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Optimal Channel Equalization
for MIMO Time-Varying Channels

Ehab F. Badran and Guoxiang Gu

Abstract— We consider optimal channel equalization for MIMO
(multi-input/multi-output) time-varying channels in the sense of
MMSE (minimum mean-squared-error), where the observation noise
can be non-stationary. We show that all ZF (zero-forcing) receivers
can be parameterized in an affine form which eliminates completely
the ISI (inter-symbol-interference), and optimal channel equalizers
can be designed through minimization of the MSE (mean-squared-
error) between the detected signals and the transmitted signals,
among all ZF receivers. We demonstrate that the optimal channel
equalizer is a modified Kalman filter, and show that under the AWGN
(additive white Gaussian noise) assumption, the proposed optimal
channel equalizer minimizes the BER (bit error rate) among all
possible ZF receivers. Our results are applicable to optimal channel
equalization for DWMT (discrete wavelet multitone), multirate trans-
multiplexers, OFDM (orthogonal frequency division multiplexing),
and DS (direct sequence) CDMA (code division multiple access)
wireless data communication systems. A design algorithm for optimal
channel equalization is developed, and several simulation examples
are worked out to illustrate the proposed design algorithm.

Keywords— Channel equalization, Kalman filtering, Time-varying
systems.

I. INTRODUCTION

Inter-symbol interference (ISI) has been one of the major
obstacles for performance improvement in wireless data com-
munications. Channel equalization is a common and effective
technique to suppress ISI. For MIMO channels, often pre-
coders need be employed to provide the required redundancies
in order for causal and stable equalizers to exist [6], [10].
Data communication systems such as digital subscriber loops,
DWMT (discrete wavelet multitone), FDMA (frequency divi-
sion multiple access), and DS-CDMA systems admit MIMO
channels, and have a common structure in that precoders are
designed to provide redundancies, which enable not only error
control coding, but also channel equalization such that ISI
can be eliminated completely. Many researchers [6], [9], [10]
have contributed to this important problem area, focusing on
the design of FIR receivers to achieve MMSE. It should be
clear that MMSE receivers in the existing literature are actually
suboptimal by the fact that optimization is carried out over all
FIR filters of a fixed order. Their optimality over all possible
linear, or nonlinear filters of possibly infinite order can not be
claimed thus far.
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In this paper we consider channel equalization for multi-
input/multi-output time-varying channels in the presence of
possibly non-stationary noises. Wireless channels often expe-
rience selective fadings, implying that actual radio channels
are likely to be time-varying. It should be clear that channel
estimation algorithms which track fast fading channels exist
[4], [5], and most other estimation algorithms [8], [12] can also
be adapted to estimate time-varying channels by introducing
weighting factors with less weights given to old measurement
data. On the other hand the noise variance is dependent on
the location of the cellular user, which can be pre-determined
via the experimental method. Thus we will assume that the
channel model and noise covariance are given at each sampling
time t. We will study design of optimal receivers that achieve
not only PR or zero-forcing, but also MMSE among all
possible linear and time-varying filters of arbitrary orders. We
will show that for redundant MIMO channels, the zero-forcing
receivers are equivalent to causal and stable left inverses of
some “tall” matrix of linear dynamic systems, consisting of
the channel and precoder. Such left inverses are not unique.
Any zero-forcing receiver filterbank accomplishes the goal
of channel equalization, and eliminates completely ISI. We
will first parameterize all zero-forcing channel equalizers in
an affine form, and then seek one of them to minimize the
MSE caused by possible non-stationary noises at the receivers,
thereby converting the constrained optimization into uncon-
strained optimization for receivers design. It will be shown that
the design of optimal channel equalizers is equivalent to the
design of optimal state estimators for some augmented system
subject to the same noise processes. Hence the celebrated
Kalman filtering can be used successfully to design the optimal
detectors among all channel equalizers, which are truly optimal
over all linear and time-varying receiver filters of arbitrary
order. The effectiveness of our proposed optimal channel
equalization method is illustrated by illustrative examples.

II. MIMO TIME-VARYING CHANNELS AND ZERO

FORCING CONDITION

We consider the discrete-time MIMO time-varying compos-
ite channel whose input-output relation is described by

y(t) = φ(t, τ) � s(t) + η(t), (1)

with φ(t, τ) = h(t, τ) � f(t, τ) =
∑t

k=τ h(t, t − k)f(k, τ),
where the received signal y(t), and the observation noise η(t)
have dimension P × 1, and the transmitted data symbol s(t)
has dimension M × 1. The impulse response at time t of
the composite channel φ(t, τ) has size P × M , which is the
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convolution, denoted by �, of the channel impulse response
h(t, τ), and precoder or transmitter impulse response f(t, τ).
It is assumed that h(t, τ) has size P ×P , and f(t, τ) has size
P × M , where P > M . Thus the precoder f(t, τ) provides
redundancies, which enable the zero-forcing condition, and
allow equalization. Our objective is to synthesize a detector,
or decoder g(t, τ) such that it minimizes

J(g)(t) = E[e∗(t)e(t)] = trace {E[e(t)e∗(t)]} (2)

e(t) = g(t, τ) � η(t),

with η possibly non-stationary, subject to the zero-forcing or
PR condition

g(t, τ) � φ(t, τ) = δ(t − τ)IM =
{

IM , t = τ,
0, t �= τ,

(3)

where (·)∗ denotes conjugate transpose.
Dynamic MIMO discrete-time systems such as the multi-

channel model (multi-transmitter/multi-receiver model), mul-
tirate filterbank model, versatile multirate filterbank transceiver
model, and multirate transmultiplexers have a common math-
ematical input-output relation equivalent to (1).

Consider the multirate transmultiplexers as in Figure 1
where P > M .

�↑ P

�↑ P

�↑ P

f0(t, τ)

f1(t, τ)

fM−1(t, τ)

�+ h(t, τ) �+� �↓ P

�↓ P

�↓ P

g0(t, τ)

g1(t, τ)

gM−1(t, τ)

� �

� �

� �

�
�
� � � �

� �

�

�

�

�

s0(t)

s1(t)

sM−1(t)
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Fig. 1. multirate transmultiplexer model.

The channel is represented by h(t, τ) which is a scalar
impulse response, and M transmitter filters {fi(t, τ)}M−1

i=0

are employed to precode the transmitted data signals, and
M receiver filters {gi(t, τ)}M−1

i=0 to decode, or detect the
transmitted data signals. It is indicated in [13] that the CDMA
wireless data communication system for the forward channel
is equivalent to the model in Figure 1, where fi(t, τ) consists
of the PN codes of the ith user for 0 ≤ i ≤ M − 1.
The fact that P > M provides the redundancy. It can be
shown that with s(t) =

[
s0(t) s1(t) · · · sM−1(t)

]T
,

and y(t) =
[

y(tP ) y(tP + 1) · · · y(tP + P − 1)
]T

,
the model (1) holds with φ(t, τ) = h(t, τ) � f(t, τ) for some
h(t, τ), and f(t, τ), which can be obtained based on Figure 1.

For the design of the optimal channel equalizer in the
MMSE sense, we first need the existence condition for the
receiver g(t, τ) such that the zero forcing condition (3) holds.
For this purpose, we consider the noise-free case for the rest
of the section. It is convenient to introduce the state-space
realization for the composite channel model φ(t, τ):

x(t + 1) = A(t)x(t) + B(t)s(t), x(0) = 0, (4)

y(t) = C(t)x(t) + D(t)s(t),

where x(t) is the n-dimensional state vector at time t. Thus
A(t) has size n × n, B(t) has size n × M , C(t) has size
P ×n, and D(t) has size P ×M for all integer valued time t.

Because of the requirement on stability, the following stability
notion is needed.

Definition 2.1: The time-varying system described by the
state space model (4) is exponentially stable, or simply stable,
if there exists an N0 > 0 such that

ρ

(
N+t0∏
t=t0

A(t)

)
≤ αβN , α > 0, 0 < β < 1, (5)

for all N ≥ N0 > t0 ≥ 0, where ρ(·) denotes the spectral
radius, and α, β are independent of N .
Thus, the exponential stability can be ensured only by having
ρ(A(t)) < 1 ∀ t, which if holds true, then there exist α, β, N0

such that (5) is true.
Throughout the paper, exponential stability is used in place

of stability. For time-invariant systems, exponential stability
reduces to ρ(A) < 1. Because stability of the state-space
system (4) depends only on A(t), we will say that A(t) is
exponentially stable, if the condition in Definition 2.1 is true.

Remark 2.2: We will assume exponential stability for the
channel model (4), and

rank [ D(t) ] = M ∀ t. (6)

If the condition (6) is violated for some t, then we assume the
existence of the factorization:

φ(t, τ) = diag(q−�0 , q−�1 , · · · , q−�P−1) � φ
0
(t, τ),

for some positive integers {
i}P−1
i=0 , such that the state-space

realization of φ
0
(t, τ) has its D(t)-term full column rank as

in (6). In this case, the receiver can be assumed of the form

g(t, τ) = g
0
(t, τ)diag(q−(�max−�0), · · · , q−(�max−�P−1))

with 
max = max0≤k<P 
k. It follows that g(t, τ) � φ(t, τ) =
g
0
(t, τ) � φ

0
(t − 
max, τ), and J(g) = J(g

0
). Hence there is

no loss of generality to assume (6).
Since P > M , D(t) having full column rank implies the

existence of D⊥(t) such that Da(t) =
[

D(t) D⊥(t)
]

is
square and nonsingular. A particular D+(t), left inverse of
D(t), and D⊥(t) can be chosen as D+(t) and D⊥(t) exist).

D+(t) = (D∗(t)D(t))−1D∗(t), (7)

D⊥(t)D∗
⊥(t) = IP − D(t)(D∗(t)D(t))−1D∗(t)

where D⊥(t) is the minimum rank Cholesky factor.
It follows that[

D+(t)
D+

⊥(t)

] [
D(t) D⊥(t)

]
=
[

IM 0
0 IP−M

]
, (8)

D+
⊥(t) = D∗

⊥(t).

There are many choices for D+(t), and D⊥(t) such that the
above holds. Those in (7) are the simplest, and most commonly
used.

Lemma 2.3: Let the state-space realization for φ(t, τ) be
given as in (4) where D(t) satisfies the condition (6). Then a
causal and stable g(t, τ) exists and satisfies the zero-forcing
condition (3), if and only if there exists a state estimation gain
L(t) such that

AL(t) = A(t) − B(t)D+(t)C(t) + L(t)D∗
⊥(t)C(t) (9)
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is exponentially stable. Such a state estimator gain L(t) will
be called stabilizing.

Proof: If AL(t) is exponentially stable for some L(t), then it
is claimed that g(t; τ) = φ+(t; τ), described by the state-space
model:

x̃(t + 1) = AL(t)x̃(t) + BL(t)y(t), x̃(0) = 0, (10)

BL(t) = B(t)D+(t) − L(t)D∗
⊥(t),

ŝ(t) = −D+(t)C(t)x̃(t) + D+(t)y(t).

is a causal and stable left inverse of φ(t; τ), and thus the ZF
condition (3) holds. Indeed taking the difference between the
state-space models as in (4) and (10) gives the error system

x̃s(t + 1) = ALx̃s(t), ŝ(t) = −D+(t)C(t)x̃s(t) + s(t)

where x̃s(t) = x̃(t) − x(t), in light of (8), and expression
of AL(t), BL(t), and y(t). Hence by the initial condition of
x̃(0) = x(0) = 0, we have that x̃s(0) = 0 and x̃s(t) = 0 ∀ t.
It follows that ŝ(t) = s(t). Conversely, assume that a stable
and causal g(t; τ) exists such that the ZF condition (3) is true.
Since the state-space model (4) for φ(t; τ) has an equivalent
form

x(t + 1) = A(t)x(t) + BL(t)d(t), x(0) = 0,

y(t) = C(t)x(t) + d(t), (11)

for any L(t) due to (8), where d(t) = D(t)s(t), and BL(t) is
as in (10),

y(t) = φ(t; τ) � s(t) = φ
1
(t; τ) � d(t)

for some φ
1
(t; τ). The existence of stable and causal g(t; τ)

such that (3) holds then implies that

ŝ(t) = g(t; τ) �
[
φ(t; τ) � s(t)

]
=

[
g(t; τ) � φ

1
(t; τ)

]
� d(t) = s(t).

Because d(t) = D(t)s(t), we have that g(t; τ) � φ
1
(t; τ) =

D+(t), a left inverse of D(t), which in turn implies that
φ

1
(t; τ) as described in (11) has a stable and causal left

inverse. Noticing that φ
1
(t; τ), described by the state-space

model as in (11), has an equal number of inputs and outputs,
and the direct transmission from d(t) to y(t) is identity, we
conclude that it has a unique inverse, given by

x̃(t + 1) = AL(t)x̃(t) + BL(t)y(t),d(t) = −C(t)x̃(t) + y(t).

Causality and stability of g(t; τ) then concludes that

AL(t) = A(t) − BL(t)C(t)
= A(t) − B(t)D+(t)C(t) + L(t)D∗

⊥(t)C(t)

is exponentially stable.
For the case of time-invariant models, the equivalent zero-

forcing condition in Lemma 2.3 reduces to the strictly mini-
mum phase condition [2], [3]:

rank
{[

zIn − A B
C D

]}
= n + M ∀ |z| ≥ 1. (12)

In the remainder of this section we establish a parallel result
to (8) for the composite channel model φ(t, τ). Let v(t) be of

length (P −M) ∀ t. We define a time-varying system φ⊥(t, τ)
by the state-space model as

x⊥(t + 1) = A(t)x⊥(t) + BL(t)D⊥(t)v(t), (13)

w(t) = C(t)x⊥(t) + D⊥(t)v(t), x⊥(0) = 0.

It is noted that B(t) = BL(t)D(t), by the relation in (8).
Thus the state-space model for φ⊥(t, τ) is the same as for
φ(t, τ) except that D⊥(t) replaces D(t). Hence by Lemma
2.3, a specific left inverse φ+

⊥(t, τ) to φ⊥(t, τ) is described by
the state-space model:

x̃⊥(t + 1) = AL(t)x̃⊥(t) + BL(t)w(t), (14)

v(t) = −D∗
⊥(t)C(t)x̃⊥(t) + D∗

⊥(t)w(t), x̃(0) = 0.

Let xa(t) = x(t) + x⊥(t) and y
a
(t) = y(t) + w(t) for the

state space models in (4) and (13). Then it can be verified
that the augmented system φ

a
(t, τ) =

[
φ(t, τ) φ⊥(t, τ)

]
is square, and has the state-space model

xa(t + 1) = A(t)xa(t) + BL(t)Da(t)
[

s(t)
v(t)

]
, (15)

ya(t) = C(t)xa(t) + Da(t)
[

s(t)
v(t)

]
, xa(0) = 0.

Lemma 2.4: Consider the state-space model as in (4), which
satisfies the condition (6), and that there exists a state esti-
mation gain L(t) such that AL(t) as in (9) is exponentially
stable. Then for φ

a
(t, τ) as in (15), there exists a unique

φ−1

a
(t, τ) =

[
φ+(t, τ)
φ+

⊥(t, τ)

]
, which is a causal and stable inverse

for the square augmented system φ
a
(t, τ), and described by

the state-space model:

x̃a(t + 1) = AL(t)x̃a(t) + BL(t)ya(t), x̃a(0) = 0,[
ŝ(t)
v̂(t)

]
=

[
D+(t)
D∗

⊥(t)

]
[C(t)x̃a(t) + ya(t)] . (16)

That is, for each D+(t), D∗
⊥(t) satisfying (8), and L(t)

stabilizing, there exists a unique causal and stable inverse
φ−1

a
(t, τ) for φ

a
(t, τ) such that[

φ+(t, τ)
φ+

⊥(t, τ)

]
� φ

a
(t, τ) = δ(t − τ)

[
IM 0
0 IP−M

]
. (17)

Proof: by using the state-space models as in (15) and (16)

to construct the composite system from

[
s(t)
v(t)

]
to

[
ŝ(t)
v̂(t)

]
(which is the output of

[
φ+(t, τ)
φ+

⊥(t, τ)

]
), and applying the sim-

ilarity transformation

[
xas(t)
x̃as(t)

]
=
[

In 0
−In In

] [
xa(t)
x̃a(t)

]
on the composite system. It follows that

[
ŝ(t)
v̂(t)

]
=
[

s(t)
v(t)

]
with the initial condition of x̃a(0) = xa(0) = 0.

III. MMSE CHANNEL EQUALIZATION

In this section, we study the design of the decoder, or
detector g(t, τ) such that it not only achieves the zero-
forcing condition (3), but also minimizes the MSE J(g) as
defined in (2). Our strategy is to parameterize all the channel
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equalizers g(t, τ), and then search for the optimal one over
the parameterized set. The results in the previous section are
useful.

Theorem 3.1: Under the same hypotheses as in Lemma 2.4,
the set of all causal and stable left inverses of φ(t, τ) is given
by

Φ+ := {φ+(t, τ) + γ(t, τ) � φ+

⊥(t, τ) (18)

γ(t, τ) is causal and stable},

where φ+(t, τ), and φ+

⊥(t, τ) are described by the state-space
models (10), and (14), respectively.

Proof: It is noted that any φinv(t, τ) ∈ Φ+ is causal and stable,
by causality and stability of φ+(t, τ), φ+

⊥(t, τ), and γ(t, τ).
Employing the identity (17) yields φinv(t, τ)�φ(t, τ) = δ(t−
k)IM . Thus any φinv(t, τ) ∈ Φ+ is indeed a causal and stable
left inverse of φ(t, τ). Conversely consider any causal and

stable left inverse φ̃
+

(t, τ). Then with φinv(t, τ) ∈ Φ+,

φinv(t, τ) �
[

φ(t, τ) φ⊥(t, τ)
]

=
[
φ+(t, τ) + γ(t, τ) � φ+

⊥(t, τ)
]

�
[

φ(t, τ) φ⊥(t, τ)
]

=
[

δ(t − τ)IM γ(t, τ)
]
,

and

φ̃
+
(t, τ) �

[
φ(t, τ) φ⊥(t, τ)

]
=

[
δ(t − τ)IM φ+(t, τ) � φ⊥(t, τ)

]
.

Thus with γ(t, τ) = φ+(t, τ) � φ⊥(t, τ) which is causal and

stable, φ̃
+
(t, τ) is indeed in Φ+, by the fact that φ

a
(t, τ) =[

φ(t, τ) φ⊥(t, τ)
]

is square, and has a unique causal and
stable inverse.

Theorem 3.1 is the time-varying version for the parame-
terization of all stable left inverses in [2], [3] associated
with the time-invariant systems. It is instrumental to obtaining
the optimal channel equalizers. With the presence of the
observation noise at the output of the channel, the composite
system φ(t, τ) as in (4) is modified into

x(t + 1) = A(t)x(t) + B(t)s(t), x(0) = 0, (19)

y(t) = C(t)x(t) + D(t)s(t) + η(t).

Our objective is to seek g(t, τ), among all the zero-forcing
receiver filterbanks parameterized in Theorem 3.1, which
minimizes the MSE J(g). We assume that the noise process
has zero mean, with known covariance for all t:

E[η(t)] = 0, E
[
η(t)η∗(k)

]
= Rη(t)δ(t − k). (20)

Under the zero-forcing condition, g(t, τ) ∈ Φ+, by Theorem
3.1. Consequently the symbol detection error at the output of
the receiving filterbank is

e(t) = ŝ(t) − s(t) = g(t, τ) � η(t), g(t, τ) ∈ Φ+, (21)

in light of (3), and Theorem 3.1. Thus the MSE, or the variance
of the symbol detection error to be minimized is

J (g ∈ Φ+)(t)

= trace
{
E
[(

g(t, τ) � η(t)
) (

g(t, τ) � η(t)
)∗]}

= trace

{
t∑

τ=−∞
g(t, τ)Rη(τ)g∗(t, τ)

}
. (22)

Theorem 3.2: Suppose that the hypotheses in Lemma 2.4
hold. Let g(t, τ) = φ+

opt
(t, τ) ∈ Φ+ be the optimal receiver

filterbank to be designed with Φ+ parameterized in Theorem
3.1. That is,

J(g = φ+

opt
) = inf

g∈Φ+
trace{

t∑
τ=−∞

g(t, τ)Rη(τ)g∗(t, τ)}

Then the optimal receiver g(t, τ) = φ+

opt
(t, τ) ∈ Φ+, which

minimizes the MSE, is equivalent to the optimal state estimator
for the process[

xK(t + 1)
yK(t)

]
=
[

A(t) B(t)
C(t) D(t)

] [
xK(t)
η(t)

]
(23)

where η(t) is the same as in (19) and

A(t) =
[

A0(t) 0
−D+(t)C(t) 0

]
, B(t) =

[
B(t)D+(t)

D+(t)

]
C(t) =

[
D∗

⊥C(t) 0
]
, D(t) = −D∗

⊥(t), (24)

A0(t) = A(t) − B(t)D+(t)C(t) and a state estimator gain

L(t, τ) =
[

L(t, τ)
−γ(t, τ)

]
. The state estimator is schematically

illustrated in Figure 2.

�+
�

A(t) B(t)

C(t) D(t)

�

State estimator

η(t) xK(t)

−x̂K(t)

xg(t)

yK(t)

� � �
�

�

Fig. 2. State estimator.

Proof: Let g(t, τ) ∈ Φ+. Then by (18), and

φ−1

a
(t, τ) =

[
φ+(t, τ)
φ+

⊥(t, τ)

]
,

g(t, τ) = φ+(t, τ) + γ(t, τ) � φ+

⊥(t, τ)

=
[

δ(t − τ)IM γ(t, τ)
]
� φ−1

a (t, τ).

By the MSE to be minimized as in (21), and In light of the
state-space model for φ−1

a
(t, τ) as in (16), and the MSE to

be minimized as in (21), we have that the above g(t, τ) can
be described by the following state-space model (recall that
AL(t) is exponentially stable, by the hypotheses):

xg(t + 1) = AL(t)xg(t) + BL(t)η(t), (25)

BL(t) = B(t)D+(t) − L(t)D∗
⊥(t),

e(t) = −D(inv)(t) �
[
C(t)xg(t) + D∗

⊥(t)η(t)
]
,

D(inv)(t) = D+(t) + γ(t, τ) � D+
⊥(t)
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by an abuse of notations. It follows that the state-space model
of g(t, τ) ∈ Φ+ as in (25) has the same form as the state-
space model for φ+(t, τ) as in (10), with the difference in
inputs, and D+(t) replaced by D(inv)(t), which is again a
left inverse of D(t). Since J(g) as in (22) does not change
with g(t, τ) replaced by g̃(t, τ) = q−1 � g(t, τ), where q−1 is
the unit delay operator, we have an equivalent minimization
problem for J(g̃) where g̃(t, τ) = q−1 � g(t, τ) is described
by the state-space model

x̃g(t + 1) :=
[

xg(t + 1)
ŝ(t + 1)

]
(26)

=
[

AL(t) 0
−D(inv)(t) � C(t) 0

]
x̃g(t) +

[
BL(t)

D(inv)(t)

]
� η(t),

s̃(t) = ŝ(t − 1) = C1x̃g(t), C1 =
[

0 IM

]
,

by the state-space model of g(t, τ) as in (25), and

AL(t) = A0(t) + L(t)C0(t),
BL(t) = B(t)D+(t) − L(t)D∗

⊥(t).

Therefore with A(t), B(t), C(t), D(t) as defined in (24), and

L(t, τ) =
[

L(t, τ)
−γ(t, τ)

]
, (27)

(26) is equivalent to

x̃g(t + 1) = [A(t) + L(t, τ) � C(t)] x̃g(t)
+ [B(t) − L(t, τ) � D∗

⊥(t)] η(t), (28)

s̃(t) = C1x̃g(t).

Now consider the time-varying system as in (23). In light of
the Kalman filtering theory [1], the optimal state estimate for
xK(t) based on output measurements yK(·) up to time (t−1)
is the conditional mean x̂K(t|t − 1), satisfying

E
[{xK(t) − x̂(t|t − 1)} {xK(t) − x̂(t|t − 1)}∗] ≥

E
[{xK(t) − x̂K(t|t − 1)} {xK(t) − x̂K(t|t − 1)}∗] , (29)

for any other (linear) estimate x̂(t|t−1). Moreover the optimal
state estimator has the form

x̂K(t + 1|t) = A(t)x̂K(t|t − 1)
+ K(t, τ) � [yK(t) − Cx̂K(t|t − 1)] , (30)

with K(t, τ) = Kopt(t) the optimal state estimation gain
which is non-dynamic, but time-varying. The above yields the
error system

xe(t + 1) = [A(t) + K(t, τ) � C(t)] xe(t)
+ [B(t) − K(t, τ) � D∗

⊥(t)] η(t), (31)

with xe(t) = xK(t) − x̂K(t|t − 1) which is identical to
(28), if xe(t) = x̃g(t), and K(t, τ) = L(t, τ). Thus the
augmented system g̃(t, τ) = q−1 � g(t, τ) has the form of
state estimator. Hence minimization of J(g) over all possible
g(t, τ) ∈ Φ+ is equivalent to optimal state estimator design
over all possible state estimator gain K(t, τ) = L(t, τ), which
can be dynamical.

In light of the celebrated Kalman filtering theory, the
optimality of the state estimator is achieved by the static time-
varying gain, and therefore our MMSE design for optimal
channel equalization needs consider only the state estimation
gain L(t), without searching over the dynamical gain L(t, τ).
However direct use of the Kalman filtering on the augmented
system increases the order of the system by M , which can be
large. The following demonstrate that we can obtain an nth
order receiver filterbank to achieve optimal channel equaliza-
tion.

Theorem 3.3: Suppose that the set of all zero-forcing re-
ceiving filters Φ+ is nonempty. Let the time-varying system
φ(t, τ) be as in (4). Then the blocked time-varying receiver fil-
terbank g(t, τ) ∈ Φ+ achieving optimal channel equalization
is described by the state-space model

x̃(t + 1) =
[
A0(t) + Lopt(t)C0(t)

]
x̃(t) (32)

+
[
B(t)D+(t) − Lopt(t)D∗

⊥(t)
]
y(t),

ŝ(t) = −D(inv)(t)
[
C(t)x̃(t) − y(t)

]
,

where D(inv)(t) = D+(t) + Γ(opt)(t)D∗
⊥(t), and

A0(t) = A(t) − B(t)D+(t)C(t), C0(t) = D∗
⊥(t)C(t). (33)

The optimal state estimator gain L(t) = Lopt(t), and
γ(t, τ) = Γopt(t), are given by

−Lopt(t) = [A0(t)X(t|t − 1)C∗
0 (t) + B(t)S0(t)] R̃−1(t)

Γopt(t) =
[
S0(t) − D+(t)C(t)X(t|t − 1)C∗

0 (t)
]
R̃−1(t).

(34)
That is, γ(t, τ) can be chosen as non-dynamic. The matrix
X(t|t − 1) is the covariance of x̃(t), calculated from the
following recursive difference Riccati equation (DRE)

X(t + 1|t) = A0(t)X(t|t − 1)A∗
0(t) (35)

− X (t)R̃−1(t)X ∗(t) + B(t)R0(t)B∗(t)

with X (t) = [A0(t)X(t|t − 1)C∗
0 (t) + B(t)S0(t)], and the

covariance for the initial value of the state vector x̃(0) is
X(0| − 1) = X0, and

R̃(t) = D∗
⊥(t)Rη(t)D⊥(t) + C0(t)X(t)C∗

0 (t) (36)

S0(t) = −D+(t)Rη(t)D⊥(t), (37)

R0(t) = D+(t)Rη(t)(D+(t))∗.

Proof: By the proof of Theorem 3.2, and [1], x̂K(t|t − 1) =
E [xK(t)|Yt−1] is the optimal state estimate for the process
in (23), based on measurements Yt−1 = {yK(τ)}t−1

τ=0, which
satisfies (29) for any other state estimate x̂(t|t − 1). That is
Σ̂(t|t − 1) ≥ Σ(t|t − 1) with Σ̂(t|t − 1) the covariance for
x̂(t|t − 1), and Σ(t|t − 1) for x̂K(t|t − 1), as proven in [1].
By the equivalence established in Theorem 3.2, and the state-
space model (28), we have

E
[{xK(t) − x̂K(t|t − 1)} {xK(t) − x̂K(t|t − 1)}∗] =

E
[
x̃g(t)x̃∗

g(t)
]
,
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with x̃g(t) as in (28). Denote Σt|t−1 = Σ(t|t − 1). Then the
error covariance for x̃g(t) is given by

Σt|t−1 = E
[
x̃g(t)x̃∗

g(t)
]

(38)

= E

{[
xg(t)
ŝ(t)

] [
x∗

g(t) ŝ(t)∗
]}

= E

[
xgx

∗
g(t) xg(t)ŝ(t)∗

ŝ(t)x∗
g(t) ŝ(t)ŝ(t)∗

]
=

[
Σ(1,1)

t|t−1 Σ(12)
t|t−1

Σ(21)
t|t−1 Σ(22)

t|t−1

]
Applying the Kalman filtering results [1], we have that Σt|t−1

satisfies the following DRE,

Σt+1|t = A(t)Σt|t−1A
∗(t) + B(t)Rη(t)B∗(t)

−
[
A(t)Σt|t−1C

∗(t) + B(t)Rη(t)D⊥
]

× R̃
−1

(t)
[
A(t)Σt|t−1C

∗(t) + B(t)Rη(t)D⊥
]∗

,

where R̃(t) as in (36), and Rη(t) as in (20). By the expressions
in (24), the (1,1) position of the above DRE is the same as

Σ(11)
t|t−1 = A0(t)Σ

(11)
t|t−1A

∗
0(t) + B(t)R0(t)B∗(t)

−
[
A0(t)Σ

(11)
t|t−1C

∗
0 (t) + B(t)S0(t)

]
× R̃−1(t)

[
A0(t)Σ

(11)
t|t−1C

∗
0 (t)B(t)S0(t)

]∗
which is identical to (35), with X(t|t − 1) = Σ11(t|t − 1) =
Σ(11)

t|t−1. Because

A(t)Σ(t|t − 1)C∗(t) =
[

A0(t)
−D+C(t)

]
X(t|t − 1)C∗(t)D⊥,

C(t)Σ(t|t − 1)C∗(t) = D∗
⊥C(t)X(t|t − 1)C∗(t)D⊥,

the optimal state estimation gain formula as in [1] yields the
expressions in (34).

In light of the various properties of the Kalman filter, the
following can be easily deduced.

Corollary 3.4: The optimal channel equalizer given in The-
orem 3.3 is stable in the sense that A0(t) + Lopt(t)C0(t)
is exponentially stable. In particular, if φ(t, τ) converges to
a time-invariant system, and the state space model matrices
A(t), B(t), C(t), and D(t) converge to A, B, C, and
D respectively for which the PR condition holds and D has
full column rank, then the DRE as in (35) converges to the
following ARE

X − A0XA∗
0 − BR0B

∗ (39)

+ [A0XC∗
0 + BS0] R̃−1 [A0XC∗

0 + BS0]
∗ = 0,

with X the stabilizing solution, and the optimal state estimator
gain and Γ converge to

L = Lopt := − [A0XC∗
0 + BS0] R̃−1,

Γ = Γopt :=
[
S0 − D+CXC∗

0

]
R̃−1,

where AL = A0 + LC0 is exponentially stable.
Remark 3.5: In light of (29), our proposed channel equal-

izer is optimal over all possible linear equalizers with respect
to the MSE. If in addition the noise is AWGN, then it is

also optimal over all nonlinear equalizers. In fact by [1]
the Kalman filter in presence of AWGN is the maximum
a posteriori (MAP) estimator, implying that our proposed
channel equalizer minimizes the BER as well, which will be
discussed again in the next section.

We summarize this section with the following design algo-
rithm:

Design Algorithm for Optimal Channel Equalizers:

Step 1: Find state-space realizations for the blocked time-
varying systems: h(t, τ), and f(t, τ) ∀ t. Then find a state
space realization for φ(t, τ) in (1), which satisfies (6), and
which are exponentially stabilizable.
Step 2: Set the state-space model for the optimal channel
equalizer as in (32), with the a priori initial condition x̃(0) =
x̃0, which has the covariance X0 ≥ 0.
Step 3: For t = 0, 1, · · · , do the following:
- Compute ŝ(t) according to (32).
- Compute DRE (35). For t = 0, use X(0| − 1) = X0. Set
L(t) = Lopt(t) and Γ(t) = Γopt(t).
- Compute x̃(t + 1) according to (32). For t = 0, use x̃(0) =
x̃0.
End.

It is noted that the initial condition x̃(0) = x̃0, with
covariance matrix X0, is assumed a priori. Because of the
optimality of the Kalman filter, x̃(t) converges rather quickly
to its steady-state value, and thus only the first a few estimates
may have large errors, which is shown for the first simulation
example in the next section.

IV. BER AND ILLUSTRATIVE EXAMPLES

Bit Error Rate Probability

A commonly used performance measurement is BER, rather
than the MSE. To find an expression for the BER at the
receiver, we denote J (t) = E [e(t)e∗(t)]. Thus there holds
J(g = φ+

opt
)(t) = trace {J (t)}|g=φ+

opt
. The MSE value

Ji(t), the ith diagonal element of J (t), is given by Ji(t) :=
E[ei(t)e∗i (t)], ei(t) = g

i
(t, τ) � η(t), where g

i
(t, τ) is the

ith row of the blocked receivers filters g(t, τ). Thus, the
MSE for the ith received data stream si(t) is Ji(t), and the
average error probability for the M symbol streams s(t) is
defined as Pe := 1

M

∑M−1
i=0 P

(i)
e , where P

(i)
e denotes the error

probability of the ith symbol stream. For BPSK constellations,
the error probability of the ith symbol in the case of additive

Gaussian noise (AGN) is given by P
(i)
e = 1

2erfc
(

1√
Ji(t)

)
Illustrative Examples

We consider examples which illustrate our proposed optimal
channel equalization, where both deterministic time-varying
channels, and fading channels are examined.

Example 1: We consider the fading channel given by its
impulse response

h(t) = E[h(t)] + dh(t), (40)
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Fig. 3. Bit error rate sketches for the fading channel (Example 1).

with dh(t + 1) = Adh(t) + Bv(t), where A, and B are
both diagonal matrices, satisfying a2

i + b2
i = 1, and ai,

bi are the ith diagonal elements of A and B respectively
[5]. The random process v(·) has zero mean with a fixed
variance σ2

v . We assume that E[h(t)] is known to the receiver
(estimated via some estimation algorithms), and equal h(t) =[

h0(t) h1(t) · · · hL(t)
]

= hss + α−t, σ(t) =
σss + α−t ∀ t. The values α = 1.2, σss = 0.1 are
chosen, and hss has length L + 1 = 8 given by hss =[

1 −0.3 0.5 −0.4 0.1 −0.02 0.3 −0.1
]
.

E[h(t)] is used to compute the optimal equalizer. Then we
compute the BER curve for the true channel as in (40)
generated for three different values of σ2

v = 0.1, 0.05, 0.01.
Figure 2 shows the BER as a function of Eb/N0, using the
Monte Carlo method, and averaging. As we can see that the
BER improves as the variance σ2

v as in decreases. Clearly
for large variance channel process noise, knowing the mean
channel is not adequate to achieve good BER performance.
Hence channel estimation has to be performed to obtain better
information of the channel, in order to improve the BER
performance.
Example 2: We consider a time-varying fading channel
model; the variation of each tap h(t, τ) can be simulated by
the following sum [11]:

h(t, τ) =
Q∑

q=0

cq(τ)ejθq exp [j(2πvλ) cos(2πq/Q)t] (41)

where the parameters are cq amplitude of the qth path, θq

uniformly distributed random variable in [0, 2π], λ wavelength
corresponding to the carrier frequency, and v speed of the
mobile.
The variance for the non-stationary noise η(t) is given by
σ2(t) = (σ1 + t

N (σ2 − σ1))2 with σ1 = 0.1, σ2 = 1. For the
case Q = 4, which is a suitable value for the number of paths
as in [11], λ = 0.333 m which is corresponding to the carrier
frequency 900MHz, and v = 22.22 m/s, we generate the
time-varying fading channel with order L = 10. For different
values for P and M , we set f(t, τ) = δ(t − τ)

[
IM 0

]T
,

which is the precoder commonly used in the literature. We
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Fig. 4. Bit error rate sketches for fading channel (Example 2).

obtain a simple state-space model of φ(t, τ).
Following the steps of the design algorithm in the previous

section.The optimal receiver filters {gp(t, τ)}P−1
p=0 can then be

implemented according to Theorem 3.3.For different values of
P and M , we compute the BER Figure 3 shows the BER’s
for each pair of P and M as a function of Eb/N0(t). As we
can see from Figure 3, the variation of P and M changes the
BER, indicating the trade-off between the data rate efficiency,
and BER performance.

Example 3 This example is from [11], where the channel is
given by:

h(t, τ) = c(τ)
1√
K

K−1∑
k=0

exp[j(2πfDmaxcos(αk,τ t) + θk,τ )],

(42)
where the parameters are c(τ) = 1 controls the power of
the τ th tap chosen according to the power delay profile,
fDmax the desired maximum Doppler frequency and has the
value of 66Hz, K the number of sinusoids and equal 100,
and αk,τ , θk,τ mutually independent, uniformly distributed
random variables.
We used the variance as in the previous example. The random
channel was generated with order L = 10. For different
values for P and M , the optimal receiver filters {gp(t, τ)}P−1

p=0

are computed according to Theorem 3.3, assuming that the
channel information is available at the receiver. Figure 6 shows
the BER curves for each pair of P and M as a function of
Eb/N0(t), where Eb/N0(0) = 1 and Eb/N0(∞) = 100.

The BER for the random channel is expected to be higher
than that of the previous example, because two independent
random variables are used to generate the fading channel,
versus only one in Example 2. As we can see from Figure
3, the variation of P and M changes the BER. The higher
the P value and the larger the ratio of P to M , the better the
BER.

V. CONCLUSION

In this paper we investigated the optimal channel equal-
ization problem for time-varying channels in the presence
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Fig. 5. Bit error rate sketches for random channel (Example 3).

of possible non-stationary noises. A state-space approach is
adopted to obtain the optimal channel equalizer, which is an
optimal state estimator for some modified system. A necessary
and sufficient condition on zero-forcing is established for the
noise-free case in Section 2. If the zero-forcing condition
holds for the given time-varying channel and the transmitter
filterbank, and the noise is present, optimal time-varying
receiver filterbank is obtained in Section 3, which is a modified
Kalman filter. The optimal channel equalization results in this
paper are especially useful for wireless communication, as
emphasized in [9].
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