The Number of Rational Points on Elliptic Curves $y^{2}=x^{3}+b^{2}$ Over Finite Fields

Betül Gezer, Hacer Özden, Ahmet Tekcan, Osman Bizim

Abstract

Let p be a prime number, \mathbf{F}_{p} be a finite field and let Q_{p} denote the set of quadratic residues in \mathbf{F}_{p}. In the first section we give some notations and preliminaries from elliptic curves. In the second section, we consider some properties of rational points on elliptic curves $E_{p, b}: y^{2}=x^{3}+b^{2}$ over \mathbf{F}_{p}, where $b \in \mathbf{F}_{p}^{*}$. Recall that the order of $E_{p, b}$ over \mathbf{F}_{p} is $p+1$ if $p \equiv 5(\bmod 6)$. We generalize this result to any field \mathbf{F}_{p}^{n} for an integer $n \geq 2$. Further we obtain some results concerning the sum $\sum_{[x]} E_{p, b}\left(\mathbf{F}_{p}\right)$ and $\sum_{[y]} E_{p, b}\left(\mathbf{F}_{p}\right)$, the sum of x - and y-coordinates of all points (x, y) on $E_{p, b}$, and also the the sum $\sum_{(x, 0)} E_{p, b}\left(\mathbf{F}_{p}\right)$, the sum of points $(x, 0)$ on $E_{p, b}$.

Keywords-elliptic curves over finite fields, rational points on elliptic curves.

I. Introduction

Mordell began his famous paper [8] with the words Mathematicians have been familiar with very few questions for so long a period with so little accomplished in the way of general results, as that of finding the rational points on elliptic curves. The history of elliptic curves is a long one, and exciting applications for elliptic curves continue to be discovered. Recently, important and useful applications of elliptic curves have been found for cryptography [4,6,7], for factoring large integers [5] and for primality proving [2,3]. The mathematical theory of elliptic curves was also crucial in the proof of Fermat's Last Theorem [13].

Let q be a positive integer, \mathbf{F}_{q} be a finite field and let $\overline{\mathbf{F}}_{q}$ denote the algebraic closure of \mathbf{F}_{q} with $\operatorname{char}\left(\overline{\mathbf{F}}_{q}\right) \neq 2,3$. An elliptic curve E over \mathbf{F}_{q} is defined by an equation

$$
E: y^{2}=x^{3}+a x+b
$$

where $a, b \in \mathbf{F}_{q}$ and $4 a^{3}+27 b^{2} \neq 0$. We can view an elliptic curve E as a curve in projective plane \mathbf{P}^{2}, with a homogeneous equation $y^{2} z=x^{3}+a x z^{2}+b z^{3}$, and one point at infinity, namely $(0,1,0)$. This point ∞ is the point where all vertical lines meet. We denote this point by O. Let

$$
\begin{aligned}
E\left(\mathbf{F}_{q}\right)= & \left\{(x, y) \in \mathbf{F}_{q} \times \mathbf{F}_{q}: y^{2}=x^{3}+a x+b\right\} \\
& \cup\{O\}
\end{aligned}
$$

denote the set of rational points (x, y) on E. Then it is a subgroup of E. The order of $E\left(\mathbf{F}_{q}\right)$, denoted by $\# E\left(\mathbf{F}_{q}\right)$, is defined as the number of the rational points on E and is given
by

$$
\begin{align*}
\# E\left(\mathbf{F}_{q}\right) & =1+\sum_{x \in \mathbf{F}_{q}}\left(1+\frac{x^{3}+a x+b}{\mathbf{F}_{q}}\right) \tag{1}\\
& =q+1+\sum_{x \in \mathbf{F}_{q}}\left(\frac{x^{3}+a x+b}{\mathbf{F}_{q}}\right)
\end{align*}
$$

where $\left(\dot{\overline{\mathbf{F}_{q}}}\right)$ denotes the Legendre symbol (for further details on rational points on elliptic curves see $[9,10,12]$).

Let p be a prime number and let $q=p^{n}$ for integer $n>1$. Let

$$
\begin{equation*}
N=q+1-a \tag{2}
\end{equation*}
$$

Then a is called the trace of Frobenius and satisfies the inequality

$$
\begin{equation*}
|a| \leq 2 \sqrt{q} \tag{3}
\end{equation*}
$$

known as the Hasse interval [12, p.91]. Then there is an elliptic curve E defined over \mathbf{F}_{q} such that $\# E\left(\mathbf{F}_{q}\right)=N$ if and only if a satisfies (3) and also satisfies one of the following (see [12, p.92]):

1) $\operatorname{gcd}(a, p)=1$
2) n is even and $a= \pm 2 \sqrt{q}$
3) n is even, p is not equivalent to $1(\bmod 3)$ and $a= \pm \sqrt{q}$
4) n is odd, $p=2,3$ and $a= \pm p^{(n+1) / 2}$
5) n is even, p is not equivalent to $1(\bmod 4)$ and $a=0$
6) n is odd and $a=0$

The formula (1) can be generalized to any field $\mathbf{F}_{q^{n}}$ for an integer $n \geq 2$. Let $\# E\left(\mathbf{F}_{q}\right)=q+1-a$ and let

$$
\begin{equation*}
X^{2}-a X+q=(X-\alpha)(X-\beta) \tag{4}
\end{equation*}
$$

Then the order of E over $\mathbf{F}_{q^{n}}$ is

$$
\begin{equation*}
\# E\left(\mathbf{F}_{q^{n}}\right)=q^{n}+1-\left(\alpha^{n}+\beta^{n}\right) \tag{5}
\end{equation*}
$$

II. The Number of Rational Points on Elliptic Curve $y^{2}=x^{3}+b^{2}$ Over \mathbf{F}_{p}.

In [11], the third author consider the elliptic curves $E: y^{2}=$ $x^{3}-t^{2} x$ over a finite field \mathbf{F}_{p}, where p is a prime number and $t \in \mathbf{F}_{p}^{*}$. He obtain some results concerning rational points on E.

In the present paper we consider the elliptic curves

$$
\begin{equation*}
E_{p, b}: y^{2}=x^{3}+b^{2} \tag{6}
\end{equation*}
$$

over \mathbf{F}_{p}. Recall that if $p \equiv 5(\bmod 6)$, then $\# E\left(\mathbf{F}_{p}\right)=p+1$. But when $p \equiv 1(\bmod 6)$, then there is no rule for $\# E\left(\mathbf{F}_{p}\right)$. Therefore we assume that $p \equiv 5(\bmod 6)$ throughout the paper.

First we give the following theorem.
Theorem 2.1: Let $p \equiv 5(\bmod 6)$ be a prime. If $(p-1,3)=$ 1 , then the congruence

$$
x^{3} \equiv b(\bmod p)
$$

has a solution for each $b \in \mathbf{F}_{p}$, that is every $b \in \mathbf{F}_{p}$ is a cubic residue.

Proof: Let $p \equiv 5(\bmod 6)$. Then $p=5+6 q$ for some $q \in \mathbf{Z}$. Then

$$
(p-1,3)=(6 q+4,3)=1
$$

Hence we have either $p=3$ or $p \equiv 2(\bmod 3)$. So if $p=3$, then

$$
0^{3} \equiv 0(\bmod 3), 1^{3} \equiv 1(\bmod 3), 2^{3} \equiv 2(\bmod 3)
$$

in \mathbf{F}_{3}. Therefore every $b \in \mathbf{F}_{3}$ is a cubic residue.
If $p \equiv 2(\bmod 3)$, then $p=2+3 q$ for $q \in \mathbf{Z}$. Therefore the norm of p is

$$
|p|=p \bar{p}=(2+3 q)(2+3 q)=9 q^{2}+12 q+4
$$

and hence

$$
\frac{|p|-1}{3}=3 q^{2}+4 q+1
$$

So we have

$$
b^{\frac{|p|-1}{3}}=b^{3 q^{2}+4 q+1}
$$

Hence $b^{p-1} \equiv 1(\bmod p)$ by Fermat's Little Theorem. So

$$
b^{p-1} \equiv b^{3 q+2-1} \equiv b^{3 q+1} \equiv 1(\bmod p) .
$$

Consequently

$$
b^{\frac{|p|-1}{3}} \equiv\left(b^{3 q+1}\right)^{q+1} \equiv 1^{q+1} \equiv 1(\bmod p)
$$

Now let $1 \leq b \leq p-1$ and let $0 \leq q \leq p-2$. Let g be a primitive root modulo p such that $g^{q} \equiv b(\bmod p)$. Hence there are integers u and v such that

$$
\begin{equation*}
3 u+(p-1) v=1 \tag{7}
\end{equation*}
$$

since $(3, p-1)=1$. If we take $x=u q$ and $y=v q$, then (7) becomes

$$
3 x+(p-1) y=q .
$$

Therefore we get

$$
\begin{aligned}
b & \equiv g^{q}(\bmod p) \\
& \equiv g^{s x+(p-1) y}(\bmod p) \\
& \equiv\left(g^{x}\right)^{3}\left(g^{p-1}\right)^{y}(\bmod p) \\
& \equiv\left(g^{x}\right)^{3}(\bmod p)
\end{aligned}
$$

since $g^{p-1} \equiv 1(\bmod p)$, that is, b is a cubic residue modulo p. Further $0^{3} \equiv 0(\bmod p)$. Therefore all elements of \mathbf{F}_{p} are cubic residues.

We know that the order of $E_{p, b}: y^{2}=x^{3}+b^{2}$ over \mathbf{F}_{p} is $\# E_{p, b}\left(\mathbf{F}_{p}\right)=p+1$. Now we generalize this result to $\mathbf{F}_{p^{n}}$ for a positive integer $n \geq 2$.

Theorem 2.2: Let $E_{p, b}: y^{2}=x^{3}+b^{2}$ be an elliptic curve over \mathbf{F}_{p}. Then

$$
\# E_{p, b}\left(\mathbf{F}_{p^{n}}\right)= \begin{cases}\left(p^{\frac{n}{2}}-1\right)^{2} & \text { if } n \equiv 0(\bmod 4) \\ p^{n}+1 & \text { if } n \equiv 1,3(\bmod 4) \\ \left(p^{\frac{n}{2}}+1\right)^{2} & \text { if } n \equiv 2(\bmod 4)\end{cases}
$$

Proof: Let $E_{p, b}: y^{2}=x^{3}+b^{2}$. Then the order of $E_{p, b}$ over \mathbf{F}_{p} is $\# E_{p, b}\left(\mathbf{F}_{p}\right)=p+1$. Therefore $a=0$ by (2). Then

$$
\begin{aligned}
X^{2}+p & =(X-i \sqrt{p})(X+i \sqrt{p}) \\
& =(X-\alpha)(X-\beta)
\end{aligned}
$$

for $\alpha=i \sqrt{p}$ and $\beta=-i \sqrt{p}$.
Let $n \equiv 0(\bmod 4)$, say $n=4 k$ for an integer $k \geq 1$. Then

$$
\begin{aligned}
\alpha^{n}+\beta^{n} & =(i \sqrt{p})^{4 k}+(-i \sqrt{p})^{4 k} \\
& =i^{4 k}(\sqrt{p})^{4 k}+(-i)^{4 k}(\sqrt{p})^{4 k} \\
& =p^{2 k}+p^{2 k} \\
& =2 p^{2 k} \\
& =2 p^{\frac{n}{2}}
\end{aligned}
$$

So

$$
\begin{aligned}
\# E_{p, b}\left(\mathbf{F}_{p^{n}}\right) & =p^{n}+1-\left(\alpha^{n}+\beta^{n}\right) \\
& =p^{n}+1-2 p^{\frac{n}{2}} \\
& =\left(p^{\frac{n}{2}}-1\right)^{2}
\end{aligned}
$$

by (5).
Let $n \equiv 1(\bmod 4)$, say $n=1+4 k$. Then

$$
\begin{aligned}
\alpha^{n}+\beta^{n} & =(i \sqrt{p})^{4 k+1}+(-i \sqrt{p})^{4 k+1} \\
& =i^{4 k+1}(\sqrt{p})^{4 k+1}+(-i)^{4 k+1}(\sqrt{p})^{4 k+1} \\
& =i(\sqrt{p})^{4 k+1}-i(\sqrt{p})^{4 k+1} \\
& =0
\end{aligned}
$$

So $\# E_{p, b}\left(\mathbf{F}_{p^{n}}\right)=p^{n}+1$.
Let $n \equiv 2(\bmod 4)$, say $n=2+4 k$. Then

$$
\begin{aligned}
\alpha^{n}+\beta^{n} & =(i \sqrt{p})^{4 k+2}+(-i \sqrt{p})^{4 k+2} \\
& =i^{4 k+2}(\sqrt{p})^{4 k+2}+(-i)^{4 k+2}(\sqrt{p})^{4 k+2} \\
& =-p^{2 k+1}-p^{2 k+1} \\
& =-2 p^{2 k+1} \\
& =-2 p^{\frac{n}{2}} .
\end{aligned}
$$

So $\# E_{p, b}\left(\mathbf{F}_{p^{n}}\right)=p^{n}+1+2 p^{\frac{n}{2}}=\left(p^{\frac{n}{2}}+1\right)^{2}$.
Finally, let $n \equiv 3(\bmod 4)$, say $n=3+4 k$. Then

$$
\begin{aligned}
\alpha^{n}+\beta^{n} & =(i \sqrt{p})^{4 k+3}+(-i \sqrt{p})^{4 k+3} \\
& =i^{4 k+3}(\sqrt{p})^{4 k+3}+(-i)^{4 k+3}(\sqrt{p})^{4 k+3} \\
& =-i(\sqrt{p})^{4 k+3}+i(\sqrt{p})^{4 k+3} \\
& =0
\end{aligned}
$$

So $\# E_{p, b}\left(\mathbf{F}_{p^{n}}\right)=p^{n}+1$.
Example 2.1: Let $E_{11,2}: y^{2}=x^{3}+4$ be an elliptic curve over \mathbf{F}_{11}. Then the order of $E_{11,2}$ over $\mathbf{F}_{11^{n}}$ is

$$
\# E_{11,2}\left(\mathbf{F}_{11^{n}}\right)= \begin{cases}214329600 & \text { for } n=8 \\ 2357947692 & \text { for } n=9 \\ 285311670612 & \text { for } n=11 \\ 25937746704 & \text { for } n=10\end{cases}
$$

Let $[x]$ and $[y]$ denote the x-coordinates and y-coordinates of the points (x, y) on $E_{p, b}$, respectively. Then we have the following results.

Theorem 2.3: The sum of $[x]$ on $E_{p, b}$ is

$$
\sum_{[x]} E_{p, b}\left(\mathbf{F}_{p}\right)=\sum_{[x]}\left(1+\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)\right) \cdot x
$$

Proof: We know that

$$
\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)=\left\{\begin{array}{lll}
0 & \text { if } & x^{3}+b^{2}=0 \\
1 & \text { if } & x^{3}+b^{2} \in Q_{p} \\
-1 & \text { if } & x^{3}+b^{2} \notin Q_{p}
\end{array}\right.
$$

Let $\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)=0$. Then $x^{3}+b^{2}=0$. Hence the cubic equation $x^{3}+b^{2}=0$ has only one solution $x=\sqrt[3]{-b^{2}}$. Therefore

$$
y^{2} \equiv 0(\bmod p) \Leftrightarrow y \equiv 0(\bmod p)
$$

So for such a point x, we have a point $(x, 0)$ on $E_{p, b}$. Therefore we get $(x+0) \cdot x=x$ is added to the sum.
Let $\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)=1$. Then $x^{3}+b^{2}$ is a square in \mathbf{F}_{p}. Let $x^{3}+b^{2}=t^{2}$ for any $t \in \mathbf{F}_{p}^{*}$. Then

$$
y^{2} \equiv t^{2}(\bmod p) \Leftrightarrow y= \pm t(\bmod p),
$$

that is, for any point (x, t) on $E_{p, b}$, the point $(x,-t)$ is also on $E_{p, b}$. Therefore for each point (x, y), we have $(1+1) \cdot x=2 x$ is added to the sum.
Let $\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)=-1$. Then $x^{3}+b^{2}$ is not a square in \mathbf{F}_{p}. Then the equation $y^{2} \equiv x^{3}+b^{2}(\bmod p)$ has no solution. Therefore for each point (x, y) we have $(1+(-1)) \cdot x=0$.

Theorem 2.4: The sum of $[y]$ on $E_{p, b}$ is

$$
\sum_{[y]} E_{p, b}\left(\mathbf{F}_{p}\right)=\frac{p^{2}-p}{2} .
$$

Proof: Let $E_{p, b}: y^{2}=x^{3}+b^{2}$ be an elliptic curve over \mathbf{F}_{p}. The cubic equation $x^{3}+b^{2}=0$ has a solution $x=\sqrt[3]{-b^{2}}$. For the other values of x, we have both x and $-x$. One of these gives two points. The one makes $x^{3}+b^{2}$ is a square, i.e. $\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)=1$. There are $\frac{p-1}{2}$ points x in \mathbf{F}_{p} such that $x^{3}+b^{2}$ is a square. Let $x^{3}+b^{2}=t^{2}$ for any $t \in \mathbf{F}_{p}^{*}$. Then we have

$$
y^{2} \equiv t^{2}(\bmod p) \Leftrightarrow y \equiv \pm t(\bmod p) .
$$

Hence $y=t$ and $y=p-t$. So the sum of these values of y is $t+(p-t)=p$. We know that there are $\frac{p-1}{2}$ points x in \mathbf{F}_{p} such that $y^{2}=x^{3}+b^{2}$ is a square. Therefore, the sum of ordinates of all points (x, y) is $p \frac{p-1}{2}$, that is

$$
\sum_{[y]} E_{p, b}\left(\mathbf{F}_{p}\right)=\frac{p^{2}-p}{2} .
$$

Theorem 2.5: Let $\mathbf{E}_{p, b}$ denote the set of the family of all elliptic curves over \mathbf{F}_{p}. Then

$$
\sum_{b \in \mathbf{F}_{p}^{*}} \# \mathbf{E}_{p, b}\left(\mathbf{F}_{p}\right)=\frac{p^{2}-1}{2} .
$$

Proof: Note that there are $\frac{p-1}{2}$ elliptic curves $E_{p, b}: y^{2}=$ $x^{3}+b^{2}$ over \mathbf{F}_{p}, and also the order of $E_{p, b}$ over \mathbf{F}_{p} is $p+1$,
i.e. $\# E_{p, b}\left(\mathbf{F}_{p}\right)=p+1$. Therefore the total number of the points (x, y) on all elliptic curves $E_{p, b}$ in $\mathbf{E}_{p, b}$ over \mathbf{F}_{p} is

$$
\sum_{b \in \mathbf{F}_{p}^{*}} \# \mathbf{E}_{p, b}\left(\mathbf{F}_{p}\right)=(p+1) \frac{p-1}{2}=\frac{p^{2}-1}{2}
$$

We can give the following two theorems for the rational points $(x, 0)$ on $E_{p, b}$.

Theorem 2.6: Let $E_{p, b}: y^{2}=x^{3}+b^{2}$ be an elliptic curve over \mathbf{F}_{p}, and let $(x, 0)$ be a point on $E_{p, b}$. Then

$$
x \in Q_{p} \Leftrightarrow p \equiv 1(\bmod 4)
$$

and

$$
x \notin Q_{p} \Leftrightarrow p \equiv 3(\bmod 4) .
$$

Proof: Let $(x, 0)$ be a point on $E_{p, b}$ and let $x \in Q_{p}$. Then $x^{3} \equiv-b^{2}(\bmod 4)$ since $0 \equiv x^{3}+b^{2}(\bmod 4)$, and $x^{3}=$ $x^{2} . x \in Q_{p}$. Note that $-b^{2} \in Q_{p}$ if and only if $-1 \in Q_{p}$, and hence $p \equiv 1(\bmod 4)$.

Conversely, let $p \equiv 1(\bmod 4)$, and let $(x, 0)$ be a point on $E_{p, b}$. Then $x^{3} \equiv-b^{2}(\bmod 4)$. Since $-1 \in Q_{p}$ and $b^{2} \in Q_{p}$, we have $x^{3} \in Q_{p}$ and hence $x \in Q_{p}$.

The second assertion can be proved as in the same way that the first assertion was proved.

Theorem 2.7: Let $E_{p, b}: y^{2}=x^{3}+b^{2}$ be an elliptic curve over \mathbf{F}_{p}, and let $(x, 0)$ be a point on $E_{p, b}$.

1) If $p \equiv 1(\bmod 4)$, then

$$
\begin{aligned}
\sum_{(x, 0)} E_{p, b} & =\sum_{t \in Q_{p}} t \\
& =\frac{p(p-1)(p+1)}{24}
\end{aligned}
$$

2) If $p \equiv 3(\bmod 4)$, then

$$
\begin{aligned}
\sum_{(x, 0)} E_{p, b} & =\sum_{t \notin Q_{p}} t \\
& =\frac{p(p-1)(11-p)}{24} .
\end{aligned}
$$

Proof: 1) Let $p \equiv 1(\bmod 4)$. Then we proved in Theorem 2.6 that there exits only one point $x \in Q_{p}$ such that $(x, 0)$ is a point on $E_{p, b}$. We know that there are $\frac{p-1}{2}$ elements in Q_{p}. Therefore there are $\frac{p-1}{2}$ points $(x, 0)$ on $E_{p, b}$. Consequently the sum of x-coordinates of all points $(x, 0)$ on $E_{p, b}$ is equal to the sum of all elements in Q_{p}, that is

$$
\begin{equation*}
\sum_{(x, 0)} E_{p, b}=\sum_{t \in Q_{p}} t . \tag{8}
\end{equation*}
$$

Let $U_{p}=\{1,2, \cdots, p-1\}$ be the set of units in \mathbf{F}_{p}. Then then taking squares of elements in U_{p}, we would obtain

$$
Q_{p}=\left\{1,4,9, \cdots,\left(\frac{p-1}{2}\right)^{2}\right\}
$$

Then the sum of all elements in Q_{p} is

$$
\begin{equation*}
1+4+9+\cdots+\frac{p^{2}-2 p+1}{4}=\frac{p(p-1)(p+1)}{24} . \tag{9}
\end{equation*}
$$

ISSN: 2517-9934
Vol:1, No:1, 2007
(8) and (9) yield that

$$
\begin{aligned}
\sum_{(x, 0)} E_{p, b} & =\sum_{t \in Q_{p}} t \\
& =\frac{p(p-1)(p+1)}{24} .
\end{aligned}
$$

2) Let $p \equiv 3(\bmod 4)$. Then there exits a point $x \notin Q_{p}$ such that $(x, 0)$ is a point on $E_{p, b}$. We know that there are $\frac{p-1}{2}$ elements in $U_{p}-Q_{p}$. Therefore there are $\frac{p-1}{2}$ points $(x, 0)$ on $E_{p, b}$. Consequently the sum of x-coordinates of all points $(x, 0)$ on $E_{p, b}$ is equal to the sum of all elements in $U_{p}-Q_{p}$, that is

$$
\begin{equation*}
\sum_{(x, 0)} E_{p, b}=\sum_{t \in U_{p}-Q_{p}} t \tag{10}
\end{equation*}
$$

We proved as above that the sum of all elements in Q_{p} is

$$
\frac{p(p-1)(p+1)}{24} .
$$

Therefore the sum of all elements in $U_{p}-Q_{p}$ is

$$
\begin{equation*}
\frac{p(p-1)}{2}-\frac{p(p-1)(p+1)}{24}=\frac{p(p-1)(11-p)}{24} . \tag{11}
\end{equation*}
$$

Applying (10) and (11) we conclude that

$$
\begin{aligned}
\sum_{(x, 0)} E_{p, b} & =\sum_{t \notin Q_{p}} t \\
& =\frac{p(p-1)(11-p)}{24}
\end{aligned}
$$

Theorem 2.8: Let $b \in Q_{p}$ be a fixed number. Then the order of $E_{p, b}$ over \mathbf{F}_{p} is

$$
\# E_{p, b}\left(\mathbf{F}_{p}\right)=\frac{p-3}{2}
$$

for $x \in Q_{p}$.
Proof: Let $b \in Q_{p}$ be fixed and let $x \in Q_{p}$. Recall that the order of an elliptic curve E over a finite field \mathbf{F}_{p} is given in (1) as

$$
\begin{align*}
\# E\left(\mathbf{F}_{p}\right) & =\sum_{x \in Q_{p}}\left(1+\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)\right) \tag{12}\\
& =\sum_{x \in Q_{p}} 1+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) .
\end{align*}
$$

Note that the set of $b^{2} x^{3}$,s and the set of $x^{3}, \mathrm{~s}$ are same when $p \equiv 2(\bmod 3)$, that is,

$$
\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)=\sum_{x \in Q_{p}}\left(\frac{b^{2} x^{3}+b^{2}}{\mathbf{F}_{p}}\right) .
$$

Therefore we can rewrite (12) as

$$
\begin{align*}
\# E\left(\mathbf{F}_{p}\right) & =\sum_{x \in Q_{p}}\left(1+\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)\right) \tag{13}\\
& =\sum_{x \in Q_{p}} 1+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{b^{2} x^{3}+b^{2}}{\mathbf{F}_{p}}\right) .
\end{align*}
$$

The last sum over $x \in Q_{p}$ can be rearranged as

$$
\begin{aligned}
\sum_{x \in Q_{p}}\left(\frac{b^{2} x^{3}+b^{2}}{\mathbf{F}_{p}}\right) & =\sum_{x \in Q_{p}}\left(\frac{b^{2}\left(x^{3}+1\right)}{\mathbf{F}_{p}}\right) \\
& =\left(\frac{b^{2}}{\mathbf{F}_{p}}\right) \sum_{x \in Q_{p}}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) .
\end{aligned}
$$

Therefore we can rewrite (13) as

$$
\begin{align*}
\# E\left(\mathbf{F}_{p}\right) & =\sum_{x \in Q_{p}}\left(1+\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)\right) \tag{14}\\
& =\sum_{x \in Q_{p}} 1+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{b^{2} x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{b^{2}\left(x^{3}+1\right)}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\left(\frac{b^{2}}{\mathbf{F}_{p}}\right) \sum_{x \in Q_{p}}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) .
\end{align*}
$$

Note that $b^{2} \in Q_{p}$, that is, $\left(\frac{b^{2}}{\mathbf{F}_{p}}\right)=1$. Therefore (14) becomes

$$
\begin{align*}
\# E\left(\mathbf{F}_{p}\right) & =\sum_{x \in Q_{p}}\left(1+\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)\right) \tag{15}\\
& =\sum_{x \in Q_{p}} 1+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{b^{2} x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{b^{2}\left(x^{3}+1\right)}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\left(\frac{b^{2}}{\mathbf{F}_{p}}\right) \sum_{x \in Q_{p}}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right)
\end{align*}
$$

Note that x takes $\frac{p-1}{2}$ values between 1 and $p-1$ since $x \in$ Q_{p}. So we can rewrite (15) as

$$
\begin{align*}
\# E\left(\mathbf{F}_{p}\right) & =\sum_{x \in Q_{p}}\left(1+\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)\right) \tag{16}\\
& =\sum_{x \in Q_{p}} 1+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{b^{2} x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{b^{2}\left(x^{3}+1\right)}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\left(\frac{b^{2}}{\mathbf{F}_{p}}\right) \sum_{x \in Q_{p}}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right)
\end{align*}
$$

$$
=\frac{p-1}{2}+\sum_{1 \leq x \leq p-1}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) .
$$

On the other hand, $\left(\frac{(p-1)^{3}+1}{\mathbf{F}_{p}}\right)=0$ for $x=p-1$. Hence (16) becomes

$$
\begin{align*}
\# E\left(\mathbf{F}_{p}\right) & =\sum_{x \in Q_{p}}\left(1+\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)\right) \tag{17}\\
& =\sum_{x \in Q_{p}} 1+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{b^{2} x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{b^{2}\left(x^{3}+1\right)}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\left(\frac{b^{2}}{\mathbf{F}_{p}}\right) \sum_{x \in Q_{p}}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{1 \leq x \leq p-1}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{1 \leq x \leq p-2}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right)
\end{align*}
$$

We know that all elements of \mathbf{F}_{p} are cubic residues by Theorem 2.1. Consequently the set of consisting of the values of x^{3} is the same with the set of values of x. So we can rewrite (17) as

$$
\begin{align*}
\# E\left(\mathbf{F}_{p}\right) & =\sum_{x \in Q_{p}}\left(1+\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)\right) \tag{18}\\
& =\sum_{x \in Q_{p}} 1+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{b^{2} x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{b^{2}\left(x^{3}+1\right)}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\left(\frac{b^{2}}{\mathbf{F}_{p}}\right) \sum_{x \in Q_{p}}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{1 \leq x \leq p-1}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{1 \leq x \leq p-2}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{1 \leq x \leq p-2}\left(\frac{x+1}{\mathbf{F}_{p}}\right)
\end{align*}
$$

It is proved in [1, p.128] that, the number of consecutive pairs of quadratic residues in \mathbf{F}_{p} is given by formula

$$
\begin{equation*}
\eta_{p}=\frac{\left(p-4-(-1)^{\frac{p-1}{2}}\right)}{4} \tag{19}
\end{equation*}
$$

Hence we have two cases
Case 1: Let $p \equiv 1(\bmod 4)$. Then by the Chinese remainder theorem we get $p \equiv 5(\bmod 12)$. So $(-1)^{\frac{p-1}{2}}=1$. Therefore

$$
\begin{equation*}
\eta_{p}=\frac{p-5}{4} \tag{20}
\end{equation*}
$$

by (19). Further $-1 \in Q_{p}$ since $p \equiv 5(\bmod 12)$. So there are

$$
\frac{p-1}{2}-1=\frac{p-3}{2}
$$

values of x between 1 and $p-2$ lying in Q_{p}. Further $\frac{p-5}{4}$ values of $x+1$ are also in Q_{p} by (20). Consequently there are $\frac{p-5}{4}$ times +1 and $\frac{p-3}{2}-\frac{p-5}{4}=\frac{p-1}{4}$ times -1 . So

$$
\frac{p-5}{4}-\frac{p-1}{4}=-1
$$

Therefore

$$
\sum_{1 \leq x \leq p-2}\left(\frac{x+1}{\mathbf{F}_{p}}\right)=-1
$$

So (18) becomes

$$
\begin{aligned}
\# E\left(\mathbf{F}_{p}\right) & =\sum_{x \in Q_{p}}\left(1+\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)\right) \\
& =\sum_{x \in Q_{p}} 1+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{b^{2} x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{b^{2}\left(x^{3}+1\right)}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\left(\frac{b^{2}}{\mathbf{F}_{p}}\right) \sum_{x \in Q_{p}}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{1 \leq x \leq p-1}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{1 \leq x \leq p-2}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}-1 \\
& =\frac{p-3}{2} .
\end{aligned}
$$

Case 2: Let $p \equiv 3(\bmod 4)$. Then by the Chinese reminder theorem we get $p \equiv 11(\bmod 12)$. So $(-1)^{\frac{p-1}{2}}=1$. Therefore

$$
\begin{equation*}
\eta_{p}=\frac{p-3}{4} \tag{21}
\end{equation*}
$$

by (19). Further $-1 \notin Q_{p}$ since $p \equiv 11(\bmod 12)$. So there are

$$
\frac{p-1}{2}-0=\frac{p-1}{2}
$$

values of x between 1 and $p-2$ lying in Q_{p} since $p-1 \notin$ Q_{p}. Further $\frac{p-3}{4}$ values of $x+1$ are also in Q_{p} by (21).

Consequently, there are $\frac{p-3}{4}$ times +1 and $\frac{p-1}{2}-\frac{p-3}{4}=\frac{p+1}{4}$ times -1 . So

$$
\frac{p-3}{4}-\frac{p+1}{4}=-1 .
$$

Therefore

$$
\sum_{1 \leq x \leq p-2}\left(\frac{x+1}{\mathbf{F}_{p}}\right)=-1
$$

So (18) becomes

$$
\begin{aligned}
\# E\left(\mathbf{F}_{p}\right) & =\sum_{x \in Q_{p}}\left(1+\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)\right) \\
& =\sum_{x \in Q_{p}} 1+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{b^{2} x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{b^{2}\left(x^{3}+1\right)}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\left(\frac{b^{2}}{\mathbf{F}_{p}}\right) \sum_{x \in Q_{p}}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{1 \leq x \leq p-1}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{1 \leq x \leq p-2}\left(\frac{x^{3}+1}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+\sum_{1 \leq x \leq p-2}\left(\frac{x+1}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}-1 \\
& =\frac{p-3}{2} .
\end{aligned}
$$

Hence in two cases we have

$$
\# E\left(\mathbf{F}_{p}\right)=\frac{p-3}{2}
$$

Now we can give the following theorem for $x \in U_{p}-Q_{p}$ without giving its proof since it is similar.

Theorem 2.9: Let $b \in Q_{p}$ be a fixed number. Then the order of $E_{p, b}$ over \mathbf{F}_{p} is

$$
\# E_{p, b}\left(\mathbf{F}_{p}\right)=\frac{p+3}{2}
$$

for $x \in U_{p}-Q_{p}$.
Theorem 2.10: Let $p \equiv 5(\bmod 6)$ and let $b \in U_{p}-Q_{p}$ be a fixed number. Then the order of $E_{p, b}$ over \mathbf{F}_{p} is

$$
\# E_{p, b}\left(\mathbf{F}_{p}\right)=\frac{p-1}{2}
$$

for $x \in Q_{p}$.

Proof: Note that $b \in Q_{p}$ if and only if $-b \in Q_{p}$ when $p \equiv 5(\bmod 12)$ and $b \in Q_{p}$ if and only if $-b \in U_{p}-Q_{p}$ when $p \equiv 11(\bmod 12)$. By (1), we get

$$
\begin{aligned}
\# E\left(\mathbf{F}_{p}\right) & =\sum_{x \in Q_{p}}\left(1+\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) .
\end{aligned}
$$

Case 1: Let $p \equiv 1(\bmod 4)$. Then by the Chinese remainder theorem we get $p \equiv 5(\bmod 12)$. Then the order Q_{p} is $\frac{p-1}{2}$ which is an even number. So we have

$$
\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)=1
$$

for exactly half of the values of $x \in Q_{p}$, and

$$
\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)=-1
$$

for exactly other half of the values of $x \in Q_{p}$. So

$$
\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)=0
$$

Therefore

$$
\begin{aligned}
\# E\left(\mathbf{F}_{p}\right) & =\sum_{x \in Q_{p}}\left(1+\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+0 \\
& =\frac{p-1}{2}
\end{aligned}
$$

Case 2: Let $p \equiv 3(\bmod 4)$. Then by the Chinese reminder theorem we get $p \equiv 11(\bmod 12)$. Then $\frac{p-1}{2}$ is odd. It is easily seen that

$$
\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)=0
$$

for $x=-b$. Further

$$
\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)=1
$$

for exactly $\frac{p-3}{4}$ values of $x \in Q_{p}$, and

$$
\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)=-1
$$

for exactly $\frac{p-3}{4}$ values of $x \in Q_{p}$. So

$$
\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)=0
$$

Therefore

$$
\begin{aligned}
\# E\left(\mathbf{F}_{p}\right) & =\sum_{x \in Q_{p}}\left(1+\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right)\right) \\
& =\frac{p-1}{2}+\sum_{x \in Q_{p}}\left(\frac{x^{3}+b^{2}}{\mathbf{F}_{p}}\right) \\
& =\frac{p-1}{2}+0 \\
& =\frac{p-1}{2} .
\end{aligned}
$$

References

[1] G.E. Andrews. Number Theory. Dover Pub., 1971
[2] A.O.L. Atkin and F. Moralin. Eliptic Curves and Primality Proving. Math. Comp. 61 (1993), 29-68.
[3] S. Goldwasser and J. Kilian. Almost all Primes can be Quickly Certified. In Proc. 18th STOC, Berkeley, May 28-30, 1986, ACM, New York (1986), 316-329
[4] N. Koblitz. A Course in Number Theory and Cryptography. SpringerVerlag, 1994.
[5] H.W.Jr. Lenstra. Factoring Integers with Elliptic Curves. Annals of Maths. 126(3) (1987), 649-673.
[6] V.S. Miller. Use of Elliptic Curves in Cryptography, in Advances in Cryptology-CRYPTO'85. Lect. Notes in Comp. Sci. 218, SpringerVerlag, Berlin (1986), 417-426.
[7] R.A. Mollin. An Introduction to Cryptography. Chapman\&Hall/CRC, 2001.
[8] L.J. Mordell. On the Rational Solutions of the Indeterminate Eqnarrays of the Third and Fourth Degrees. Proc. Cambridge Philos. Soc. 21(1922), 179-192.
[9] R. Schoof. Counting Points on Elliptic Curves Over Finite Fields. Journal de Theorie des Nombres de Bordeaux 7(1995), 219-254.
[10] J.H. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, 1986.
[11] A.Tekcan. Elliptic Curves $y^{2}=x^{3}-t^{2} x$ over \mathbf{F}_{p}. International Journal of Mathematics Sciences $1(3)(2007), 165-171$.
[12] L.C. Washington. Elliptic Curves, Number Theory and Cryptography. Chapman\&Hall /CRC, Boca London, New York, Washington DC, 2003.
[13] A. Wiles. Modular Elliptic Curves and Fermat's Last Theorem. Annals of Maths. 141(3) (1995), 443-551.

