
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

37

Abstract—Data mining (DM) is the process of finding and

extracting frequent patterns that can describe the data, or predict
unknown or future values. These goals are achieved by using various
learning algorithms. Each algorithm may produce a mining result
completely different from the others. Some algorithms may find
millions of patterns. It is thus the difficult job for data analysts to
select appropriate models and interpret the discovered knowledge. In
this paper, we describe a framework of an intelligent and complete
data mining system called SUT-Miner. Our system is comprised of a
full complement of major DM algorithms, pre-DM and post-DM
functionalities. It is the post-DM packages that ease the DM
deployment for business intelligence applications.

Keywords—Business intelligence, data mining, functional
programming, intelligent system.

I. INTRODUCTION
ATA mining (DM) or Knowledge Discovery in
Databases (KDD) has been defined [3] as the automatic

discovery of previously unknown patterns or relationships in
large and complex datasets. Most DM algorithms have been
drawn from the areas of Statistics and Machine Learning
adapted to induce knowledge from data contained within a
database. The main objective of DM is to use the discovered
knowledge for the purposes of explaining current behavior,
predicting future outcomes, or providing support for business
decision. The DM techniques used in business-oriented
applications are also known as Business Intelligence (BI). BI
is a general term to mean all processes, techniques, and tools
that gather and analyze data for the purpose of supporting
enterprise users to make better decisions [1], [7].

Despites its high claims and expectations, DM technology
requires a highly trained professional to do an iterative, multi-
step process of accessing and preparing data, choosing an
appropriate algorithm to mine the data, analyzing the learned
knowledge, and presenting nontrivial, valuable knowledge to
executives or decision makers. Owing to advancement in the
machine leaning research, mining can be done efficiently on a

Manuscript received November 30, 2006. This work was supported in part

by the research fund from Suranaree University of Technology and the grants
from the National Research Council of Thailand, the Thailand Research Fund.

Nittaya Kerdprasop is with the School of Computer Engineering, Suranaree
University of Technology, 111 University Avenue, Muang District, Nakhon
Ratchasima 30000, Thailand (phone: +66-44-224432; fax: +66-44-224602; e-
mail: nittaya@ sut.ac.th, nittaya.k@gmail.com).

Kittisak Kerdprasop is with the School of Computer Engineering,
Suranaree University of Technology, 111 University Avenue, Muang District,
Nakhon Ratchasima 30000, Thailand (e-mail: kerdpras@sut.ac.th).

dataset of large size. A hindrance of DM employment as an
automatic knowledge acquisition tool in BI is the part of post-
mining evaluation to obtain only a relevance and valuable
knowledge.

The difficulty of discovering and deploying new knowledge
in the BI context is due to the lack of intelligent and complete
DM system. Most DM packages are comprised of learning
algorithms integrated into a visual environment. Such
graphical environment is a useful facility for experienced data
analysts or data miners, but it provides limited functionalities
for a novice to interpret and evaluate significance of the
mining results.

As an example, consider Fig. 1 that shows the three
different mining results obtained from three rule-induction
algorithms: Ripple-Down Rule Learner, Ripper (Repeated
Incremental Pruning to Produce Error Reduction), PART. The
dataset is taken from the credit card promotion database [9].
The mining objective is to learn a profile for individuals likely
to take advantage of a life insurance promotion advertised
along with their credit card statement. A learned profile can
help the credit card company to send the promotion materials
only to a select group of individuals who are likely to take
advantage of a life insurance promotion.

Fig. 1 Different mining results obtained from different algorithms

Moving Data Mining Tools toward a Business
Intelligence System

Nittaya Kerdprasop, and Kittisak Kerdprasop

D

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

38

The mining results (i.e. classification models) shown in fig.
1 obtained from the three runs on WEKA system [10], [11].
The three classification models show the same accuracy when
tested with 10-fold cross validation technique, but all three
models produce different knowledge. The knowledge
conveyed by each model can be explained in Fig. 2.

Fig. 2 Interpretation on mining results

It can be seen that even though model 1 is as accurate as

models 2 and 3, it provides less knowledge on predicting the
response of future customers. It is, however, the burden of the
data analyst to choose either model 2 or 3, or even to combine
both models as new knowledge for the task of customer
segmentation.

To choose and use the mining results are not a trivial task
because the model-selection facilities provided by most DM
packages are very rare or limited. It is, therefore, the objective
of this research to design and implement a complete
framework of a knowledge mining system called the SUT-
Miner (it is named after the sponsor of this project, i.e.
Suranaree University of Technology). We design the system
to be both intelligent and complete with the full functionalities
of pre-DM, DM, and post-DM. The system is an extension of
the work presented in [5], [6].

This paper presents work in progress of the development of
SUT-Miner system. The implementation is based on the
functional paradigm using the Haskell language. The
organization of this paper is as follows. Section 2 provides a
brief explanation of DM tasks that are included in the design
of our system. Section 3 sketches the overall architecture of
the system. Section 4 explains the implementation and the
experimental results showing the advantage of functional
programming over the object-oriented programming. Section
5 concludes the paper and suggests an extension of the system
towards an approximate and progressive scheme.

II. DATA MINING CONCEPTUAL MODEL

DM is about learning patterns. Pattern is an expression
describing a subset of the data, e.g. f(x) = 3x2 + 3 is a pattern
induced from a given dataset {(0,3), (1,6), (2,15), (3,30)},
whereas the term model refers to a representation of the source
generating the data, e.g. f(x) = ax2 + b. However, in his paper
we use the term pattern and model interchangeably.

According to [3], DM involves fitting models to, or
determining patterns from, observed data. Primary goals of
DM are prediction and description.

Prediction uses supervised learning technique to predict
values of data using known values found from different data.
DM tasks for prediction include classification, regression,
time-series analysis.

Description focuses on employing unsupervised learning
technique to find human-interpretable patterns describing the
data. DM tasks for description are clustering, summarization,
association, and sequence discovery.

To start building a DM methodology, it is necessary to set
up a conceptual framework into which data and its structures
might be classified. The terminology to denote structures of
the dataset is summarized in Fig. 3.

Fig. 3 Summarization of a dataset terminology

We adopt the ontology of DM methodology proposed by
[8] to abstract data and their relationships for guiding the DM
method selection. The simple ontology presented in Fig. 4
provides a means to explicitly guide the novice data miners
towards DM task selection. This guideline is data-driven in
that the data types and structures are used as a basis for
selecting appropriate DM method.

Our data mining system consists of three main parts: pre-
DM, DM, and post-DM. The ontology presented in Fig. 4 is
for a method selection in the DM part. We also need complete
ontology for the parts of pre-DM and post-DM as well as the
full specification of each DM task. These will be our future
work.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

39

Fig. 4 A simple ontology for DM method selection

Fig. 5 The architecture of SUT-Miner system

III. AN OVERALL ARCHITECTURE OF SUT-MINER

At a high level of our framework, we design the SUT-
Miner system to be comprised of three main phases: pre-DM,
DM, post-DM.

The pre-DM phase performs data preparation tasks such as
to locate and access relevant data set(s), transform the data
format, clean the data if there exists noise and missing values,

reduce the data to a reasonable and sufficient size with only
relevant attributes.

The DM phase performs mining tasks including
classification, prediction, clustering, and association. The
post-DM phase involves evaluation, based on corresponding
measurement metrics, of the mining results. DM is an iterative
process in that some parameters can be adjusted and then
restart the whole process to produce a better result.

The post-DM phase is composed of knowledge evaluator,
knowledge reducer, and knowledge integrator. These three
components perform major functionalities aiming at a feasible
knowledge deployment which is important for the applications
in BI. The overall architecture of our SUT-Miner system is
presented in Fig. 5.

IV. RAPID PROTOTYPING WITH HASKELL

The implementation of SUT-Miner system is mainly based
on the functional programming paradigm using Haskell
language [2], [4]. Functional languages (FL) offer a number of
advantages over imperative languages (IL). FL can be used to
express specifications of problems in a more concise form
than IL. This results in the creation of program source codes
that are shorter and easier to understand. The following
example shows C versus Haskell codes to compute a list of
fibonacci numbers starting with zero.

C-code
int * fib (int n)

{ int a = 0, b = 1, i, temp;
 int * fibsequence;
 fibsequence = (int *) malloc ((sizeof int) *n);
 for (i = 0; i<n; i++)
 { fibsequence[i] = a;
 temp = a + b;
 a = b;
 b = temp;
 }
 return fibsequence;
}

Haskell-code

fib :: [Int]
fib = 0: 1: [a+b | (a, b) <- zip fib (tail fib)]

Haskell is a pure FL having a polymorphic type system, i.e.
a data type can take type variables as parameters. This feature
provides a high level abstraction leading to generic
programming. Haskell is also a lazy FL, i.e. a value is
evaluated only when it is needed. This feature allows infinite
structures, such as an infinite sequence of fibonacci numbers,
to be defined. According to our experimentation, the speed of
running Haskell program on a moderate-size dataset is quite
impressive. The experimental results shown in Fig. 6 compare
the running time of a Haskell program against a Java program
for mining a linear regression model. The first experiment

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

40

computes a regression model of two variables. The number of
variables is increased to six in the second experiment. The
experimentations are performs on a computer notebook with
CPU speed 1.8 GHz and main memory 512 MB.

(a) mining regression model of two variables

(b) mining regression model of six variables

Fig. 6 Mining regression model with Haskell and Java

V. CONCLUSION AND FUTURE WORK

We present work in progress on the development of the
SUT-Miner, a complete data mining system. The system is
complete in that the pre-DM and post-DM phases are also
included in the DM process. Most DM packages contain only
the DM modules, while some systems incorporate a pre-DM
module as a data preparation phase.

According to our knowledge, a post-DM phase is omitted in
most systems. Post-processing of DM is very essential to the
success of DM utilization. This is due to the fact that
discovered knowledge is sometimes voluminous and
redundant. At present, knowledge evaluation and filtration
have to be done by human experts. We thus design our system
to include this knowledge processor as another major
component of the mining system.

The implementation of the SUT-Miner system uses a
Haskell functional language. The functional programming is a
paradigm of our choice because of its advantages on
modularity, conciseness, polymorphism, and formal
specification which supports the proof of program correctness.
We plan to extend our design to produce an approximate
model by means of progressive mining. We currently
investigate the feasibility of applying a Markov Chain Monte
Carlo method in our approximate data mining scheme.

APPENDIX
The Haskell code to mine two-variable and six-variable

regression models is provided here.
-- --

main = do
 hSetBuffering stdin LineBuffering
 ex <- readArff --ex is example
 let exs = read ex::[[Float]]
 let n = length (head (read ex::[[Float]]))
 if (n==2) then solution_2 exs
 else if (n==3) then solution_3 exs
 else if (n==4) then solution_4 exs
 else if (n==5) then solution_5 exs
 else if (n==6) then solution_6 exs
write x = do
 hdl <- openFile "matrix.txt" WriteMode
 hPutStr hdl x
 hClose hdl

-- Funtion for Solutions
-- Input/Output function

multi :: [Float]->[Float]->[Float]
my_length :: [[a]]->Float
sumsq :: [Float]->[Float]

my_length [] = 0
my_length (x:xs) = 1 + my_length xs

sumsq [] = []
sumsq (x:xs) = [x*x] ++ sumsq xs

multi [][]= []
multi (x:xs)(y:ys) = [x*y] ++ multi (xs)(ys)

-- s2_Solution for Exponential Regression
--
solution_2 ex = do
 let aa = 2
 let ab = s2_sum_x ex
 let ba = s2_sum_x ex
 let bb = s2_sum_x2 ex
 let ya = s2_sum_y ex
 let yb = s2_sum_xy ex

 let line_1 = "2\n"
 let line_2 = show aa ++ "," ++ show ab ++ "\n"
 let line_3 = show ba++","++ show bb ++"\n"
 let line_4 = "\n"
 let line_5 = show ya ++","++ show yb
 write (line_1++line_2++line_3++line_4++line_5)

s2_sum_x :: [[Float]] -> Float
s2_sum_y :: [[Float]] -> Float
s2_sum_x2 :: [[Float]] -> Float
s2_sum_multi :: [[Float]] -> Float
s2_form_x :: [[Float]]->[Float]
s2_form_y :: [[Float]]->[Float]

s2_form_x [] = []
s2_form_x [[a,b]] = [a]
s2_form_x (x:xs) = s2_form_x [x] ++ s2_form_x xs

s2_form_y [] = []
s2_form_y [[a,b]] = [b]
s2_form_y (y:ys) = s2_form_y [y] ++ s2_form_y ys

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

41

s2_sum_x [] = 0
s2_sum_x xs = sum(s2_form_x xs)

s2_sum_y [] = 0
s2_sum_y ys = sum(s2_form_y ys)

s2_sum_x2 [] = 0
s2_sum_x2 xs = sum(sumsq(s2_form_x xs))

s2_sum_xy []= 0
s2_sum_xy s = sum(multi (s2_form_x s)(s2_form_y s))

s2_sum_multi [] = 0
s2_sum_multi s = sum(multi (s2_form_x s)(s2_form_y s))

-- s5_Solution for Exponential Regression
--
solution_6 ex = do
 let aa = 6
 let ab = s6_sum_x1i ex
 let ac = s6_sum_x2i ex
 let ad = s6_sum_x3i ex
 let ae = s6_sum_x4i ex
 let af = s6_sum_x5i ex

 let ba = s6_sum_x1i ex
 let bb = s6_sum_x1i2 ex
 let bc = s6_sum_x1x2 ex
 let bd = s6_sum_x1x3 ex
 let be = s6_sum_x1x4 ex
 let bf = s6_sum_x1x5 ex

 let ca = s6_sum_x2i ex
 let cb = s6_sum_x1x2 ex
 let cc = s6_sum_x2i2 ex
 let cd = s6_sum_x2x3 ex
 let ce = s6_sum_x2x4 ex
 let cf = s6_sum_x2x5 ex

 let da = s6_sum_x3i ex
 let db = s6_sum_x1x3 ex
 let dc = s6_sum_x2x3 ex
 let dd = s6_sum_x3i2 ex
 let de = s6_sum_x3x4 ex
 let df = s6_sum_x3x5 ex

 let ea = s6_sum_x4i ex
 let eb = s6_sum_x1x4 ex
 let ec = s6_sum_x2x4 ex
 let ed = s6_sum_x3x4 ex
 let ee = s6_sum_x4i2 ex
 let ef = s6_sum_x4x5 ex

 let fa = s6_sum_x5i ex
 let fb = s6_sum_x1x5 ex
 let fc = s6_sum_x2x5 ex
 let fd = s6_sum_x3x5 ex
 let fe = s6_sum_x4x5 ex
 let ff = s6_sum_x5i2 ex

 let ya = s6_sum_yi ex
 let yb = s6_sum_x1iyi ex
 let yc = s6_sum_x2iyi ex
 let yd = s6_sum_x3iyi ex
 let ye = s6_sum_x4iyi ex
 let yf = s6_sum_x5iyi ex

 let line_1 = "3\n"
 let line_2 = show aa++","++ show ab ++ ","++ show ac ++
 show ad ++ "," ++ show ae ++ "," ++ show af ++"\n"
 let line_3 = show ba++","++ show bb ++ ","++ show bc ++
 show bd ++ "," ++ show be ++ "," ++ show bf ++"\n"
 let line_4 = show ca++","++ show cb ++ ","++ show cc ++
 show cd ++ "," ++ show ce ++ "," ++ show cf ++"\n"
 let line_5 = show da++","++ show db ++ ","++ show dc ++
 show dd ++ "," ++ show de ++ "," ++ show df ++"\n"
 let line_6 = show ea++","++ show eb ++ ","++ show ec ++
 show ed ++ "," ++ show ee ++ "," ++ show ef ++"\n"
 let line_7 = show fa++","++ show fb ++ ","++ show fc ++
 show fd ++ "," ++ show fe ++ "," ++ show ff ++"\n"
 let line_8 = "\n"
 let line_9 = show ya++","++ show yb ++ ","++ show yc ++
 ","++ show yd ++ ","++ show ye ++ "," ++ show yf
 write (line_1++line_2++line_3++line_4++line_5++line_6++

line_7++line_8++line_9)

s6_form_x1i [] = []
s6_form_x1i [[a,b,c,d,e,f]] = [a]
s6_form_x1i (x:xs) = s6_form_x1i [x] ++ s6_form_x1i xs

s6_form_x2i [] = []
s6_form_x2i [[a,b,c,d,e,f]] = [b]
s6_form_x2i (x:xs) = s6_form_x2i [x] ++ s6_form_x2i xs

s6_form_x3i [] = []
s6_form_x3i [[a,b,c,d,e,f]] = [c]
s6_form_x3i (x:xs) = s6_form_x3i [x] ++ s6_form_x3i xs

s6_form_x4i [] = []
s6_form_x4i [[a,b,c,d,e,f]] = [d]
s6_form_x4i (x:xs) = s6_form_x4i [x] ++ s6_form_x4i xs

s6_form_x5i [] = []
s6_form_x5i [[a,b,c,d,e,f]] = [e]
s6_form_x5i (x:xs) = s6_form_x5i [x] ++ s6_form_x5i xs

s6_form_yi [] = []
s6_form_yi [[a,b,c,d,e,f]] = [f]
s6_form_yi (x:xs) = s6_form_yi [x] ++ s6_form_yi xs

s6_sum_x1i [] = 0
s6_sum_x1i s = sum(s6_form_x1i s)

s6_sum_x2i [] = 0
s6_sum_x2i s = sum(s6_form_x2i s)

s6_sum_x3i [] = 0
s6_sum_x3i s = sum(s6_form_x3i s)

s6_sum_x4i [] = 0
s6_sum_x4i s = sum(s6_form_x4i s)

s6_sum_x5i [] = 0
s6_sum_x5i s = sum(s6_form_x5i s)

s6_sum_yi [] = 0
s6_sum_yi s = sum(s6_form_yi s)

s6_sum_x1i2 [] = 0
s6_sum_x1i2 s = sum(sumsq(s6_form_x1i s))

s6_sum_x2i2 [] = 0
s6_sum_x2i2 s = sum(sumsq(s6_form_x2i s))

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

42

s6_sum_x3i2 [] = 0
s6_sum_x3i2 s = sum(sumsq(s6_form_x3i s))

s6_sum_x4i2 [] = 0
s6_sum_x4i2 s = sum(sumsq(s6_form_x4i s))

s6_sum_x5i2 [] = 0
s6_sum_x5i2 s = sum(sumsq(s6_form_x5i s))

s6_sum_x1iyi []= 0
s6_sum_x1iyi s = sum(multi (s6_form_x1i s)(s6_form_yi s))

s6_sum_x2iyi []= 0
s6_sum_x2iyi s = sum(multi (s6_form_x2i s)(s6_form_yi s))

s6_sum_x3iyi []= 0
s6_sum_x3iyi s = sum(multi (s6_form_x3i s)(s6_form_yi s))

s6_sum_x4iyi []= 0
s6_sum_x4iyi s = sum(multi (s6_form_x4i s)(s6_form_yi s))

s6_sum_x5iyi []= 0
s6_sum_x5iyi s = sum(multi (s6_form_x5i s)(s6_form_yi s))

s6_sum_x1x2 [] = 0
s6_sum_x1x2 s = sum(multi (s6_form_x1i s)(s6_form_x2i s))

s6_sum_x1x3 [] = 0
s6_sum_x1x3 s = sum(multi (s6_form_x1i s)(s6_form_x3i s))

s6_sum_x1x4 [] = 0
s6_sum_x1x4 s = sum(multi (s6_form_x1i s)(s6_form_x4i s))

s6_sum_x1x5 [] = 0
s6_sum_x1x5 s = sum(multi (s6_form_x1i s)(s6_form_x5i s))

s6_sum_x2x3 [] = 0
s6_sum_x2x3 s = sum(multi (s6_form_x2i s)(s6_form_x3i s))

s6_sum_x2x4 [] = 0
s6_sum_x2x4 s = sum(multi (s6_form_x2i s)(s6_form_x4i s))

s6_sum_x2x5 [] = 0
s6_sum_x2x5 s = sum(multi (s6_form_x2i s)(s6_form_x5i s))

s6_sum_x3x4 [] = 0
s6_sum_x3x4 s = sum(multi (s6_form_x3i s)(s6_form_x4i s))

s6_sum_x3x5 [] = 0
s6_sum_x3x5 s = sum(multi (s6_form_x3i s)(s6_form_x5i s))

s6_sum_x4x5 [] = 0
s6_sum_x4x5 s = sum(multi (s6_form_x4i s)(s6_form_x5i s))
--
-- --

ACKNOWLEDGMENT
This work was fully supported by research fund of

Suranaree University of Technology granted to the Data
Engineering and Knowledge Discovery (DEKD) Research
Unit, in which Kittisak Kerdprasop is a director and Nittaya
Kerdprasop is a member and researcher. The authors are also
partly supported. by National Research Council of Thailand
(NRCT) and the Thailand Research Fund (TRF). The first
author would like to thank all the research assistants who

participated in the SUT-Miner project, especially Prapanpong
Nopsuwan who coded linear regression in Haskell and Java.

REFERENCES
[1] E. Awad and H. Ghaziri, Knowledge Management, Pearson Prentice

Hall, 2004.
[2] R. Bird, Introduction to Functional Programming using Haskell,

Prentice Hall, 1998.
[3] U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to

knowledge discovery: An Overview,” in Advances in Knowledge
Discovery and Data Mining, AAAI Press, 1996.

[4] P. Hudak, J. Fasel, and J. Peterson, “A gentle introduction to Haskell,”
Yale University, Technical Report Yale U/DCS/RR-901, 1996.

[5] K. Kerdprasop and N. Kerdprasop, “Multi-agents in data filtering
systems,” in Proc. 7th Int. Conf. on Software Engineering and
Applications, 2003, pp.471-475.

[6] N. Kerdprasop and K. Kerdprasop, “Enhancing the power of OLAP with
knowledge discovery,” in Proc. 7th Int. Conf. on Software Engineering
and Applications, 2003, pp.43-47.

[7] M. Raisinghani (ed.), Business Intelligence in the Digital Economy, Idea
Group Publishing, 2004.

[8] K. Rennolls, “An intelligent framework (O-SS-E) for data mining,
knowledge discovery and business intelligence,” in Proc. 16th Int.
Workshop on Database and Expert System Applications, 2005, pp.715-
719.

[9] R. Roiger and M. Geatz, Data Mining: A Tutorial-Based Primer,
Addison Wesley, 2003.

[10] WEKA, available at http://www.cs.waikato.ac.nz/ml/weka
[11] I. Witten and E. Frank, Data Mining: Practical Machine Learning Tools

and Techniques (2nd ed.), Morgan Kaufmann, 2005.

Nittaya Kerdprasop is an associate professor at
the school of computer engineering, Suranaree
University of Technology, Thailand. She received
her B.S. from Mahidol University, Thailand, in
1985, M.S. in computer science from the Prince
of Songkla University, Thailand, in 1991 and
Ph.D. in computer science from Nova
Southeastern University, USA, in 1999. She is a

member of ACM and IEEE Computer Society. Her research of interest
includes Knowledge Discovery in Databases, AI, Logic Programming,
Deductive and Active Databases.

Kittisak Kerdprasop is an associate professor
at the school of computer engineering,
Suranaree University of Technology, Thailand.
He received his bachelor degree in Mathematics
from Srinakarinwirot University, Thailand, in
1986, master degree in computer science from
the Prince of Songkla University, Thailand, in
1991 and doctoral degree in computer science
from Nova Southeastern University, USA., in

1999. His current research includes Data mining, Artificial Intelligence,
Functional Programming, Computational Statistics.

