
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:2, 2007

187

Abstract—Research into the problem of classification of sonar

signals has been taken up as a challenging task for the neural
networks. This paper investigates the design of an optimal classifier
using a Multi layer Perceptron Neural Network (MLP NN) and
Support Vector Machines (SVM). Results obtained using sonar data
sets suggest that SVM classifier perform well in comparison with
well-known MLP NN classifier. An average classification accuracy
of 91.974% is achieved with SVM classifier and 90.3609% with
MLP NN classifier, on the test instances. The area under the
Receiver Operating Characteristics (ROC) curve for the proposed
SVM classifier on test data set is found as 0.981183, which is very
close to unity and this clearly confirms the excellent quality of the
proposed classifier. The SVM classifier employed in this paper is
implemented using kernel Adatron algorithm is seen to be robust and
relatively insensitive to the parameter initialization in comparison to
MLP NN.

Keywords—Classification, MLP NN, backpropagation algorithm,
SVM, Receiver Operating Characteristics.

I. INTRODUCTION

ATTERN recognition is formally defined as the process
whereby a received pattern/signal is assigned to one of a

prescribed number of classes (categories). The goal of pattern-
recognition is to build machines, called, classifiers, that will
automatically assign measurements to classes. A natural way
to make class assignment is to define the decision surface. The
decision surface is not trivially determined for many real-
world problems. The central problem in pattern-recognition is
to define the shape and placement of the boundary so that the
class-assignment errors are minimized. In classification
problem, the task is to assign new inputs to one of a number of
discrete classes or categories. Here, the functions that we seek
to approximate are the probabilities of membership of the
different classes expressed as functions of the input variables.

Neural networks have been employed efficiently as pattern
classifiers in numerous applications [1]. These classifiers are
non-parametric and make weaker assumptions on the shape of
the underlying distributions of input data than traditional
statistical classifiers. Therefore, they can prove more robust
when the underlying statistics are unknown or the data are

Suresh S. Salankar is with the Electronics & Telecommunication

Department, B.D. College of Engineering, Sevagram, India 442102
(e-mail: salankar_ss@ rediffmail.com).

Dr. Balasaheb M. Patre is with the Instrumentation Department, S.G.G.S.
Institute of Engineering & Technology, Nanded, India 431606
(e-mail: bmpatre@yahoo.com).

generated by a nonlinear system. The motivation behind the
use of neural network classifiers in sonar systems is the desire
to emulate the remarkable perception and pattern recognition
capabilities of humans and animals, such as the powerful
ability of dolphins and bats to extract detailed information
about their environments from acoustic returns [2]-[4].
Automatic sonar signals classification is a domain very rarely
explored by neural networks and therefore, there is a need to
develop automatic intelligent knowledge extraction. In view
of this, design of optimal classifier for classification of sonar
signals has been investigated in this paper using neural
network. Performance of neural network classifiers is seen to
be affected by the choice of the parameters of the network
architecture, training algorithm, and input signals, as well as
parameter initialization [5], [6].

A neural network performs pattern recognition by first
undergoing a training session, during which the network is
repeatedly presented a set of input patterns along with the
category to which each particular pattern belongs. Later, a
new pattern is presented to the network that has not been seen
before, but which belongs to the same population of patterns
used to train the network. The network is able to identify the
class of that particular pattern because of the information it
has extracted from the training data. Pattern recognition
performed by a neural network is statistical in nature, with the
patterns being represented by points in a multidimensional
decision space. The decision space is divided into regions,
each one of which is associated with a class. The decision
boundaries are determined by the training process. The
construction of theses boundaries is made statistical by the
inherent variability that exists within and between classes.

Optimal design of classifier is investigated using MLP
neural network on sonar database [7], [8]. The task is to train
a classifier to discriminate between sonar signals bounced off
a metal cylinder and those bounced off a rough cylindrical
rock. Using the first 104 instances for training, they found that
MLP NN (one hidden layer with 12 neurons) trained with
standard backpropagation algorithm attained an average of
about 84.7 % accuracy on the remaining 104 test instances.

Suresh S. Salankar and Balasaheb M. Patre

SVM Based Model as an Optimal Classifier for
the Classification of Sonar Signals

P

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:2, 2007

188

A new classification system based on statistical learning
theory, called the Support Vector Machine (SVM) has
recently been applied to the problem of signal classification
[9]. The main idea behind this classification technique is to
separate the classes with a surface that maximize the margin
between them, using boundary data point to create the
decision surface. We will restrict ourselves to the special case
of pattern recognition, where the function is an indicator
function. The proposed SVM classifier uses the idea of large
margin classifiers for training. This decouples the capacity of
the classifier from the input space and at the same time
provides good generalization. This paper determines the
optimal parameters of SVM-based classifier and compares the
performance of MLP NN on the sonar data set collected from
the published studies.

The paper is organized as follows. In Section II the data
partition schemes of sonar data is given in order to design a
classifier. Various important performance measures to assess
estimated neural network model are described in section III.
Section IV describes design of optimal MLP NN for the
binary classification task. In section V, SVM-based classifier
was designed and it was tested on the test data set to see how
robust it was. The analysis of designed SVM-based classifier
is carried out on the basis of their validation performance with
respect to the performance measures such as MSE, NMSE
(normalized mean square error), r (correlation coefficients),
percent classification accuracy and area under ROC curve on
the testing instances. Finally, the conclusions are discussed in
section VI; with a recommendation to use the proposed SVM-
based classifier.

II. DATA DESCRIPTION
The sonar data is obtained by Terry Sejnowski, now at the

Salk Institute and the University of California at San Deigo.
The data set was developed in collaboration with R. Paul
Gorman of Allied-Signal Aerospace Technology Center. This
is the data set used by Gorman and Sejnowski in their study of
the classification of sonar signals using a neural network [7].
The data set, "sonar.data", is in the standard CMU Neural
Network Benchmark format. The sonar database constitutes
208 instances with 60 continuous-valued inputs and one
output denoting the class of the instance. The first 104
samples (1:104) are used for training; the next 104 samples
(105:208) for testing and classifier comparison purpose. The
second data set is generated from the first one through
swapping of training and testing exemplars. That is, the
samples used for training in data set1 are now used as testing
data and the samples used for testing in data set 1 are now
used for the purpose of training. This data set is referred to as
data set 2. The fallowing Table I highlights the data partition
schemes employed in order to design a classifier. This data set
can be used in a number of different ways to test learning
speed, quality of ultimate learning, ability to generalize, or
combinations of these factors.

III. PERFORMANCE MEASURES
The estimated neural network models should be assessed on

the basis of important performance measures. When used as a
classifier, the MSE and NMSE of the neural network model
on the test data set should be as low as possible The lower
bound may be specified as an error threshold by the user. The
correlation coefficient of the estimated model should ideally
approach unity. The classification accuracies of the model
should ideally approach 100 %. In addition, the area under
ROC must come close to unity for reliable classification. In
the following paragraphs, the performance measures used for
validation of neural network model are explained.

A. MSE (Mean Square Error):
The formula for the mean squared error is:

()2

0 0

P N

ij ij
j i

d y
MSE

NP
= =

−
=

∑∑

Where P = number of output processing elements, N =
number of exemplars in the data set, ijy = network output for

exemplar i at processing element j, ijd = desired output for
exemplar i at processing element j.

B. NMSE (Normalized Mean Square Error):
The normalized mean squared error is defined by the

following formula:

2
2

0 0

0

N N

ij ijP
i i

j

P N MSENMSE
N d d

N
= =

=

=
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

∑ ∑
∑

Where P = number of output processing elements, N =
number of exemplars in the data set, MSE = mean square
error, ijd = desired output for exemplar i at processing element
j.

TABLE I
DATA PARTITION SCHEME FOR NEURAL NETWORK BASED

CLASSIFIER

Data
Partition

Training instances Testing instances

Set 1
(Normal
tagging)

1:104 (104 samples)
“Metal Cylinder”samples = 49
“Rock” samples= 55

105:208 (104 samples)
“Metal Cylinder” samples= 62
“Rock” samples= 42

Set 2
(Reverse
tagging)

105:208 (104 samples)
“Metal Cylinder” samples=

62
“Rock” samples= 42

1:104 (104 samples)
“Metal Cylinder” samples= 49
“Rock” samples= 55

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:2, 2007

189

TABLE II
VARIABLE PARAMETERS OF MLP NN CLASSIFIER

Parameter Typical Range

Number of hidden layers (1,3)
Number of hidden neurons (1,50)
Learning-rate parameter (0,1)
Momentum constant (0,1)
Transfer function in output layer Tanh, lintanh, softmax, linear
Learning Rule Momentum, conjugate-gradient,

step, quick-propagation, delta bar
delta, Levenberg Marquardt

C. Correlation coefficient (r):
By definition, the correlation coefficient between a network

output x and a desired output d is:

__

2 2_ _

i i
i

i i
i i

x x d d

Nr

d d x x

N N

⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

=
⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑ ∑
 where

_

1

1 N

i
i

x x
N =

= ∑ and

_

1

1 N

i
i

d d
N =

= ∑

The size of the mean square error (MSE) can be used to
determine how well the network output fits the desired output,
but it doesn't necessarily reflect whether the two sets of data
move in the same direction. For instance, by simply scaling
the network output, we can change the MSE without changing
the directionality of the data. The correlation coefficient (r)
solves this problem. The correlation coefficient is confined to
the range [-1, 1]. When r = 1 there is a perfect positive linear
correlation between x and d, that is, they covary, which means
that they vary by the same amount. When r = -1, there is a
perfectly linear negative correlation between x and d, that is,
they vary in opposite ways (when x increases, d decreases by
the same amount). When r = 0 there is no correlation between
x and d, i.e. the variables are called uncorrelated. Intermediate
values describe partial correlations. For example, a correlation
coefficient of 0.88 means that the fit of the model to the data
is reasonably good.

D. Receiver Operating Characteristics (ROC):
Receiver Operating Characteristic (ROC) matrices are used

to show how changing the detection threshold affects
detections versus false alarms. If the threshold is set too high
then the system will miss too many detection. Conversely, if
the threshold is set too low then there will be too many false
alarms. The percentage of detections classified correctly
(Sensitivity or true positive rate) is plotted against the
percentage of non-detections incorrectly classified as
detections (i.e. false alarms or false positive rate) as a function
of the detection threshold. ROC enables the user to evaluate a
model in terms of the trade-offs between sensitivity and
specificity. It is the best way to evaluate a detector. The
performance of classification for test data set is assessed by
calculating the area under the ROC curve (AZ). It is noticed
that the values for Az range from 0.5 for chance to 1.0 for a
perfect classifier.

E. Confusion Matrices:
A confusion matrix is a simple methodology for displaying

the classification results of a network. The confusion matrix is
defined by labeling the desired classification on the rows and
the predicted classifications on the columns. For each
exemplar, a 1 is added to the cell entry defined by (desired

classification, predicted classification). Since we want the
predicted classification to be the same as the desired
classification, the ideal situation is to have all the exemplars
end up on the diagonal cells of the matrix (the diagonal that
connects the upper-left corner to the lower right).

IV. DESIGN OF A MLP-BASED CLASSIFIER
The configuration of the MLP NN is determined by the

number of hidden layers, number of the neurons in each of the
hidden layers, as well as the type of the activation functions
used for the neurons. It has been proved that the performance
of the network does not depend much on the type of the
activation function (as long as it is non-linear), the choice of
the number of hidden layers and the number of units in each
of the hidden layers is critical. It has been established that an
MLP NN that has only one hidden layer, with a sufficient
number of neurons, acts as universal approximators of non-
linear mappings [10]. Experimentally, it can be verified that
the addition of extra hidden layer can enhance the
discriminating ability of the NN model. However, it does so at
the cost of the added computational complexity. The trade-off
between accuracy and complexity of the model should be
resolved carefully. In practice, it is very difficult to determine
a sufficient number of neurons necessary to achieve the
desired degree of approximation accuracy. Frequently, the
number of units in the hidden layer is determined by trial and
error. The possible parameter variations chosen for this MLP
NN are listed in table II.

To determine the weight values, one must have a set of
examples of how the outputs should relate to the inputs. The
task of determining the weights from these examples is called
training or learning, and it is basically a conventional
estimation problem. That is, the weights are estimated from
the examples in such a way that the network, according to
some metric, models the true relationship as accurately as
possible. When a NN has been trained, the next step is to
evaluate it. This is done by a standard method in statistics
called independent validation. This method divides the
available data into a training set and a test set. The entire data
set is usually randomized first. The training data are next split
into two partitions; the first partition is used to update the
weights in the network, and the second partition is used to
assess (or cross-validate) the training performance. The test
data are then used to assess how well the network has
generalized. The learning and generalization ability of the

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:2, 2007

190

TABLE III
PERFORMANCE MEASURES OF MLP CLASSIFIER ON DIFFERENT DATA SETS

Performance measures of MLP Classifier

“Rock” instances “Metal” instances

S.
N.

Data set

% Correct MSE NMSE r % Correct MSE NMSE r

1 Testing Set 1 95.238 0.09014 0.374398 0.805246 85.4838 0.0904363 0.3756371 0.807992

2 Training Set 1 100 0.006985 0.029012 0.986715 100 0.004791 0.0199001 0.99089

3 Testing Set 2 67.272727 0.1660514 0.666424 0.644374 87.755 0.166857 0.6696576 0.644712

4 Training Set 2 100 0.006182 0.025676 0.987664 100 0.0057032 0.023688 0.9885588

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 5 9 13 17 21 25 29 33 37 41 45 49
Hidden 1 PEs

Av
er

ag
e

of
 M

in
 M

SE
s

_______ Training
 ………+1 Standard Deviation
………. -1 Standard Deviation

Fig. 1 Average of Minimum MSEs Vs Number of PEs in the
Hidden Layer

estimated NN based classifier is assessed on the basis of
certain performance measures such as MSE, NMSE,
correlation coefficients, area under the ROC curve, and the
rate of correct classification. Since it is very likely that one
ends up in a “bad” local minimum, the network should be
trained a couple of times (typically at least three times),
starting from different initial weights. NeuroSolutions
(version 5.0) and Neural Network Toolbox for MATLAB
(version 7.0) are specifically used for obtaining results.

For classification, the output processing element must be
nonlinear. Here, as the outputs are 1 and 0, the operating point
of the hidden processing elements is normally driven to
saturation. However, for comparison, linear transfer function
is also considered in the output layer along with the other
nonlinear transfer functions such as tanh, lintanh, and
softmax. The softmax may be used as the output of any MLP
to allow interpretation of the output as a probability, as
normally is the case in classification. Since the ultimate
objective of a pattern classifier is to achieve an acceptable rate
of correct classification, this criterion is used to judge when
the variable parameters of the MLP (used as a pattern
classifier) are optimal.

Starting with a single hidden layer MLP NN as a classifier,
issue is how to choose the number of hidden neurons. In a
rigorous experimental study, the number of hidden neurons in
the hidden layer is gradually increased from 1 to 50 and run
the network several times for each with different weight-
initializations for 1000 epochs. The process of training is
closely monitored with an eye over crucial performance
measures in order to judge the optimality of the classifier.
Variation of mean MSE as a function of the number of PEs is
shown in Fig. 1. For Pentium 4, 1.7 GHz, 768 MB RAM
Computer: training of MLP NN continues at the rate of 78.33
(average value) epochs per second.

It is demonstrated that the best network should have 8
neurons in the hidden layer. In addition, the transfer function
of neurons in hidden layers as well as output layer should be
hyperbolic-tangent (tanh) and the network should be trained
using step learning algorithm for the best performance. The
optimal parameter settings for MLP NN based classifier are as
fallows. PEs in Hidden layer =8, Transfer function of PEs in

hidden layer and output layer =tanh, Learning rule in hidden
and output layers = step.

As there are 60 numeric inputs and one symbolic output
(translated into two numeric-valued outputs, where “Metal
Cylinder” is 0 1 and “Rock” is 1 0) for the given system, the
number of input and output processing elements is chosen as
sixty and two, respectively. Once the design of the MLP
classifier is finalized as (60-8-2), it is run at least three times
with different initialization of connection weights. Table III
displays the various important performance measures of MLP
classifier on different datasets for the “Rock” as well as
“Metal” instances.

To what extent the classifier is able to correctly classify the
exemplars is the most important criterion for its proper
evaluation. This is expressed as “% Correct” in the table.
However, other performance measures such as MSE, NMSE,
and correlation coefficients are included only as a matter of
record, since a small MSE or NMSE does not necessarily
imply good generalization (i.e., good performance with data
not seen before). There are 104 instances in the testing data set
out of which “Rock” instances are 42 and “Metal” instances
are 62. It is noticed that the classifier recognizes two “Rock”
instances as “Metal” ones entailing misclassification.
However, it classifies 40 “Rock” instances as “Rock” only.
Thus, the classification accuracy over “Rock” instances is 40
correct classifications out of 42 samples, that is, 95.238 %.
Similarly, the classification accuracy over “Metal” instances
are 53 correct classifications out of 62 instances amounting to

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:2, 2007

191

TABLE IV
Results of ROC Analysis of MLP NN Classifier

85.4838 %. In order to confirm whether the proposed model is
really consistently capable of near optimum classification,
different data partition as in Set 2 (reverse tagging order) is
used to train the classifier. The classification accuracy over
“Rock” instances is 37 correct classifications out of 42
samples, that is, 67.272727%. Similarly, the classification
accuracy over “Metal” instances is 43 correct classifications
out of 62 instances amounting to 87.755%.

For specified data sets, calculating the area under the ROC
curve assesses the classification performance. Here sensitivity
or detections is plotted against (1-specificity) or false alarms.
For a perfect classifier, the area under the ROC must approach
unity. Fig. 2(a) and 2(b) demonstrates ROC curve for MLP
NN based classifier on test data sets.

Results of ROC analysis of the MLP NN Classifier for
different data partition are listed in Table IV. It is seen from
Table III and IV, that the MLP classifier gives an excellent
performance on the training dataset, which is not desirable.
This is because; it might simply indicate a tendency of subtle
memorization while learning. However, this performance
degrades considerably on the testing exemplars. In view of
these facts, it may be inferred that the chosen configuration of
the network may not be capable to operate as a reasonable
classifier. Its performance is not consistently good showing
somewhat dependency on specific data partition chosen for
training the MLP NN model.

V. DESIGN OF A SVM-BASED CLASSIFIER
SVM are based on statistical learning theory and have the

aim of determining the location of decision boundaries that
produce the optimal separation of classes. In the case of a two-
class pattern recognition problem in which the classes are
linearly separable the SVM selects from among the infinite
number of linear decision boundaries the one that minimises
the generalisation error. Thus, the selected decision boundary
will be one that leaves the greatest margin between the two
classes, where margin is defined as the sum of the distances to
the hyperplane from the closest points of the two classes).
This problem of maximising the margin can be solved using
standard Quadratic Programming (QP) optimisation
techniques. The data points that are closest to the hyperplane
are used to measure the margin; hence these data points are
termed ‘support vectors’. Consequently, the number of
support vectors is small. If the two classes are not linearly
separable, the SVM tries to find the hyperplane that
maximises the margin while, at the same time, minimising a
quantity proportional to the number of misclassification
errors. The trade-off between margin and misclassification
error is controlled by a user-defined constant. SVM can also
be extended to handle non-linear decision surfaces. Boser et
al. [11] propose a method of projecting the input data onto a
high-dimensional feature space using kernel functions and
formulating a linear classification problem in that feature
space. Further, more detailed discussion of the computational
aspects of SVM can be found in [12]. The proposed SVM is
implemented using the kernel Adatron algorithm and uses the
idea of large margin classifiers for training. This decouples the
capacity of the classifier from the input space and at the same
time provides good generalization. This is an ideal
combination for classification.

A. Topology of the SVM machine with RBF kernels
Support vector machines (SVMs) are a radically different

type of classifier that have attracted a great deal of attention
lately due to the novelty of the concepts that they bring to
pattern recognition, their strong mathematical foundation, and
their excellent results in practical problems. Two of the
motivating concepts behind SVMs are, namely, the idea that
transforming the data into a high-dimensional space makes
linear discriminant functions practical and the idea of large
margin classifiers for training. By mapping the input to a
sufficiently large feature space, patterns become linearly
separable, so a simple perceptron in feature space can do the
classification. The first step in a SVM is transforming the data

Fig. 2 (a) ROC curve for MLP based classifier on test data

set. (Set 1: Normal tagging)

TABLE IV
RESULTS OF ROC ANALYSIS OF MLP NN CLASSIFIER

ROC Analysis of MLP NN Classifier

Data set

Area under an
ROC curve

Area under an
ROC curve

Testing Set 1 0.953533 0.962558
Testing Set 2 0.861224 0.869388

Fig. 2 (b) ROC curve for MLP based classifier on test data

set. (Set 2: Reverse tagging)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:2, 2007

192

into a high-dimensional space. This is done using a Radial
Basis Function (RBF) network that places a gaussian at each
data sample. The RBF network can be considered a kernel
classifier that depicted in Fig. 3, where we can easily see that
it is an RBF, but where each Gaussian is centered at each
sample and the weights are the multipliers iα .

In fact, the RBF places Gaussian kernels over the data and
linearly weights their outputs to create the system output. It
conforms exactly to the notion of the kernel machine. When
used as an SVM, the RBF network places a Gaussian in each
data sample such that the feature space becomes as large as
the number of samples.

Assume we have a set of data samples

{ } { }(,),...,(,) 1 , 11S d d dN i= ∈ −x xN (1)

What we want is to find the hyperplane y=w.x+b with the

smallest norm of coefficients 2w (the largest margin). To
find this hyperplane, we can solve the following quadratic
programming problem: minimize the functional

1
2

φ(w) = (w.w) (2)

under the constraint of inequality

[()] 1 1, 2,...,id b i N+ ≥ =ix .w (3)

where the operation is an inner product. The solution to this
optimization is given by the saddle points of the Lagrangian:

1

1(, ,) () {[)] 1}
2

N

i
i

L b b dα α
=

= − + −∑w w.w x.w (4)

By using the dual formulation, we can rewrite Eq.4 as

1 1 1

1() ()
2

subject to 0, {1,..., }

N N N

i i j i j
i i j

i

J d d

i N

α α α α

α
= = =

= −

≥ ∀ ∈

∑ ∑∑ i jx .x (5)

under the constraint

1
0.N

i ii
yα

=
=∑ the solution is a set of α*.

We can show that only some of the samples will correspond to

Lagrangian multipliers different from zero and will be called
the support vectors. They are the ones that control the
positioning of the optimal hyperplane. The large margin
classifier thus is specified by

* *

support
vectors

() sgn ()i if x d bα
⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ix .x (6)

One of the characteristics of the SVM is that the user has no

control over the number of support vectors (i.e. the size of the
final machine). During training, all the RBFs are used, but
once the SVM is trained, the RBF should be trimmed,
discarding the RBFs that are not support vectors. The number
of support vectors depends on the data, which makes sense but
is not always useful since we never know the size of the
model. The expressions we arrived at are exactly the same as
the one for the Adatron algorithm, except that Vapnik
suggests a quadratic programming solution, while the Adatron
is an "on-line" solution, easily implemented in neural network
software. Like any on-line algorithm, the Adatron requires
control of learning rate and suffers from the problem of
misadjustment and stopping criterion. We can expect that
training SVMs with large data sets demands a lot from
computer resources (memory or computation).

The learning algorithm is based on the Adatron algorithm
extended to the RBF network. The Adatron algorithm can be
easily extended to the RBF network by substituting the inner
product of patterns in the input space by the kernel function,
leading to the following quadratic optimization problem:

2

1 1 1

1

1() (, 2)
2

subject to 0 0, {1,..., }

i

N N N

i i j i j j
i i j

N

i i i
i

J d d G x x

d i N

α α α α σ

α α

= = =

=

= − −

= ≥ ∀ ∈

∑ ∑∑

∑
 (7)

We can then define

2

1
() (, 2)) and min ()

N

i i j j i j iij
g x d d G x x b M g xα σ

=

⎛ ⎞
= − + =⎜ ⎟

⎝ ⎠
∑

 (8)

Fig. 3 Topology of the SVM machine with RBF kernels

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:2, 2007

193

TABLE V
PERFORMANCE MEASURES OF SVM CLASSIFIER ON DIFFERENT DATA SETS

Performance measures of SVM Classifier

“Rock” instances “Metal” instances

S
.
N
.

Data set

% Correct MSE NMSE r % Correct MSE NMSE r

1 Testing Set 1 95.238 0.0828976 0.3443246 0.83928 88.70967 0.08362867 0.3473608 0.8390735

2 Training Set 1 100 0.0131840 0.0529122 0.987175 100 0.01331346 0.05343168 0.9871467

3 Testing Set 2 67.272727 0.13755835 0.552070914 0.744452149 95.91836735 0.139111408 0.558303893 0.744005351

4 Training Set 2

100 0.014012203 0.058201226 0.990985809 100 0.014190286 0.058940911 0.990941784

0

0.1

0.2

0.3

0.4

0.5

0.6

1 100 199 298 397 496 595 694 793 892 991
Epoch

Av
er

ag
e

M
SE

_______ Training
 ………+1 Standard Deviation
………. -1 Standard Deviation

Fig. 4 Average MSE versus number of Epoch

and choose a common starting multiplier (e.g.
i

α , jα =0.1),

learning rate η , and a small threshold (e.g., t = 0.01). While

M>t, we choose a pattern ix and calculate an update

[1 ()]i ig xα ηΔ = − and perform the update

(1) () (), (1) () if () 0
(1) (), (1) () if () 0

i i i i i i

i i i i

n n n b n b n di n
n n b n b n n

α α α α α α
α α α α

+ = + Δ + = + Δ + Δ⎧
⎨ + = + = + Δ ≤⎩

f

 (9)

After adaptation only some of the iα are different from zero
(called the support vectors). They correspond to the samples
that are closest to the boundary between classes. This
algorithm is called the kernel Adatron and can adapt an RBF
to have an optimal margin. This algorithm can be considered
the "on-line" version of the quadratic optimization approach
utilized for SVMs, and it can find the same solutions as
Vapnik's original algorithm for SVMs. Notice that it is easy to
implement the kernel Adatron algorithm since ()ig x can be
computed locally to each multiplier, provided that the desired
response is available in the input file. In fact, the expression
for ()ig x resembles the multiplication of an error with an
activation, so it can be included in the framework of neural
network learning. The Adatron algorithm essentially prunes
the RBF network so that its output for testing is given by

2

i support
vectors

() sgn (,2)i i if x d G x x bα σ
∈

⎛ ⎞
⎜ ⎟= − −⎜ ⎟⎜ ⎟
⎝ ⎠

∑ (10)

B. Computer Simulation:
In this paper, the SVM classifier is implemented using the

kernel Adatron algorithm and it is trained for both the data
sets for 1000 epochs. For Pentium 4, 1.7 GHz, 768 MB RAM
Computer with optimal Step size = 0.01, training of SVM took
about 27.77 (average value) epochs per second. Variation of
Mean Square Error on training data set 1 with respect to
epochs is as shown in Fig. 4.

It is observed that the training is not affected by different
random weight initializations. Different initial conditions are

tried to make sure that one is really converging to the absolute
minimum. Therefore, the network is run at least three times
with different weight-initializations with the specified training
epochs to gauge performance. Even though SVM is run three
times with different random weight initializations, identical
results are obtained for a specific data set. This proves
consistency and robustness of the model. Table V displays the
various important performance measures of SVM classifier on
different data sets with respect to “Rock” as well as “Metal”
instances.

It is noticed that the classifier recognizes 40 “Rock”
instances as “Rock” ones and two “Rock” instances as
“Metal” ones entailing a classification accuracy of 95.238 %
for “Rock” instances. However, it classifies 7 “Metal”
instance as “Rock” and 55 “Metal” instances as “Metal” that
result into a classification accuracy of 88.70967 % over
“Metal” instances. In order to confirm whether the proposed
model is really consistently capable of near optimum
classification, different data partition as in Set 2 (reverse
tagging order) is used to train the classifier. For the testing
dataset, the classification accuracy for “Rock” samples is seen
as 67.272727, whereas for the “Metal” samples, the
classification accuracy is observed as 95.91836735. The ROC
curves of the SVM classifier on different test data set are
sketched in Fig. 5(a) and 5(b).

From the graph it is seen that the area under the ROC curve
on different test data set 1 and set 2 are computed as 0.981183
and 0.939518 respectively, which is indicative of reasonable

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:2, 2007

194

Fig. 5 (b) ROC curve for SVM based classifier on test data

set. (Set 2: Reverse tagging)

TABLE VI
RESULTS OF ROC ANALYSIS OF SVM CLASSIFIER

ROC Analysis of SVM Classifier Data set
Area under an
ROC curve

Area under an
ROC curve

Testing Set 1 0.981183 0.983871
Testing Set 2 0.939518 0.947310

classification.
Results of ROC analysis of the SVM classifier for different

data partition are listed in Table VI. It is seen from table V
and VI, that the SVM classifier provides an excellent
performance on both the data sets. In addition, this
performance is seen to be consistently good.

VI. CONCLUSION
As a classifier, the best single hidden layered MLP NN is

not seen to perform reasonably. When it is evaluated on the
training instances, it works as an almost perfect classifier.
Here, the area under the ROC curve is found as 1.0 and the
average classification accuracy of 100 %. However, it is
revealed that this good performance on the training data set
has not been maintained on the test data set. The performance
of this MLP classifier on the test data degrades slightly and
average classification accuracy = 90.3609 % and the area
under the ROC curve = 0.953533. Therefore, it could be
inferred that such a performance may indicate a subtle
memorization of the neural network without adequate
learning. In order to ensure learning and generalization,
different data partition is employed with reverse tagging order
for training of the network. Results show that the performance
drastically degrades as now average classification accuracy
drops to 77.5138635 % and the area under the ROC curve
deviates away from 1.0 (Now it is 0.861224). The MLP

classifier is not seen to provide consistency in the
classification accuracy. These findings are confirmed to
satisfaction after repeating the simulation experiments a
number of times on different data partitions.

Results show that SVM classifier worked as an optimal
classifier for the given task. For the testing dataset, the
classification accuracy for “Rock” samples is seen as 95.238,
whereas for the “Metal” samples, the classification accuracy is
observed as 88.70967(an average of 91.973835 % correct
classifications). The area under the ROC curve for testing
dataset is computed as 0.981183, which is indeed very close to
unity. It is worthwhile to notice that the SVM has consistently
performed elegantly as a near-optimal classifier even after
repeating the simulation experiments a number of times with
different initial weights. It is seen that the SVM based
classifier satisfies almost all the essential qualities and tests of
a near-perfect (near-optimal) classifier up to the end-user’s
expectations. More importantly, its performance is seen to be
consistently good. For the classification of sonar signals, the
decision boundaries formed by the SVM classifier are seen to
be more accurate than those formed by MLP classifier and the
discriminating ability of SVM is remarkable in separating data
as well as possible into classes.

The performance of MLP classifiers is seen to get affected
by the training algorithm, input exemplars, and parameter
initialization. However, the proposed SVM with kernel
Adatron algorithm is observed to be relatively insensitive to
the parameter initialization. It consistently performs well as a
reasonable classifier with acceptable and reliable performance
measures.

REFERENCES
[1] R. P. Lippmann. “An introduction to computing with neural nets,” IEEE

ASSP Magazine, pp. 4-22, April 1987.
[2] H.L. Roitblat, W.W.L. Au, P.E. Nachtigall, R. Shizumura and G. Moons,

“Sonar recognition of targets embedded in sediments,” Neural Networks,
Vol. 8, No. 7/8, pp. 1263-1273, 1995.

[3] J.A. Simmons, P.A. Saillant, J.M. Wotton, T. Haresign, M.J. Ferragamo
and C.F. Moss, “Composition of biosonar images for target recognition
by echolocating bats,” Neural Networks, Vol. 8, No. 7/8, pp. 1239-1261,
1995.

[4] W.W.L. Au, “Comparision of sonar discrimination- dolphin and
artificial neural network,” The Journal of the Acoustical Society of
America, Vol. 95, No. 5, Part 1, pp. 2728-2735, May 1994.

[5] E. Alpaydin, “Multiple networks for function learning,” Proceedings of
IEEE International Conference on Neural Networks, San Francisco, pp.
9-14, March 1993.

[6] W.W.L. Au, L.N. Andersen, A.R. Rasmussen, H.L. Roitblat and P.E.
Nachtigall, “Neural Network modeling of a dolphin’s sonar
discrimination capabilities,” The Journal of the Acoustical Society of
America, Vol. 98, No. 1, pp. 43-50, July 1995.

Fig. 5 (a) ROC curve for SVM based classifier on test data

set. (Set 1: Normal tagging)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:2, 2007

195

[7] R. P. Gorman and T. J. Sejnowski, “Analysis of Hidden Units in a
Layered Network Trained to Classify Sonar Targets” in Neural
Networks, Vol. 1, pp. 75-89, 1988.

[8] R. P. Gorman and T. J. Sejnowski, “Learned classification of sonar
targets using a massively parallel network,” IEEE Transactions on
Acoustic, Speech and Signal Processing, Vol. 36, No. 7, pp. 1135-1140,
July 1998.

[9] Vapnik, V. N., The Nature of Statistical Learning Theory. New York:
Springer-Verlag 1995.

[10] Hornik K. M., Stinchcombe M., and White H. (1989). “Multilayer
Feedforward Networks Are Universal Approximators,” Neural
Networks, vol.2 no. (5), pp. 359-66.

[11] Boser, H., Guyon, I. M., & Vapnik, V. N., 1992. A training algorithm for
optimal margin classifiers. In Haussler, D., Proceedings of the 5th
Annual ACM Workshop on Computational Learning Theory 144-152.
Pittsburgh, PA: ACM Press.

[12] Cristianini, N. and Shawe-Taylor, J., 2000. An Introduction to Support
Vector Machines and other Kernel-based Learning Methods. Cambridge,
UK: Cambridge University Press.

[13] S. Haykin, 1994. Neural Networks: A Comprehensive Foundation,
McMillan, New York.

[14] T. Friess, N. Cristianini and C. Campbell, “The Kernel-Adatron: A fast
and simple learning procedure for support vector machines,”
Proceedings of the 15th International Conference in Machine Learning,
pp. 188-196, 1998.

[15] Alim, O.A.; Hashem, H.F.; “Automatic recognition of the sonar signals
using neural network,” Proceedings of International Conference on
Information, Communications and Signal Processing, ICICS1997, 9-12
Sept. 1997, vol.2, pp.740 - 744.

[16] Freiss T., Support Vector Neural Networks: The Kernel Adatron with
Bias and Soft Margin, Uniiversity of Sheffield Technical Report, 1998.

[17] Andersen, L.N.; Au, W.; Larsen, J.; Hansen, L.K.; “Sonar discrimination
of cylinders from different angles using neural networks,” Proceedings
of IEEE International Conference on Acoustics, Speech, and Signal
Processing, ICASSP '99, Volume 2, 15-19 March 1999, vol.2 pp.1121 -
1124.

[18] Jose C. Principe, Neil R. Euliano, and W. Curt Lefebvre, Neural and
Adaptive Systems: Fundamentals Through Simulations, John Wiley &
Sons, Inc., 2000.

[19] Ming Hsuan Yang and Narendra Ahuja, “A geometric approach to train
support vector machines,” Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition, CVPR 2000,
Hilton Head Island, Vol. 1, pp. 430-437, June 2000.

[20] Dai H.K., Jing Peng, and Heisterkamp Douglas R. “LDA/SVM driven
nearest neighbour classification,” IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, CVPR 2001, Vol. 1, pp.
158-163, 2001.

[21] Ward, M.K.; Stevenson, M.; “Sonar signal detection and classification
using artificial neural networks,” Electrical and Computer Engineering,
2000, Canadian Conference on 7-10 March, 2000, Volume 2, pp.717 –
721.

Suresh S. Salankar is a Assistant Professor in the Department of Electronics
and Telecommunication at B. D. College of Engineering, Sevagram, India. His
research interests is in the design and evaluation of learning algorithms for
pattern reccognition applications. This includes, in particular, neural network
classifiers, support vector machines classifiers, and classifier combing
strategies. He is a member of the Institution of Engineers (India) and Indian
Society for Technical Education.

Balasaheb M. Patre was born in Basmathnagar, India in 1965. He received
B. E. and M. E. degree in Instrumentation and Control Engineering in 1986
and 1990 respectively from Marathwada University, Aurangabad and
subsequently doctorate degree (Ph. D.) in Systems and Control Engineering
from IIT, Bombay in 1998. He has published sixty papers in the
National/International conferences/journals. He has presented his research
work at Cambridge University, UK and in Germany. He is a life member
ISTE and Instrument Society of India, member of IETE, IEEE, and IET. He is
reviewer for several International Journals. His area of interest includes robust
control, VSS, interval arithmetic applications in robust control, intelligent
control etc. Presently he is working as Professor of Instrumentation
Engineering at SGGS Institute of Engineering and Technology, Nanded,
India.

