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 Abstract—The paper shows that in the analysis of a queuing 
system with fixed-size batch arrivals, there emerges a set of 
polynomials which are a generalization of Chebyshev polynomials of 
the second kind. The paper uses these polynomials in assessing the 
transient behaviour of the overflow (equivalently call blocking) 
probability in the system. A key figure to note is the proportion of 
the overflow (or blocking) probability resident in the transient 
component, which is shown in the results to be more significant at 
the beginning of the transient and naturally decays to zero in the limit 
of large t. The results also show that the significance of transients is 
more pronounced in cases of lighter loads, but lasts longer for 
heavier loads. 
 

Keywords—batch arrivals, blocking probability, generalized 
Chebyshev polynomials, overflow probability, queue transient 
analysis 

I. INTRODUCTION 
HE  paper considers a queuing system in which the 
arrivals occur in fixed-size batches of B packets each, 

according to a Poisson process of mean rate λ arrivals per unit 
time. The single-server has exponentially distributed service 
times, having a mean service rate of μ packets per unit time. In 
determining the queue statistics, it has been convenient to 
resort to steady-state analysis, mainly because of mathematical 
tractability. However, transient analysis has been accepted as 
being complementary to the steady-state analysis [1-5].  This 
has been echoed in justifying the analysis presented in [6,7] 
where use is made of special functions. 

The characterization of the  transient behaviour of queuing 
systems has often been complicated by the multidimensional 
transforms that have to be inverted [8]; it has been difficult to 
accomplish these inversions in manageable closed form. 
Accordingly, it has been necessary in some cases to use 
numerical techniques [9,10] . 

It has been shown [6,7] that for fixed-size  batch Poisson 
arrivals and exponential service times it is possible to obtain 
an expression for the empty state probability in terms of 
functions that are related to the modified Bessel functions of 
the first kind. It is further shown [7] that these functions are a 
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generalization of the modified Bessel functions of the first 
kind, with the batch size B as the generalizing parameter. In 
the present paper, a set of polynomials arises in the treatment 
of the same system. These polynomials are seen to resemble 
Chebyshev polynomials.  

The rest of the paper is organized as follows. Section II 
gives the system model, on which is based the analysis that 
begins by determining the probability flow balance equations. 
Section III presents the family of polynomials that are 
fundamental in the analysis. This section also presents the 
similarities of these polynomials with the Chebyshev 
counterparts.  Section IV presents the characterizing system 
probabilities – steady state, transient and overflow 
probabilities. Section V combines results and discussion.  
Section VI gives the conclusion 

II. SYSTEM   MODEL  
Packets arrive at a service point in fixed size batches of B 

packets according to a Poisson process of mean rate λ arrivals 
per second. The single server completes the service at the rate 
of μ packets per second. The probability flow balance is 
shown in Fig.1 in which the top half indicates transitions 
among states from the empty state (state-0) up to B+1, and the 
lower half is for a general state-k where k ≥ B.   
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Fig.1. Probability  Flow For Arrival Batch size B 

 
Denote by Pk(t) the probability that at time t there are k 

packets in the system. From the diagram the following 
equations follow immediately. 

( )
⎪
⎩

⎪
⎨

⎧

≥+

<≤

=+

=++

−+

+

BkPtP

BkP

ktPtP

PtP
dt
d

Bkk

kkk
     (t))(

1                      (t)

0          )( )(

(t)(

1

1

01

λμ

μ

μμ

μλ       (1)
 

System Overflow/Blocking  Transients  For  
Queues with Batch Arrivals Using a Family of 

Polynomials Resembling Chebyshev 
Polynomials 

Vitalice  K. Oduol,  Cemal Ardil 

T 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:6, No:7, 2012

647

 

 

 
To simplify the analysis, the following definitions are 

introduced. 
( )[ ]ttQPtP kkk μλ +−= + exp)()(                          (2) 

where Pk  is the steady state probability of there being k 
packets in the system, inclusive of the one in service, and  the 
term Qk(t)exp[-(λ+μ)t] represents the transient part of the 
probability of occupancy.  

The representation (2) enables (1) to be decoupled into two 
sets of equations, one for the steady-state and the other for the 
transient component. From (1) it can shown that the quantities 
Qk(t), for the transient component, satisfy the relations 
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The usual procedure at this point would be to obtain for 
Qk(t) a multidimensional transform, a suitable one in this case 
being a two-dimensional Laplace-Stieltjes transform, and 
attempt to invert the transform. Owing to the difficulty with 
transform inversion already alluded to, this paper relies on the 
expression for the empty state probability obtained in [7] and 
uses the properties of the functions presented in [6,7] together 
with a family of polynomials introduced in the sequel to 
obtain the occupancy probabilities. These are then used to 
determine the transient behaviour of the overflow (call 
blocking) probability. It is important at this point to digress 
and discuss the family of polynomials that will prove 
convenient in the subsequent  analysis. 

III. THE  FAMILY  OF  POLYNOMIALS 
The steady-state probabilities Pk are just the result of the 

traditional queuing analysis. In much of what follows an 
attempt is made to express in closed form both the steady state 
probabilities and the transient terms in (2) using a set of 
functions already discussed [6,7] and a set of polynomials to 
be introduced here. These polynomials are denoted ( )xT B

k
)( ,  

signifying that they are parameterized by B, and for each B, 
they are indexed by k. They are are defined as follows 
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where [k/(B+1)]  is  the integer part of k/(B+1). For B=1,2,3 
the first few of these polynomials are  shown in Table I for 
k=0,1,2,…,9. From (4) and also evident in the table, these 
polynomials satisfy the recurrence relations 
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The even polynomials are plotted in Fig.2, while the odd 
polynomials are given Fig.3. The odd polynomials have odd 
symmetry and the even polynomials have even symmetry 
about the origin, as expected.  

 

TABLE   I      POLYNOMIALS    ( )xT B
k

)(    FOR B=2   AND   K=0,1,2,…,9 

k B=1 B=2 B=3 

0 1 1 1 
1 x  x  x  
2 12 −x  2x  2x  
3 xx 23 −  13 −x  3x  
4 13 24 +− xx  xx 24 −  14 −x  
5 xxx 34 35 +−  25 3xx −  xx 25 −  
6 165 246 −+− xxx  14 36 +− xx  26 3xx −  
7 xxxx 4106 357 −+−  xxx 35 47 +−  37 4xx −  
8 110157 2468 +−+− xxxx  258 64 xxx +−  15 48 +− xx  
9 xxxxx 520218 3579 +−+−  1105 369 −+− xxx  xxx 36 59 +−  
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Fig. 2. Plot of the polynomials ( )xT B

k
)(   for  k even , up to k = 10 
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Fig. 3. Plot of the polynomials ( )xT B

k
)(  for k odd, up to k = 9 

A. Similarities with Chebyshev Polynomials  
It is useful to point out some of the similarities with the 

Chebyshev polynomials. The first similarity of these 
polynomials is seen in their plots of Fig.2 and Fig.3. The 
second similarity is seen in the expression for the generating 
function ),()( xzT B of these polynomials, which is defined as 
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k
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Applying the defining equations (5), gives 
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After some algebra, this results in 

1
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In this equation when B=1 and x is replaced by 2x, this is 
just the generating function of the Chebyshev polynomials of 
the second kind [11-14]. It is noteworthy that whereas the 
functions emerging in [7] are related to the modified Bessel 
functions of the first kind, and reduce to the latter when the 
batch size parameter takes the value of unity (B=1) and x is 
replaced by 2x, there now emerges here a set of polynomials 
which are related to the Chebyshev polynomials of the second 
kind, and reduce to the latter polynomials when B=1 and x is 
replaced by 2x. 

The generating function obtained so far states that the 
polynomials ( )xT B

k
)( are the coefficients of zk in the infinite 

series expansion 
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This generating function looks like the one for the 

Chebyshev polynomials of the second kind )(xUk   when we 

set B = 1, and replace x above with 2x.   That is 
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The polynomial )(xUk  can   also be expressed as [11-14]  
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which is really the exact expression (4) for ( )xT B
k

)(  when B=1, 
and x is replaced by 2x.  These similarities suggest here that 
the polynomials emerging in this analysis are indeed more 
general than the Chebyshev counterparts, with the batch size 
B as the generalizing parameter.  

A study of these polynomials, exploring their similarities 
with the Chebyshev polynomials, and more, can be an 
interesting subject in itself; here the intention is to see how 
they can be used in the  analysis  of the transient behaviour of 
the queuing system with batch arrivals. In the sequel, they are 
used together with solutions already found in previous works 
to obtain results from which conclusions are drawn. 

IV. SYSTEM   PROBABILITES  
This section  presents the key system probabilities such as 

the steady state, transient, and system overflow  (blocking) 
probabilities. It also shows the possible implementations of 
the steady state probabilities. 

A. Steady-State   Probabilities 
The steady state probabilities are obtained by considering 

that in the limit of large t, the transient terms go to zero, as do 
the time derivatives, yielding the equations below. 
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It is shown in [7] that for k > 0, these steady state 

probabilities satisfy  the moving average relations 
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where the averaging window size equals the fixed sized B of 
the batch. In fact (13) is seen as a scaled down moving 
average when the definition ρ = Bλ/μ of the offered load is 
used.  

The steady state probabilities can be implemented using at 
least three alternatives. The first two are based on signal flow 
diagrams using delays, multipliers and adders. The third 
method uses the polynomials discussed here 
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Fig. 4.  Recursive implementation of the steady-state probabilities 
(12) 

 
The first method is based on (12) and uses the signal-flow 

diagram of Fig.4. Initially the value of P0 is loaded into the 
delay stage whose output is labelled P0, with the other delay 
elements set to zero.  The first switch S1 is initially in position 
0, and is moved to position 1 after one clock period, and stays 
there for the rest of the time. The second switch S2 is initially 
in position 1 where it stays through the first clock period, and 
is then moved to the operating position 2, where it remains for 
the remainder of the system. 

The second implementation uses the signal-flow diagram of 
Fig.5, in which the value of P0 is loaded in the delay element 
whose output is labelled  P0. All the delay elements are 
cleared (set to zero).  The switch S is initially at position 0. It 
is moved to position 1 as the system clock is started. Data is 
then passed through the B delay stages. At every tick of the 
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clock the value of Pk is indeed the desired steady-state 
probability of there being k packets (customers) in the system.  
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Fig. 5. Moving average implementation of the steady-state 
probabilities (13) 

 
The recurrence relations (12) can be applied repeatedly to 

express the steady state probabilities Pk in terms of P0 and the 
polynomials already introduced. That is, by repeatedly setting 
k=2,3, …, in (12) it is  found that leads to 
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where μλρ /B=  is the offered load,  and  
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It has already been found [7]  that the empty system 
probability 0P   is given by 

ρ−= 10P                                         (16) 

B. Transient   Probabilities 
It is convenient to introduce the differential operator 

D = d/dt  and the parameter α defined as  
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Then Qk(t) can be expressed successively in terms of Q0(t) as 
follows 
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After some algebra, the general expression for  Qk(t)  for k>0 
becomes 
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From (20) it is clear that the general expression for Qk(t)  is 
a weighted sum of the derivatives of Q0(t). Once Q0(t)  is 
known  the required results can be found. These can then be 
combined with the steady-state results to obtain the time-

varying occupancy probabilities Pk(t). Previously [6,7] a set of 
functions are introduced, and defined according to  
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where  ⎡ ⎤Bkk /=σ , the smallest integer not less than k/B. To 
make the expression more manageable, two other quantities 
qk(t) and hk(t) are defined 
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Here hk(t) is  the convolution kernel that appears in the 
expression for Qk(t), as given by  
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Setting k=0 in (23) gives the integral equation whose solution 
would give  the result for Q0(t), 
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In [7] it is argued convincingly that rather than attempting to 
solve (24) directly, which is a challenge, it is better to exploit 
the fact that the  systems ( ) )  ( , 1 kIB =  and ( ) )  ( , 1 )(B

kVB >  are 

isomorphic, and noting that by appropriately adapting the 
known solution for Q0(t) in ( ) )  ( , 1 kIB = , the corresponding 

results for the  function Q0(t)  here  can  be expressed as  

( ) ( )∑
∞

= ++−
−

− ⎥⎦
⎤

⎢⎣
⎡⎟

⎠
⎞

⎜
⎝
⎛=

ip
tB

BpBVtB
pV

p
tQ αα

α
μ )(

)1(
)(

0 )(
          (25) 

Thus far Q0(t)  has been determined. The expression for Qk(t) 
in (20)  requires other properties of the functions used in (25). 
In [7] it is shown that 
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It now remains to combine this with (20) and  the definition of 
the polynomials ( )xT B

k
)(  to obtain a closed form expression 

for Qk(t). 

C. Overflow / Blocking   Probability 
Given that a system can hold no more than N packets (there 

is room for only N customers), the probability that there will 
be an overflow (blocking) at time t is then the probability that 
this quantity is exceeded. 
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It has to be assumed here that the system capacity N is 
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larger than the batch size (N>B). This condition is necessary 
since the system should be able hold at least one batch upon 
its arraival. In that case the sum can be broken into two parts 
to give 

( )[ ] )(0
)(

0

)1/(1
)(

)1/(

exp

1 

tB
N

N

B
B

N

BN
(B)
ovfl

QDTt

PB
B

T
B

(N) P

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛−=

++

αμ
αμλ

ρ
ρρ

       (28) 

 
The fundamental role played by the polynomials ( )xT B

k
)(   is 

evident in (28).  

D. Transient Proportion  in Overflow/Blocking Probability 
The proportion of the overflow probability taken by the 
transient term can be used to give a sense of the significance 
of the transients in the overflow assessment.  To this end the 
ratio ηtrans  is defined as follows 

( )[ ] ∑
∞

+=
+−=

1

)(exp1 
Nk

tk(B)
ovfl

trans Qt
(N)P

 μλη                 (29) 

Since the results presented below are functions of μt, the 
normalized time, it is necessary to express (29) so as to reflect 
this.  Combining the definitions of  α and ρ,  together with 
(28) and (29),  it follows  that  
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It will be interesting to observe how long it takes for this 
proportion to decay to zero (as it should) as the load is varied. 

V. RESULTS  AND  DISCUSSION 
The results given are in two sets, the first one being the 

plain overflow/blocking probabilities as a function of time. 
The second set are the proportion of the overflow that is in the 
transient component. All the results are shown  for a capacity 
of 10 packets (N=10) when the arrival batch size is 3. The first 
four depict the results  starting from the empty state (i=0), 
while the last three depict the results for a non-empty initial 
state (i>0).  The results presented are only for B=3 and N=10. 
Other values of B and N may be considered if required. 

Fig.6 shows the results of the overflow probability 
(blocking probability) for low loads (ρ = 0.05). Initially the 
probability of overflow is relatively low (5×10-7), then rising  
to a peak of 6×10-7 at μt = 6., and then settles finally at 5×10-7, 
for μt > 20. 

Fig.7 shows the results of the overflow probability 
(blocking probability) for moderate loads (ρ = 0.50). The 
trend is similar to the one in the preceding figure. Initially the 
probability of overflow is once again relatively low 
(2.17×10-2), then rising  to a peak of 2.25×10-2 at μt = 9., and 
then settles finally at 2.17×10-2, for μt > 70. It takes longer 
here to reach steady state than for lower loads 
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Fig. 6 Overflow probability for low loads (ρ = 0.05) starting from the 
empty state (i=0) with B=3 and N=10 
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Fig.7 Overflow probability for medium load (ρ = 0.50) starting from 
the empty state (i=0) with B=3 and N=10 
 

Fig.8 shows the results of the overflow probability for 
heavy loads (ρ = 0.95). Once again the trend is similar to those  
in the preceding figures. Initially the probability is low 
(0.742), then rising  to a peak of 0.748 at μt = 10., and then 
settles finally at 0.743, for μt > 100. Here too it takes longer to 
reach steady state than for lower loads. 

Fig.9 shows the results for the proportion of transients in 
the overflow probability  for different loads, and starting from 
the empty state (i=0). Whereas the transient component 
eventually goes to zero, the relative magnitude is less than 1% 
after μt = 30, with the heavier loads experiencing the least 
variation. For smaller loads, the transient component is more 
pronounced and decays faster.  
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Fig. 8 Overflow probability for heavy load (ρ = 0.95) starting from 
the empty state (i=0) with B=3 and N=10 
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Fig. 9 Proportion of transients in the overflow probability for 
different loads starting from the empty system (i=0) with B=3 and 
N=10 

 
Fig.10 shows the results for the proportion of transients for 

different loads, and starting from a non-empty system (i=5). 
The similarities with the empty initial state are that the relative 
magnitude is less than 1% after μt = 30, with the heavier loads 
experiencing the least variation.  The difference here is that 
the relative magnitude of the transient component is high 
(approaching unity) for low loads. 

Fig.11 shows the results for the proportion of transients in 
the overflow probability  for different loads, and starting from 
a non-empty system (i=10). The similarities with the 
preceding case are that the heavier loads experience the least 
variation, and  the relative magnitude of the transient 
component is high (approaching unity) for low loads. The 
major difference here is that  the 1% point is reached after 
μt = 50  (i.e. 20 units of time later). 

Finally Fig.12 shows the results for the proportion of 
transients in the overflow probability for different loads, 
starting from a non-empty system (i=20). The similarities with 
the preceding case are that the heavier loads experience the 
least variation, and  the relative magnitude of the transient 
component is high (approaching unity) for low loads. The 
major difference here is that  the 1% point is reached after 

μt = 100  (i.e. 70 units of time later than for the empty initial 
state). 
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Fig. 10   Proportion of transients in the overflow probability for 
different loads starting from a non-empty state with 5 packets with 
B=3 and N=10 
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Fig. 11 Proportion of transients in the overflow probability for 
different loads starting from a non-empty state with 10 packets with 
B=3 and N=10 

0.00

0.20

0.40

0.60

0.80

1.00

0 10 20 30 40 50 60 70 80 90 100

Normalized Time [ut]

Pr
op

or
tio

n 
of

 T
ra

ns
ie

nt
s 

load = 0.05

load = 0.10

load =0.50

load = 0.80

load = 0.95

i = 20
N=10
B=3

load = 0.20

 
Fig. 12. Proportion of transients in the overflow probability for 
different loads starting from a non-empty state with 20 packets with 
B=3 and N=10 
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VI. CONCLUSION 
In conclusion, the paper has addressed the problem of 

analyzing the transient behaviour of a queuing system with 
Poisson arrivals of fixed-size batches, and exponential service 
times. In the process, there emerged a family of polynomials 

) ()( xT B
k

which are seen to generalize Chebyshev polynomials 

of the second kind )  (xU k
. The similarities of these 

polynomials are evident in the descriptions, in the appearance 
of their graphs, and also in the generating functions. 

The polynomials are used to obtain results for the 
occupancy probabilities and subsequently, blocking (or 
overflow) probabilities for the system. The transient 
probability of overflow (equivalently the blocking probability) 
is used to characterize the transient behaviour.  It is found that 
for all loads the blocking probability has the same shape as a 
function of time, starting low, rising to a peak and decaying to 
the steady state level. For small loads the actual levels are low 
(e.g.  5×10-7 for a load of  0.05), and for heavy loads the 
actual level are high  (e.g.  0.745 for a load of  0.95).    

The pattern in the results is to be expected since a heavily 
loaded system is more likely to experience overflow than a 
lightly loaded one. What is new here is that use is made of the 
polynomials in showing the significance of the transient 
component in the assessment of the overflow  or blocking.  

The proportion of the transient component in this quantity 
is found to be high for low loads, and lower for heavy loads.  
The time for the transients to decay to below 1% is longer 
when the system starts with more packets than when it starts 
with fewer or no packets. 

Finally, it is interesting that there is a relationship between 
the Bessel functions and Chebyshev polynomials, and it is 
being found here that the same system can be described by 
functions that generalize Bessel functions, and also in terms of 
polynomials that generalize Chebyshev polynomials. It 
remains to establish the parallel relationships between the 
functions and the polynomials. 
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