well as the type of the activation functions 
used for the neurons. It has been proved that the performance 
of the network does not depend much on the type of the 
activation function (as long as it is non-linear), the choice of 
the number of hidden layers and the number of units in each 
of the hidden layers is critical. It has been established that an 
MLP NN that has only one hidden layer, with a sufficient 
number of neurons, acts as universal approximators of non-
linear mappings [10]. Experimentally, it can be verified that 
the addition of extra hidden layer can enhance the 
discriminating ability of the NN model. However, it does so at 
the cost of the added computational complexity. The trade-off 
between accuracy and complexity of the model should be 
resolved carefully. In practice, it is very difficult to determine 
a sufficient number of neurons necessary to achieve the 
desired degree of approximation accuracy. Frequently, the 
number of units in the hidden layer is determined by trial and 
error. The possible parameter variations chosen for this MLP 
NN are listed in table II. 

To determine the weight values, one must have a set of 
examples of how the outputs should relate to the inputs. The 
task of determining the weights from these examples is called 
training or learning, and it is basically a conventional 
estimation problem. That is, the weights are estimated from 
the examples in such a way that the network, according to 
some metric, models the true relationship as accurately as 
possible. When a NN has been trained, the next step is to 
evaluate it. This is done by a standard method in statistics 
called independent validation. This method divides the 
available data into a training set and a test set. The entire data 
set is usually randomized first. The training data are next split 
into two partitions; the first partition is used to update the 
weights in the network, and the second partition is used to 
assess (or cross-validate) the training performance. The test 
data are then used to assess how well the network has 
generalized. The learning and generalization ability of the 
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TABLE III 
PERFORMANCE MEASURES OF MLP CLASSIFIER ON DIFFERENT DATA SETS 

 
Performance measures of MLP Classifier 

 
“Rock” instances “Metal” instances 

 

S. 
N. 

Data set 

% Correct MSE NMSE r % Correct MSE NMSE r 
 

1 Testing Set 1 95.238 0.09014 0.374398 0.805246 85.4838 0.0904363 0.3756371 0.807992 
 

2 Training Set 1 100 0.006985 0.029012 0.986715 100 0.004791 0.0199001 0.99089 
 

3 Testing Set 2 67.272727 0.1660514 0.666424 0.644374 87.755 0.166857 0.6696576 0.644712 
 

4 Training Set 2 100 0.006182 0.025676 0.987664 100 0.0057032 0.023688 0.9885588 
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Hidden Layer 

estimated NN based classifier is assessed on the basis of 
certain performance measures such as MSE, NMSE, 
correlation coefficients, area under the ROC curve, and the 
rate of correct classification. Since it is very likely that one 
ends up in a “bad” local minimum, the network should be 
trained a couple of times (typically at least three times), 
starting from different initial weights. NeuroSolutions 
(version 5.0) and Neural Network Toolbox for MATLAB 
(version 7.0) are specifically used for obtaining results.  

For classification, the output processing element must be 
nonlinear. Here, as the outputs are 1 and 0, the operating point 
of the hidden processing elements is normally driven to 
saturation. However, for comparison, linear transfer function 
is also considered in the output layer along with the other 
nonlinear transfer functions such as tanh, lintanh, and 
softmax. The softmax may be used as the output of any MLP 
to allow interpretation of the output as a probability, as 
normally is the case in classification. Since the ultimate 
objective of a pattern classifier is to achieve an acceptable rate 
of correct classification, this criterion is used to judge when 
the variable parameters of the MLP (used as a pattern 
classifier) are optimal.  

Starting with a single hidden layer MLP NN as a classifier, 
issue is how to choose the number of hidden neurons. In a 
rigorous experimental study, the number of hidden neurons in 
the hidden layer is gradually increased from 1 to 50 and run 
the network several times for each with different weight-
initializations for 1000 epochs. The process of training is 
closely monitored with an eye over crucial performance 
measures in order to judge the optimality of the classifier. 
Variation of mean  MSE as a function of the number of PEs is 
shown in Fig. 1. For Pentium 4, 1.7 GHz, 768 MB RAM 
Computer: training of MLP NN continues at the rate of 78.33 
(average value) epochs per second.  

It is demonstrated that the best network should have 8 
neurons in the hidden layer. In addition, the transfer function 
of neurons in hidden layers as well as output layer should be 
hyperbolic-tangent (tanh) and the network should be trained 
using step learning algorithm for the best performance. The 
optimal parameter settings for MLP NN based classifier are as 
fallows. PEs in Hidden layer =8, Transfer function of PEs in 

hidden layer and output layer =tanh, Learning rule in hidden 
and output layers = step.   

As there are 60 numeric inputs and one symbolic output 
(translated into two numeric-valued outputs, where “Metal 
Cylinder” is 0 1 and “Rock” is 1 0) for the given system, the 
number of input and output processing elements is chosen as 
sixty and two, respectively. Once the design of the MLP 
classifier is finalized as (60-8-2), it is run at least three times 
with different initialization of connection weights. Table III 
displays the various important performance measures of MLP 
classifier on different datasets for the “Rock” as well as 
“Metal” instances.  

To what extent the classifier is able to correctly classify the 
exemplars is the most important criterion for its proper 
evaluation. This is expressed as “% Correct” in the table. 
However, other performance measures such as MSE, NMSE, 
and correlation coefficients are included only as a matter of 
record, since a small MSE or NMSE does not necessarily 
imply good generalization (i.e., good performance with data 
not seen before). There are 104 instances in the testing data set 
out of which  “Rock” instances are 42 and “Metal” instances 
are 62. It is noticed that the classifier recognizes two “Rock” 
instances as  “Metal” ones entailing misclassification. 
However, it classifies 40 “Rock” instances as “Rock” only. 
Thus, the classification accuracy over “Rock” instances is 40 
correct classifications out of 42 samples, that is, 95.238 %. 
Similarly, the classification accuracy over “Metal” instances 
are 53 correct classifications out of 62 instances amounting to 
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TABLE IV 
Results of ROC Analysis of MLP NN Classifier 

 
 
 
 
 

85.4838 %. In order to confirm whether the proposed model is 
really consistently capable of near optimum classification, 
different data partition as in Set 2 (reverse tagging order) is 
used to train the classifier. The classification accuracy over 
“Rock” instances is 37 correct classifications out of 42 
samples, that is, 67.272727%. Similarly, the classification 
accuracy over “Metal” instances is 43 correct classifications 
out of 62 instances amounting to 87.755%. 

For specified data sets, calculating the area under the ROC 
curve assesses the classification performance. Here sensitivity 
or detections is plotted against (1-specificity) or false alarms. 
For a perfect classifier, the area under the ROC must approach 
unity. Fig. 2(a) and 2(b) demonstrates ROC curve for MLP 
NN based classifier on test data sets.  

Results of ROC analysis of the MLP NN Classifier for 
different data partition are listed in Table IV. It is seen from 
Table III and IV, that the MLP classifier gives an excellent 
performance on the training dataset, which is not desirable. 
This is because; it might simply indicate a tendency of subtle 
memorization while learning. However, this performance 
degrades considerably on the testing exemplars. In view of 
these facts, it may be inferred that the chosen configuration of 
the network may not be capable to operate as a reasonable 
classifier. Its performance is not consistently good showing 
somewhat dependency on specific data partition chosen for 
training the MLP NN model. 

V. DESIGN OF A SVM-BASED CLASSIFIER 
SVM are based on statistical learning theory and have the 

aim of determining the location of decision boundaries that 
produce the optimal separation of classes. In the case of a two-
class pattern recognition problem in which the classes are 
linearly separable the SVM selects from among the infinite 
number of linear decision boundaries the one that minimises 
the generalisation error. Thus, the selected decision boundary 
will be one that leaves the greatest margin between the two 
classes, where margin is defined as the sum of the distances to 
the hyperplane from the closest points of the two classes). 
This problem of maximising the margin can be solved using 
standard Quadratic Programming (QP) optimisation 
techniques. The data points that are closest to the hyperplane 
are used to measure the margin; hence these data points are 
termed ‘support vectors’. Consequently, the number of 
support vectors is small. If the two classes are not linearly 
separable, the SVM tries to find the hyperplane that 
maximises the margin while, at the same time, minimising a 
quantity proportional to the number of misclassification 
errors. The trade-off between margin and misclassification 
error is controlled by a user-defined constant. SVM can also 
be extended to handle non-linear decision surfaces. Boser et 
al. [11] propose a method of projecting the input data onto a 
high-dimensional feature space using kernel functions and 
formulating a linear classification problem in that feature 
space. Further, more detailed discussion of the computational 
aspects of SVM can be found in [12]. The proposed SVM is 
implemented using the kernel Adatron algorithm and uses the 
idea of large margin classifiers for training. This decouples the 
capacity of the classifier from the input space and at the same 
time provides good generalization. This is an ideal 
combination for classification. 

A. Topology of the SVM machine with RBF kernels 
Support vector machines (SVMs) are a radically different 

type of classifier that have attracted a great deal of attention 
lately due to the novelty of the concepts that they bring to 
pattern recognition, their strong mathematical foundation, and 
their excellent results in practical problems. Two of the 
motivating concepts behind SVMs are, namely, the idea that 
transforming the data into a high-dimensional space makes 
linear discriminant functions practical and the idea of large 
margin classifiers for training. By mapping the input to a 
sufficiently large feature space, patterns become linearly 
separable, so a simple perceptron in feature space can do the 
classification. The first step in a SVM is transforming the data 

                                                                                               
Fig. 2 (a) ROC curve for MLP based classifier  on test data 

set. (Set 1: Normal tagging) 

TABLE IV 
RESULTS OF ROC ANALYSIS OF MLP NN CLASSIFIER 
 

ROC Analysis of MLP NN Classifier 
 

Data set 

Area under an 
ROC curve 

Area under an 
ROC curve 

Testing Set 1 0.953533 0.962558 
Testing Set 2 0.861224 0.869388 

 
Fig. 2 (b) ROC curve for MLP based classifier on test data 

set. (Set 2: Reverse tagging) 
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into a high-dimensional space. This is done using a Radial 
Basis Function (RBF) network that places a gaussian at each 
data sample. The RBF network can be considered a kernel 
classifier that depicted in Fig. 3, where we can easily see that 
it is an RBF, but where each Gaussian is centered at each 
sample and the weights are the multipliers iα . 

In fact, the RBF places Gaussian kernels over the data and 
linearly weights their outputs to create the system output. It 
conforms exactly to the notion of the kernel machine. When 
used as an SVM, the RBF network places a Gaussian in each 
data sample such that the feature space becomes as large as 
the number of samples.  

Assume we have a set of data samples 
 

{ } { }( , ),...,( , ) 1 , 11S d d dN i= ∈ −x xN                (1) 

 
What we want is to find the hyperplane y=w.x+b with the 

smallest norm of coefficients 2w (the largest margin). To 
find this hyperplane, we can solve the following quadratic 
programming problem: minimize the functional 

 
1
2

φ(w) = (w.w)                                                           (2) 

 
under the constraint of inequality 

 
[( ) ] 1 1, 2,...,id b i N+ ≥ =ix .w                                      (3) 

 
where the operation is an inner product. The solution to this 
optimization is given by the saddle points of the Lagrangian: 
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By using the dual formulation, we can rewrite Eq.4 as 

 

1 1 1
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under the constraint 

1
0.N

i ii
yα

=
=∑  the solution is a set of α*. 

We can show that only some of the samples will correspond to 

Lagrangian multipliers different from zero and will be called 
the support vectors. They are the ones that control the 
positioning of the optimal hyperplane. The large margin 
classifier thus is specified by 

 

* *

support
vectors

( ) sgn ( )i if x d bα
⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ix .x                                        (6) 

 
One of the characteristics of the SVM is that the user has no 

control over the number of support vectors (i.e. the size of the 
final machine). During training, all the RBFs are used, but 
once the SVM is trained, the RBF should be trimmed, 
discarding the RBFs that are not support vectors. The number 
of support vectors depends on the data, which makes sense but 
is not always useful since we never know the size of the 
model. The expressions we arrived at are exactly the same as 
the one for the Adatron algorithm, except that Vapnik 
suggests a quadratic programming solution, while the Adatron 
is an "on-line" solution, easily implemented in neural network 
software. Like any on-line algorithm, the Adatron requires 
control of learning rate and suffers from the problem of 
misadjustment and stopping criterion. We can expect that 
training SVMs with large data sets demands a lot from 
computer resources (memory or computation). 

The learning algorithm is based on the Adatron algorithm 
extended to the RBF network. The Adatron algorithm can be 
easily extended to the RBF network by substituting the inner 
product of patterns in the input space by the kernel function, 
leading to the following quadratic optimization problem: 

 
2

1 1 1

1

1( ) ( , 2 )
2

subject    to         0 0,      {1,..., }

i

N N N

i i j i j j
i i j

N

i i i
i

J d d G x x

d i N

α α α α σ

α α
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=
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∑
        (7) 

 
We can then define 
 

2

1
( ) ( , 2 ) )    and      min  ( )

N

i i j j i j iij
g x d d G x x b M g xα σ

=

⎛ ⎞
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 (8) 

 
 

Fig. 3 Topology of the SVM machine with RBF kernels 
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TABLE V 
PERFORMANCE MEASURES OF SVM CLASSIFIER ON DIFFERENT DATA SETS 

 
Performance measures of SVM Classifier 

 
“Rock” instances “Metal” instances 

 

S
. 
N
. 

Data set 

% Correct MSE NMSE r % Correct MSE NMSE r 
 

1 Testing Set 1 95.238 0.0828976 0.3443246 0.83928 88.70967 0.08362867 0.3473608 0.8390735 
 

2 Training Set 1 100 0.0131840 0.0529122 0.987175 100 0.01331346 0.05343168 0.9871467 
 

3 Testing Set 2 67.272727 0.13755835 0.552070914 0.744452149 95.91836735 0.139111408 0.558303893 0.744005351 
 

4 Training Set 2 
 

100 0.014012203 0.058201226 0.990985809 100 0.014190286 0.058940911 0.990941784 
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Fig. 4 Average MSE versus number of Epoch 

and choose a common starting multiplier (e.g. 
i

α , jα  =0.1), 

learning rate η , and a small threshold (e.g., t = 0.01). While 

M>t, we choose a pattern ix  and calculate an update 

[1 ( )]i ig xα ηΔ = −  and perform the update 
 
( 1) ( ) ( ),     ( 1) ( )      if     ( ) 0
( 1) ( ),                    ( 1) ( )                 if     ( ) 0

i i i i i i

i i i i

n n n b n b n di n
n n b n b n n

α α α α α α
α α α α

+ = + Δ + = + Δ + Δ⎧
⎨ + = + = + Δ ≤⎩

f

 (9) 
 
After adaptation only some of the iα  are different from zero 
(called the support vectors). They correspond to the samples 
that are closest to the boundary between classes. This 
algorithm is called the kernel Adatron and can adapt an RBF 
to have an optimal margin. This algorithm can be considered 
the "on-line" version of the quadratic optimization approach 
utilized for SVMs, and it can find the same solutions as 
Vapnik's original algorithm for SVMs. Notice that it is easy to 
implement the kernel Adatron algorithm since ( )ig x can be 
computed locally to each multiplier, provided that the desired 
response is available in the input file. In fact, the expression 
for ( )ig x resembles the multiplication of an error with an 
activation, so it can be included in the framework of neural 
network learning. The Adatron algorithm essentially prunes 
the RBF network so that its output for testing is given by 

2

i  support
vectors

( ) sgn ( ,2 )i i if x d G x x bα σ
∈

⎛ ⎞
⎜ ⎟= − −⎜ ⎟⎜ ⎟
⎝ ⎠

∑                          (10) 

 

B. Computer Simulation: 
In this paper, the SVM classifier is implemented using the 

kernel Adatron algorithm and it is trained for both the data 
sets for 1000 epochs. For Pentium 4, 1.7 GHz, 768 MB RAM 
Computer with optimal Step size = 0.01, training of SVM took 
about 27.77 (average value) epochs per second. Variation of 
Mean Square Error on training data set 1 with respect to 
epochs is as shown in Fig. 4. 

It is observed that the training is not affected by different 
random weight initializations. Different initial conditions are  

tried to make sure that one is really converging to the absolute 
minimum. Therefore, the network is run at least three times 
with different weight-initializations with the specified training 
epochs to gauge performance. Even though SVM is run three 
times with different random weight initializations, identical 
results are obtained for a specific data set. This proves 
consistency and robustness of the model. Table V displays the 
various important performance measures of SVM classifier on 
different data sets with respect to “Rock” as well as “Metal” 
instances. 

It is noticed that the classifier recognizes 40 “Rock” 
instances as “Rock” ones and two “Rock” instances as 
“Metal” ones entailing a classification accuracy of 95.238 % 
for “Rock” instances. However, it classifies 7 “Metal” 
instance as “Rock” and 55 “Metal” instances as “Metal” that 
result into a classification accuracy of 88.70967 % over 
“Metal” instances. In order to confirm whether the proposed 
model is really consistently capable of near optimum 
classification, different data partition as in Set 2 (reverse 
tagging order) is used to train the classifier. For the testing 
dataset, the classification accuracy for “Rock” samples is seen 
as 67.272727, whereas for the “Metal” samples, the 
classification accuracy is observed as 95.91836735. The ROC 
curves of the SVM classifier on different test data set are 
sketched in Fig. 5(a) and 5(b). 

From the graph it is seen that the area under the ROC curve 
on different test data set 1 and set 2 are computed as 0.981183 
and 0.939518 respectively, which is indicative of reasonable 
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Fig. 5 (b) ROC curve for SVM based classifier  on test data 

set. (Set 2: Reverse tagging) 

TABLE VI 
RESULTS OF ROC ANALYSIS OF SVM CLASSIFIER 

 
ROC Analysis of SVM Classifier Data set 
Area under an 
ROC curve 

Area under an 
ROC curve 

Testing Set 1 0.981183 0.983871 
Testing Set 2 0.939518 0.947310 

 

classification. 
Results of ROC analysis of the SVM classifier for different 

data partition are listed in Table VI. It is seen from table V 
and VI, that the SVM classifier provides an excellent 
performance on both the data sets. In addition, this 
performance is seen to be consistently good.                           

VI. CONCLUSION 
As a classifier, the best single hidden layered MLP NN is 

not seen to perform reasonably. When it is evaluated on the 
training instances, it works as an almost perfect classifier. 
Here, the area under the ROC curve is found as 1.0 and the 
average classification accuracy of 100 %. However, it is 
revealed that this good performance on the training data set 
has not been maintained on the test data set. The performance 
of this MLP classifier on the test data degrades slightly and 
average classification accuracy = 90.3609 % and the area 
under the ROC curve = 0.953533. Therefore, it could be 
inferred that such a performance may indicate a subtle 
memorization of the neural network without adequate 
learning. In order to ensure learning and generalization, 
different data partition is employed with reverse tagging order 
for training of the network. Results show that the performance 
drastically degrades as now average classification accuracy 
drops to 77.5138635 % and the area under the ROC curve 
deviates away from 1.0 (Now it is 0.861224). The MLP 

classifier is not seen to provide consistency in the 
classification accuracy. These findings are confirmed to 
satisfaction after repeating the simulation experiments a 
number of times on different data partitions.  

Results show that SVM classifier worked as an optimal 
classifier for the given task. For the testing dataset, the 
classification accuracy for “Rock” samples is seen as 95.238, 
whereas for the “Metal” samples, the classification accuracy is 
observed as 88.70967(an average of 91.973835 % correct 
classifications). The area under the ROC curve for testing 
dataset is computed as 0.981183, which is indeed very close to 
unity. It is worthwhile to notice that the SVM has consistently 
performed elegantly as a near-optimal classifier even after 
repeating the simulation experiments a number of times with 
different initial weights. It is seen that the SVM based 
classifier satisfies almost all the essential qualities and tests of 
a near-perfect (near-optimal) classifier up to the end-user’s 
expectations. More importantly, its performance is seen to be 
consistently good. For the classification of sonar signals, the 
decision boundaries formed by the SVM classifier are seen to 
be more accurate than those formed by MLP classifier and the 
discriminating ability of SVM is remarkable in separating data 
as well as possible into classes.  

The performance of MLP classifiers is seen to get affected 
by the training algorithm, input exemplars, and parameter 
initialization. However, the proposed SVM with kernel 
Adatron algorithm is observed to be relatively insensitive to 
the parameter initialization. It consistently performs well as a 
reasonable classifier with acceptable and reliable performance 
measures.  
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