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Abstract—Data mining (DM) is the process of finding and 

extracting frequent patterns that can describe the data, or predict 
unknown or future values. These goals are achieved by using various 
learning algorithms. Each algorithm may produce a mining result 
completely different from the others. Some algorithms may find 
millions of patterns. It is thus the difficult job for data analysts to 
select appropriate models and interpret the discovered knowledge. In 
this paper, we describe a framework of an intelligent and complete 
data mining system called SUT-Miner. Our system is comprised of a 
full complement of major DM algorithms, pre-DM and post-DM 
functionalities. It is the post-DM packages that ease the DM 
deployment for business intelligence applications. 
 

Keywords—Business intelligence, data mining, functional 
programming, intelligent system.  

I. INTRODUCTION 
ATA mining (DM) or Knowledge Discovery in 
Databases (KDD) has been defined [3] as the automatic 

discovery of previously unknown patterns or relationships in 
large and complex datasets. Most DM algorithms have been 
drawn from the areas of Statistics and Machine Learning 
adapted to induce knowledge from data contained within a 
database. The main objective of DM is to use the discovered 
knowledge for the purposes of explaining current behavior, 
predicting future outcomes, or providing support for business 
decision. The DM techniques used in business-oriented 
applications are also known as Business Intelligence (BI). BI 
is a general term to mean all processes, techniques, and tools 
that gather and analyze data for the purpose of supporting 
enterprise users to make better decisions [1], [7].  

Despites its high claims and expectations, DM technology 
requires a highly trained professional to do an iterative, multi-
step process of accessing and preparing data, choosing an 
appropriate algorithm to mine the data, analyzing the learned 
knowledge, and presenting nontrivial, valuable knowledge to 
executives or decision makers. Owing to advancement in the 
machine leaning research, mining can be done efficiently on a 
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dataset of large size. A hindrance of DM employment as an 
automatic knowledge acquisition tool in BI is the part of post-
mining evaluation to obtain only a relevance and valuable 
knowledge. 

The difficulty of discovering and deploying new knowledge 
in the BI context is due to the lack of intelligent and complete 
DM system. Most DM packages are comprised of learning 
algorithms integrated into a visual environment. Such 
graphical environment is a useful facility for experienced data 
analysts or data miners, but it provides limited functionalities 
for a novice to interpret and evaluate significance of the 
mining results. 

As an example, consider Fig. 1 that shows the three 
different mining results obtained from three rule-induction 
algorithms: Ripple-Down Rule Learner, Ripper (Repeated 
Incremental Pruning to Produce Error Reduction), PART. The 
dataset is taken from the credit card promotion database [9]. 
The mining objective is to learn a profile for individuals likely 
to take advantage of a life insurance promotion advertised 
along with their credit card statement. A learned profile can 
help the credit card company to send the promotion materials 
only to a select group of individuals who are likely to take 
advantage of a life insurance promotion. 

 
 

Fig. 1 Different mining results obtained from different algorithms 
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The mining results (i.e. classification models) shown in fig. 
1 obtained from the three runs on WEKA system [10], [11]. 
The three classification models show the same accuracy when 
tested with 10-fold cross validation technique, but all three 
models produce different knowledge. The knowledge 
conveyed by each model can be explained in Fig. 2. 

  

 
Fig. 2 Interpretation on mining results  

 
It can be seen that even though model 1 is as accurate as 

models 2 and 3, it provides less knowledge on predicting the 
response of future customers. It is, however, the burden of the 
data analyst to choose either model 2 or 3, or even to combine 
both models as new knowledge for the task of customer 
segmentation. 

To choose and use the mining results are not a trivial task 
because the model-selection facilities provided by most DM 
packages are very rare or limited. It is, therefore, the objective 
of this research to design and implement a complete 
framework of a knowledge mining system called the SUT-
Miner (it is named after the sponsor of this project, i.e. 
Suranaree University of Technology). We design the system 
to be both intelligent and complete with the full functionalities 
of pre-DM, DM, and post-DM. The system is an extension of 
the work presented in [5], [6]. 

This paper presents work in progress of the development of 
SUT-Miner system. The implementation is based on the 
functional paradigm using the Haskell language. The 
organization of this paper is as follows. Section 2 provides a 
brief explanation of DM tasks that are included in the design 
of our system. Section 3 sketches the overall architecture of 
the system. Section 4 explains the implementation and the 
experimental results showing the advantage of functional 
programming over the object-oriented programming. Section 
5 concludes the paper and suggests an extension of the system 
towards an approximate and progressive scheme. 

II. DATA MINING CONCEPTUAL MODEL 

DM is about learning patterns. Pattern is an expression 
describing a subset of the data, e.g. f(x) = 3x2 + 3 is a pattern 
induced from a given dataset {(0,3), (1,6), (2,15), (3,30)}, 
whereas the term model refers to a representation of the source 
generating the data, e.g. f(x) = ax2 + b. However, in his paper 
we use the term pattern and model interchangeably.  

According to [3], DM involves fitting models to, or 
determining patterns from, observed data. Primary goals of 
DM are prediction and description.  

Prediction uses supervised learning technique to predict 
values of data using known values found from different data. 
DM tasks for prediction include classification, regression, 
time-series analysis.  

Description focuses on employing unsupervised learning 
technique to find human-interpretable patterns describing the 
data. DM tasks for description are clustering, summarization, 
association, and sequence discovery.  

To start building a DM methodology, it is necessary to set 
up a conceptual framework into which data and its structures 
might be classified. The terminology to denote structures of 
the dataset is summarized in Fig. 3. 

 

 
Fig. 3 Summarization of a dataset terminology 

 

We adopt the ontology of DM methodology proposed by 
[8] to abstract data and their relationships for guiding the DM 
method selection. The simple ontology presented in Fig. 4 
provides a means to explicitly guide the novice data miners 
towards DM task selection. This guideline is data-driven in 
that the data types and structures are used as a basis for 
selecting appropriate DM method.  

Our data mining system consists of three main parts: pre-
DM, DM, and post-DM. The ontology presented in Fig. 4 is 
for a method selection in the DM part. We also need complete 
ontology for the parts of pre-DM and post-DM as well as the 
full specification of each DM task. These will be our future 
work. 
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Fig. 4 A simple ontology for DM method selection 
 
 

 
 

Fig. 5 The architecture of SUT-Miner system 
 

III. AN OVERALL ARCHITECTURE OF SUT-MINER 

At a high level of our framework, we design the SUT-
Miner system to be comprised of three main phases: pre-DM, 
DM, post-DM.  

The pre-DM phase performs data preparation tasks such as 
to locate and access relevant data set(s), transform the data 
format, clean the data if there exists noise and missing values, 

reduce the data to a reasonable and sufficient size with only 
relevant attributes.  

The DM phase performs mining tasks including 
classification, prediction, clustering, and association. The 
post-DM phase involves evaluation, based on corresponding 
measurement metrics, of the mining results. DM is an iterative 
process in that some parameters can be adjusted and then 
restart the whole process to produce a better result.  

The post-DM phase is composed of knowledge evaluator, 
knowledge reducer, and knowledge integrator. These three 
components perform major functionalities aiming at a feasible 
knowledge deployment which is important for the applications 
in BI. The overall architecture of our SUT-Miner system is 
presented in Fig. 5.  

IV. RAPID PROTOTYPING WITH HASKELL 

The implementation of SUT-Miner system is mainly based 
on the functional programming paradigm using Haskell 
language [2], [4]. Functional languages (FL) offer a number of 
advantages over imperative languages (IL). FL can be used to 
express specifications of problems in a more concise form 
than IL. This results in the creation of program source codes 
that are shorter and easier to understand. The following 
example shows C versus Haskell codes to compute a list of 
fibonacci numbers starting with zero. 

C-code 
int * fib (int n) 

{  int a = 0, b = 1, i, temp; 
   int * fibsequence; 
   fibsequence = (int *) malloc ((sizeof int) *n); 
   for (i = 0; i<n; i++)  
       {  fibsequence[i] = a; 
           temp = a + b; 
           a = b; 
           b = temp; 
         } 
    return fibsequence; 
} 

Haskell-code 

fib :: [Int] 
fib = 0: 1: [ a+b | (a, b) <- zip fib (tail fib) ] 

 

Haskell is a pure FL having a polymorphic type system, i.e. 
a data type can take type variables as parameters. This feature 
provides a high level abstraction leading to generic 
programming. Haskell is also a lazy FL, i.e. a value is 
evaluated only when it is needed. This feature allows infinite 
structures, such as an infinite sequence of fibonacci numbers, 
to be defined. According to our experimentation, the speed of 
running Haskell program on a moderate-size dataset is quite 
impressive. The experimental results shown in Fig. 6 compare 
the running time of a Haskell program against a Java program 
for mining a linear regression model. The first experiment 
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computes a regression model of two variables. The number of 
variables is increased to six in the second experiment. The 
experimentations are performs on a computer notebook with 
CPU speed 1.8 GHz and main memory 512 MB. 

 

 
(a) mining regression model of two variables 

 
(b) mining regression model of six variables 

 
Fig. 6 Mining regression model with Haskell and Java 

  

V. CONCLUSION AND FUTURE WORK 

We present work in progress on the development of the 
SUT-Miner, a complete data mining system. The system is 
complete in that the pre-DM and post-DM phases are also 
included in the DM process. Most DM packages contain only 
the DM modules, while some systems incorporate a pre-DM 
module as a data preparation phase.  

According to our knowledge, a post-DM phase is omitted in 
most systems. Post-processing of DM is very essential to the 
success of DM utilization. This is due to the fact that 
discovered knowledge is sometimes voluminous and 
redundant. At present, knowledge evaluation and filtration 
have to be done by human experts. We thus design our system 
to include this knowledge processor as another major 
component of the mining system.  

The implementation of the SUT-Miner system uses a 
Haskell functional language. The functional programming is a 
paradigm of our choice because of its advantages on 
modularity, conciseness, polymorphism, and formal 
specification which supports the proof of program correctness. 
We plan to extend our design to produce an approximate 
model by means of progressive mining. We currently 
investigate the feasibility of applying a Markov Chain Monte 
Carlo method in our approximate data mining scheme.  

APPENDIX 
The Haskell code to mine two-variable and six-variable 

regression models is provided here. 
-- ------------------------------------------------------  

main = do 
 hSetBuffering stdin LineBuffering 
 ex <- readArff --ex is example 
 let exs = read ex::[[Float]] 
 let n = length (head (read ex::[[Float]])) 
 if (n==2)  then solution_2 exs 
  else if (n==3)  then solution_3 exs 
   else if (n==4) then solution_4 exs 
    else if (n==5) then solution_5 exs 
     else if (n==6) then solution_6 exs 
write x = do  
 hdl <- openFile "matrix.txt" WriteMode 
 hPutStr hdl x 
 hClose hdl 
 
-- Funtion for Solutions  
-- Input/Output function 
 
multi :: [Float]->[Float]->[Float] 
my_length :: [[a]]->Float 
sumsq :: [Float]->[Float] 
 
my_length [] = 0 
my_length (x:xs) = 1 + my_length xs 
 
sumsq [] = [] 
sumsq (x:xs) = [x*x] ++ sumsq xs  
 
multi [][]= [] 
multi (x:xs)(y:ys) = [x*y] ++ multi (xs)(ys) 
 
-- s2_Solution for Exponential Regression 
-- 
solution_2 ex = do  
 let aa = 2 
 let ab = s2_sum_x ex 
 let ba = s2_sum_x ex 
 let bb = s2_sum_x2 ex 
 let ya = s2_sum_y ex 
 let yb = s2_sum_xy ex 
  
 let line_1 = "2\n" 
 let line_2 = show aa ++ "," ++ show ab ++ "\n" 
 let line_3 = show ba++","++ show bb ++"\n" 
 let line_4 = "\n" 
 let line_5 = show ya ++","++ show yb 
 write (line_1++line_2++line_3++line_4++line_5) 
 
s2_sum_x :: [[Float]] -> Float 
s2_sum_y :: [[Float]] -> Float 
s2_sum_x2 :: [[Float]] -> Float 
s2_sum_multi :: [[Float]] -> Float 
s2_form_x :: [[Float]]->[Float] 
s2_form_y :: [[Float]]->[Float] 
 
s2_form_x [] = [] 
s2_form_x [[a,b]] = [a] 
s2_form_x (x:xs) = s2_form_x [x] ++ s2_form_x xs 
 
s2_form_y [] = [] 
s2_form_y [[a,b]] = [b] 
s2_form_y (y:ys) = s2_form_y [y] ++ s2_form_y ys 
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s2_sum_x [] = 0 
s2_sum_x xs = sum(s2_form_x xs) 
 
s2_sum_y [] = 0 
s2_sum_y ys = sum(s2_form_y ys) 
 
s2_sum_x2 [] = 0 
s2_sum_x2 xs = sum(sumsq(s2_form_x xs)) 
 
s2_sum_xy []= 0 
s2_sum_xy  s = sum(multi (s2_form_x s)(s2_form_y s)) 
 
s2_sum_multi [] = 0 
s2_sum_multi s = sum(multi (s2_form_x s)(s2_form_y s)) 
 
-- s5_Solution for Exponential Regression 
-- 
solution_6 ex = do 
 let aa = 6 
 let ab = s6_sum_x1i ex 
 let ac = s6_sum_x2i ex 
 let ad = s6_sum_x3i ex 
 let ae = s6_sum_x4i ex 
 let af = s6_sum_x5i ex 
 
 let ba = s6_sum_x1i ex 
 let bb = s6_sum_x1i2 ex 
 let bc = s6_sum_x1x2 ex 
 let bd = s6_sum_x1x3 ex 
 let be = s6_sum_x1x4 ex 
 let bf = s6_sum_x1x5 ex 
 
 let ca = s6_sum_x2i ex 
 let cb = s6_sum_x1x2 ex 
 let cc = s6_sum_x2i2 ex 
 let cd = s6_sum_x2x3 ex 
 let ce = s6_sum_x2x4 ex 
 let cf = s6_sum_x2x5 ex 
 
 let da = s6_sum_x3i ex 
 let db = s6_sum_x1x3 ex 
 let dc = s6_sum_x2x3 ex 
 let dd = s6_sum_x3i2 ex 
 let de = s6_sum_x3x4 ex 
 let df = s6_sum_x3x5 ex 
 
 let ea = s6_sum_x4i ex 
 let eb = s6_sum_x1x4 ex 
 let ec = s6_sum_x2x4 ex 
 let ed = s6_sum_x3x4 ex 
 let ee = s6_sum_x4i2 ex 
 let ef = s6_sum_x4x5 ex 
 
 let fa = s6_sum_x5i ex 
 let fb = s6_sum_x1x5 ex 
 let fc = s6_sum_x2x5 ex 
 let fd = s6_sum_x3x5 ex 
 let fe = s6_sum_x4x5 ex 
 let ff = s6_sum_x5i2 ex 
 
 let ya = s6_sum_yi ex 
 let yb = s6_sum_x1iyi ex 
 let yc = s6_sum_x2iyi ex 
 let yd = s6_sum_x3iyi ex 
 let ye = s6_sum_x4iyi ex 
 let yf = s6_sum_x5iyi ex 

 
 let line_1 = "3\n" 
 let line_2 = show aa++","++ show ab ++ ","++ show ac ++  
    show ad ++ "," ++ show ae ++ "," ++ show af ++"\n" 
 let line_3 = show ba++","++ show bb ++ ","++ show bc ++  
    show bd ++ "," ++ show be ++ "," ++ show bf ++"\n" 
 let line_4 = show ca++","++ show cb ++ ","++ show cc ++  
    show cd ++ "," ++ show ce ++ "," ++ show cf ++"\n" 
 let line_5 = show da++","++ show db ++ ","++ show dc ++  
    show dd ++ "," ++ show de ++ "," ++ show df ++"\n" 
 let line_6 = show ea++","++ show eb ++ ","++ show ec ++  
    show ed ++ "," ++ show ee ++ "," ++ show ef ++"\n" 
 let line_7 = show fa++","++ show fb ++ ","++ show fc ++  
    show fd ++ "," ++ show fe ++ "," ++ show ff ++"\n" 
 let line_8 = "\n" 
 let line_9 = show ya++","++ show yb ++ ","++ show yc ++  
    ","++ show yd ++ ","++ show ye ++ "," ++ show yf 
 write (line_1++line_2++line_3++line_4++line_5++line_6++ 

line_7++line_8++line_9) 
 
s6_form_x1i [] = [] 
s6_form_x1i [[a,b,c,d,e,f]] = [a] 
s6_form_x1i (x:xs) = s6_form_x1i [x] ++ s6_form_x1i xs 
 
s6_form_x2i [] = [] 
s6_form_x2i [[a,b,c,d,e,f]] = [b] 
s6_form_x2i (x:xs) = s6_form_x2i [x] ++ s6_form_x2i xs 
 
s6_form_x3i [] = [] 
s6_form_x3i [[a,b,c,d,e,f]] = [c] 
s6_form_x3i (x:xs) = s6_form_x3i [x] ++ s6_form_x3i xs 
 
s6_form_x4i [] = [] 
s6_form_x4i [[a,b,c,d,e,f]] = [d] 
s6_form_x4i (x:xs) = s6_form_x4i [x] ++ s6_form_x4i xs 
 
s6_form_x5i [] = [] 
s6_form_x5i [[a,b,c,d,e,f]] = [e] 
s6_form_x5i (x:xs) = s6_form_x5i [x] ++ s6_form_x5i xs 
 
s6_form_yi [] = [] 
s6_form_yi [[a,b,c,d,e,f]] = [f] 
s6_form_yi (x:xs) = s6_form_yi [x] ++ s6_form_yi xs 
 
s6_sum_x1i [] = 0 
s6_sum_x1i s = sum(s6_form_x1i s) 
 
s6_sum_x2i [] = 0 
s6_sum_x2i s = sum(s6_form_x2i s) 
 
s6_sum_x3i [] = 0 
s6_sum_x3i s = sum(s6_form_x3i s) 
 
s6_sum_x4i [] = 0 
s6_sum_x4i s = sum(s6_form_x4i s) 
 
s6_sum_x5i [] = 0 
s6_sum_x5i s = sum(s6_form_x5i s) 
 
s6_sum_yi [] = 0 
s6_sum_yi s = sum(s6_form_yi s) 
 
s6_sum_x1i2 [] = 0 
s6_sum_x1i2 s = sum(sumsq(s6_form_x1i s)) 
 
s6_sum_x2i2 [] = 0 
s6_sum_x2i2 s = sum(sumsq(s6_form_x2i s)) 
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s6_sum_x3i2 [] = 0 
s6_sum_x3i2 s = sum(sumsq(s6_form_x3i s)) 
 
s6_sum_x4i2 [] = 0 
s6_sum_x4i2 s = sum(sumsq(s6_form_x4i s)) 
 
s6_sum_x5i2 [] = 0 
s6_sum_x5i2 s = sum(sumsq(s6_form_x5i s)) 
 
s6_sum_x1iyi []= 0 
s6_sum_x1iyi s = sum(multi (s6_form_x1i s)(s6_form_yi s)) 
 
s6_sum_x2iyi []= 0 
s6_sum_x2iyi s = sum(multi (s6_form_x2i s)(s6_form_yi s)) 
 
s6_sum_x3iyi []= 0 
s6_sum_x3iyi s = sum(multi (s6_form_x3i s)(s6_form_yi s)) 
 
s6_sum_x4iyi []= 0 
s6_sum_x4iyi s = sum(multi (s6_form_x4i s)(s6_form_yi s)) 
 
s6_sum_x5iyi []= 0 
s6_sum_x5iyi s = sum(multi (s6_form_x5i s)(s6_form_yi s)) 
 
s6_sum_x1x2 [] = 0 
s6_sum_x1x2 s = sum(multi (s6_form_x1i s)(s6_form_x2i s)) 
 
s6_sum_x1x3 [] = 0 
s6_sum_x1x3 s = sum(multi (s6_form_x1i s)(s6_form_x3i s)) 
 
s6_sum_x1x4 [] = 0 
s6_sum_x1x4 s = sum(multi (s6_form_x1i s)(s6_form_x4i s)) 
 
s6_sum_x1x5 [] = 0 
s6_sum_x1x5 s = sum(multi (s6_form_x1i s)(s6_form_x5i s)) 
 
s6_sum_x2x3 [] = 0 
s6_sum_x2x3 s = sum(multi (s6_form_x2i s)(s6_form_x3i s)) 
 
s6_sum_x2x4 [] = 0 
s6_sum_x2x4 s = sum(multi (s6_form_x2i s)(s6_form_x4i s)) 
 
s6_sum_x2x5 [] = 0 
s6_sum_x2x5 s = sum(multi (s6_form_x2i s)(s6_form_x5i s)) 
 
s6_sum_x3x4 [] = 0 
s6_sum_x3x4 s = sum(multi (s6_form_x3i s)(s6_form_x4i s)) 
 
s6_sum_x3x5 [] = 0 
s6_sum_x3x5 s = sum(multi (s6_form_x3i s)(s6_form_x5i s)) 
 
s6_sum_x4x5 [] = 0 
s6_sum_x4x5 s = sum(multi (s6_form_x4i s)(s6_form_x5i s)) 
-- 
-- ---------------------------------------------------------------- 
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