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Abstract—Encryption and decryption in RSA are done by 

modular exponentiation which is achieved by repeated modular 
multiplication. Hence efficiency of modular multiplication directly 
determines the efficiency of RSA cryptosystem. This paper designs 
a Modified Montgomery Modular Multiplication in which addition 
of operands is computed by 4:2 compressor. The basic logic 
operations in addition are partitioned over two iterations such that 
parallel computations are performed. This reduces the critical path 
delay of proposed Montgomery design. The proposed design and 
RSA are implemented on Virtex 2 and Virtex 5 FPGAs. The two 
factors partitioning and parallelism have improved the frequency 
and throughput of proposed design.  

 
Keywords—RSA, Montgomery modular multiplication, 4:2 

compressor, FPGA. 

I. INTRODUCTION 
HE growth of data communications and other internet 
services has made security a vital service to electronic 

communications. Four basic services like confidentiality, 
integrity, authentication and non repudiation are required 
by communication systems. RSA is a popular public key 
cryptosystem for encryption and digital signatures [1]. 
Encryption, decryption and digital signatures are modular 
exponentiation operations which are achieved by repeated 
modular multiplications. The security of RSA 
cryptosystem depends on inability to efficiently factorize 
the modulus of size 1024 bits or more. Hence the security 
of RSA will be more if the operands are of large size. But 
for the large size operands, high throughput rate for RSA is 
hard to achieve. Many researchers have worked to improve 
the throughput of RSA by improving the modular 
multiplication design. 

In 1985, P.L. Montgomery [2] proposed an efficient method 
for modular multiplication which replaces trial division by 
modulus with series of additions and shift operations. The 
critical operation in Montgomery design is addition of large 
size operands. To avoid the carry propagation during addition 
several architectures are proposed in literature such as systolic 
array modular multipliers [3], [4] and carry save adder (CSA) 
architectures [5]-[11]. McIvor et al. [5], [6] proposed two 
Montgomery modular multiplication architectures: five-to-
two CSA (three levels of carry save logic) and four-to-two 
CSA with two additional registers (two levels of carry save 
logic and extra control logic). These designs take input 
(except the modulus) and give output in carry save format. 
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This avoids repeated output/input format conversion, lengthy 
and costly conventional additions. Also, the critical path delay 
of Montgomery architectures with carry save adders is word 
length independent [6]. The New Montgomery multiplication 
proposed by K. Manochehri et al. [8] has higher throughput 
than [5], [6] as it calculates quotient in parallel with the 
summation of partial sum and partial product. H. Thapliyal et 
al. [9] have used 4:2 compressor and carry save adder in five-
to-two CSA and novel hardware unit in 4:2 CSA to reduce the 
critical path delay. M.D. Shieh [11] proposed new modular 
exponentiation architecture with unified multiplication/square 
module in which the number of operands was reduced by 
mathematical manipulation. The critical path was reduced to 4 
to 2 CSA with limited overhead but it could be used only for 
H algorithm of modular exponentiation.  

The work in this paper is based on rearrangement of logic 
operations for addition with 4:2 compressor. It extends from 
existing 4:2 compressor applied in 4:2 CSA Montgomery [9]. 
Parallel and partitioned computations have reduced the critical 
path delay of proposed Montgomery modular multiplication. 
Our work has high throughput and is suitable for both H and L 
binary methods of RSA Modular Exponentiation. Section II 
gives brief introduction to Montgomery algorithms. Section 
III discusses the Modified Montgomery design. Section IV 
gives implementation results on FPGAs. Finally section V 
concludes the paper.  

II. MONTGOMERY MODULAR MULTIPLICATION 
Montgomery modular multiplication treats the digits of 

multiplier from least significant bit to most significant bit, 
performs shift down of partial result instead of shift up, 
and add rather than subtracting multiples of the modulus. It 
is most efficient method for performing modular 
multiplication in which the quotient only depends on the 
least significant digit of operands and the time consuming 
division is avoided by shifting modular addition. It is 
suitable for both hardware and software implementations. 
This has led to extensive research in Montgomery modular 
multiplication and form the basis of most of the reported 
high performance RSA hardware architectures. 
Montgomery’s algorithm computes modular multiplication 
with inputs A, B and n. Inputs A and B are in 
Montgomery’s domain and n is k bit modulus. Then the 
output is S such that S=A×B×r-1 mod n where r=2k. The 
transformations between the n-residue (Montgomery 
domain) and the integer set are done using Montgomery’s 
modular multiplication (MMM). 
• A, the n residue of a is obtained as follows 

 
MMM (a, r2, n) = a×r2×r-1 mod n  
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A=a × r mod n                                      (1) 
 

• The n residue to integer value is obtained as follows 
 

a=MMM (A, 1, n) = A×1×r-1 mod n     (2) 

Algorithm 1 MMM (A, B, n)  
// Montgomery’s modular multiplication algorithm 
// Inputs: A and B (multiplier and multiplicand in  
// Montgomery’s domain, k bits) 
// n (k bits modulus), A, B < n 
// Output S= A×B×r-1 mod n, where r=2k  

1. S=0; 
2. for i=0 to k-1 
3. { q[i]=( S+ Ai × B) mod 2; 
4. S= (S + Ai × B + q[i] × n)/2; } 
5.  if(S ≥ n) 
6.  S=S-n; 
7.  return S; 

  After k iterations if the final result S ≥ n then an extra 
operation S=S-n is needed. To remove this subtraction, 
C.D. Walter [12] kept the range of convergence at [0, 2n) 
and increased the number of iterations from k to k+2. Thus 
the bit width of the operands and the value of r were 
changed accordingly. 

Algorithm 2 Walter MMM ( A, B, n) 
// Walter’s Montgomery modular multiplication algorithm 
// Inputs: A (multiplier in Montgomery’s domain, k+2 bits  
// A k+1=0 
// B (multiplicand in Montgomery’s domain, k+1 bits) 
// n (k bit modulus), A, B < 2n 
// Output S= A×B×r-1 mod n, where r= 2 k+2,  
// 0 ≤ S < 2n 

1. S=0; 
2. for i=0 to k+1 
3. { q[i]= ( S + Ai × B ) mod 2; 
4.  S= ( S + Ai ×B + q[i]×n)/2; } 
5.  return S; 

  To further simplify the quotient computation the 
multiplicand B can be shifted up by one bit to make B0=0 
[8]. The price for this simplification is one extra iteration 
by making A k+2 = 0. 

Algorithm 3 Modified MMM ( A, B, n) 
// Montgomery’s modular multiplication algorithm 
// Inputs A (k+3 bit multiplier) Ak+2=0, Ak+1= 0 
// B (k+2 bit multiplicand) B0=0 
// n (k bit modulus) 
// Output S= A×B×r-1 mod n, where r= 2k+3 

1. S=0; 
2.  for i=0 to k+2 
3.  { q[i]= S0 mod 2; 
4.  S=( S + Ai × B + q[i]×n)/2; } 
5.  return S; 
Step 4 in algorithm 3 requires addition of long operands. 

To avoid long carry propagation delay, carry save logic can 
be applied to solve the problem. Therefore step 3 and 4 

become 
 

q[i]= (S10 + S20) mod 2;                                   (3) 
 

S1, S2 = (S1+S2+Ai × (B1 + B2) + q[i]×n)/2;     (4) 
 

In [13] a Modified 4:2 CSA Montgomery has been 
presented where the input and output operands are in carry 
save format. Each iteration computes quotient for next 
iteration. It has two levels of carry save logic with 
additional control logic to determine the operands for 
addition. Algorithm 4 considers the Walter approach and 
extends the operands and bit width of r accordingly for the 
design in [13].  

Algorithm 4 Modified 4:2 Carry Save Montgomery 
Modular Multiplication ( A1, A2, B1, B2, n) 
//Inputs A1, A2 (carry save format of multiplier, k+3 bits. 
// A1k+2=0, A2k+2=0, A1k+1=0, A2k+1=0 
// B1, B2 (k+2 bit multiplicand B10=0, B20=0 
// n (k bits modulus), r=2k+3 

// Output S1[k+3], S2[k+3] 
// = (A1+A2) × (B1+B2) × r -1 mod n 
 1a. (S1[0],S2[0])=(0,0) 
 1b. P1[-1]=0, P2[-1]=0; 
 1c. carry=0; 
 1d. D1, D2= CSR (B1+B2+n) 
  /*Pre-computation of operands */ 
 1e. q[0]=0;    // S1[0]0 ⊕ S2[0]0    
 1f. (carry, A0 = A10 + A20 + carry);  
 2a. for i in 0 to k+2 loop 
 2b. if (Ai=0 and q[i] = 0) then P1[i]=0, P2[i]=0; 

 elsif(Ai=1 and q[i]=0) then P1[i]=B1, P2[i]=B2; 
 elsif( Ai=0 and q[i]=1) then P1[i]=0, P2[i]=n;                
 else P1[i]=D1, P2[i]=D2; 
 endif; 

 2c. S1[i+1], S2[i+1] 
      =CSR(S1[i]+S2[i]+P1[i]+P2[i])/2; 
 2d. q[i+1]=(S1[i+1]0 ⊕ S2[i+1]0 ) ; 
 2e. (carry, Ai+1)=A1i+1+A2i+1+carry); 

  end loop; 
/* Steps 2a-2d are parallel to step 2e */ 

 3.return (S1[k+3], S2[k+3]); 
 

 The critical path delay in algorithm 4 is 4:1 MUX + 2 
Full Adders+1XOR. It requires only 1 XOR delay to 
compute quotient whereas 4:2 and 5:2 CSA Montgomery 
designs [5], [6] have quotient delay of 2 XOR + 1 AND. In 
[9], the authors used 4:2 compressor to reduce critical path 
delay in Montgomery designs [5], [6]. The addition 
operation S1[i] + S2[i] + P1[i] + P2[i] with 4:2 compressor 
[14] is shown in Fig 1. In this paper, a Modified 
Montgomery design is proposed which uses 4:2 
compressor for addition of operands 
S1[i]+S2[i]+P1[i]+P2[i] such that logic operations are 
partitioned over two iterations to perform parallel 
computations.  
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Fig. 1 Addition with 4:2 compressor 

III.   PROPOSED MONTGOMERY MODULAR MULTIPLICATION 
The features of proposed design are:  

(1) There are 2 phases: pre-computation and computation. 
Modular Multiplication iterations span from i =0 to k+2 

with additional iteration i= -1. During this iteration shift 
down of result gives the same value 0 
(2) In pre-computation three operands B1, B2 and n are 

added. Intermediate result BX is stored in register. 
Also DX is computed. BX and DX are used when 
operands are added. 

(3) Each ith iteration computes S1[i+1], S2[i+1]= 
S1[i]+S2[i]+P1[i]+P2[i] with 4:2 compressor by 
applying 2P approach: parallelism and partitioning. 

(4) Each iteration computes quotient for next iteration 
q[i+1] and multiplier bit Ai+2.  

(5) Also each iteration computes intermediate results SP[i], 
MC[i] and SX[i+1] and PX[i+1] 

(6) Multiplier bit Ai+1 and quotient bit q[i+1]  determines 
operands P1[i+1], P2[i+1] and PX[i+1] for next 
iteration. 

Algorithm 5 Proposed Modified 4:2 Compressor 
Montgomery Modular Multiplication (A1, A2, B1, B2, n) 
// Inputs: A1, A2 (carry save format of multiplier,  
// k+3 bits) 
// A1k+2=0, A2k+2=0, A1k+1=0, A2k+1=0 
// B1, B2 (k+2 bit multiplicand) B10= 0, B20= 0 
// n (k bits modulus), r=2k+3 

// Output  
//S1[k+3],S2[k+3]=(A1+A2)×(B1+B2)×r-1 mod n 

   1.1a. (S1[-1], S2[-1])= (0,0) 
   1b. P1[-1]=0, P2[-1]=0, PX[-1]=0, SX[-1]=0 
   1c. carry=0 

   2. 2a. BX=B1⊕ B2; 
   2b. D1= (BX • n) +   • Β1);   

          2c. D2= BX ⊕ n; 

          2d. DX= D1 ⊕ D2; 
           /* D1, D2=CSR (B1 + B2 + n) */ 
          2e. carry, A0 =A10 + A20 + carry;    
      3.  for i in -1 to k+2 loop 
          3a. SP[i] = SX[i] ⊕ PX[i]; 
                parallel       
         MC[i] = (SX[i] • P1[i]) + (  •S1[i]) ; 
          3b. S2[i+1]= (SP[i] ⊕ (MC[i],0))/2 ; 
                parallel 
         S1[i+1]=((SP[i]• (MC[i],0)) + (   •P2[i]))/2; 
         3c. SX[i+1]= S1[i+1] ⊕ S2[i+1];      
                parallel    

              { q[i+1] =S1[i+1]0 ⊕ S2[i+1]0; 
                if (Ai+1=0 and q[i+1] =0) 
                then P1[i+1]=0;  P2[i+1]=0; PX[i+1]=0; 

                          elsif (Ai+1=1 and q[i+1] =0) 
                          then  P1[i+1]=B1; P2[i+1]=B2; PX[i+1]=BX; 
                          elsif(Ai+1=0 and q[i+1] =1)  
                          then P1[i+1]=0; P2[i+1]= n; PX[i+1]= n; 
                          else P1[i+1]=D1; P2[i+1]=D2; PX[i+1]=DX   
                          end if;  
                         }    
                                 parallel 

         carry, Ai+2 =A1i+2 + A2i+2 + carry; 
     4. Return (S1 [k+3], S2[k+3] );   
   /* Steps 3a to 3c are parallel with computation of Ai+2*/ 

  During pre-computation, D1 and D2 are computed with 
multiplexer in carry path. Intermediate result, BX is used 
for 4:2 addition when multiplier bit is 1 and quotient bit is 
0. Also DX is computed and used when both multiplier and 
quotient bits are 1.  

Step 3 of algorithm 5 iterates to perform the 
computations. Each iteration performs lower 2 levels of 
addition and first level of addition for next iteration of Fig. 
1. Based on quotient and multiplier bits of next iteration P1, 
P2 and PX are determined. 

 
•  P1[i+1]=0 ,  P2[i+1]= 0          
      then PX[i+1]=0   (0 ⊕ 0=0)      
•  P1[i+1]=B1 ,  P2[i+1]=B2   

        then PX[i+1]=BX  (B1 ⊕ B2=BX) 
•  P1[i+1]=0 , P2[i+1]=n        
     then PX[i+1]=n     (0 ⊕ n=n)  
•  P1[i+1]=D1,  P2[i+1]=D2   

           then PX[i+1]=DX   (D1 ⊕ D2=DX) 

IV. IMPLEMENTATION RESULTS AND ANALYSIS  

A. Synthesis Results 
The proposed Montgomery design and RSA modular 

exponentiation (encryption) are coded in VHDL and 
synthesized in XILINX ISE 8.1i (Virtex 2) and XILINX 
ISE 12.4 (Virtex 5 XC5VLX50 package FF1153 speed -3). 
The synthesis results of proposed Montgomery design for 
operand size 512, 1024 and 2048 bits are in Tables I-III. 
Area is in terms of number of slices. Frequency is in MHz. 
Area and frequency (minimum period) are generated in 
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synthesis report. Throughput is calculated as bit length 
multiplied by the frequency and divided by number of 
clock cycles. The proposed Montgomery design takes k+6 
clock cycles where k is bit length of operands. Table I give 
detailed area results on Virtex 2 and Virtex 5 FPGAs. 

 
TABLE I 

AREA RESULTS FOR PROPOSED MONTGOMERY ON VIRTEX 2 FPGAS 
Bit 
Len 

FPGA 
Technology Slices Slice Flip Flops LUTs Freq 

512 XC2V1500 4211 5288 7955 253.7 
1024 XC2V3000 9213 10963 16917 250.5 
2048 XC2V4000 17140 21544 32001 246.3 

 
TABLE II 

AREA RESULTS FOR PROPOSED MONTGOMERY ON VIRTEX 5 FPGAS 
Bit 
Len 

FPGA 
Tech Slice Flip Flops Slice 

LUTs Freq Throu
ghput 

512 XC5VLX50 5142 4637 534.7 528.5 
1024 XC5VLX50 10267 9247 530.7 527.6 
2048 XC5VLX50 20509 18463 530.7 529.1 

 
Tables I and II show that when the proposed design is 

implemented on Virtex 2 and Virtex 5 FPGAs, there is little 
difference in number of slice flip flops but the difference in 
LUTs is large. Each slice on Virtex 2 FPGA has two 4 
input function generator which can be programmed as 4 
input LUTs. Whereas there are four 6 input LUTs in 
SLICEL and SLICEM on Virtex 5 FPGAs. Therefore to 
implement a function on Virtex 2 requires more LUT 
combining and hence more number of LUTs to implement 
a design. The frequency results are more than double on 
Virtex 5 FPGAs. This is due to improved version of wiring 
architecture named “Diagonally symmetric interconnect 
pattern” [15]. This type of architecture reduces the delays, 
thus making more logic blocks accessible with a smaller 
number of hops (switch blocks).    

 
TABLE III 

FPGA IMPLEMENTATION OF MONTGOMERY MODULAR MULTIPLIERS 
 Bit 

Len 
FPGA 
Tech 

Area ,A 
(Slices) 

Freq 
(MHz) 

Throughp
ut Rate, T 
(Mbps) 

T/A 
(Mbps/ 
Slices) 

[6]1 

 
512 XC2V1500 5170 126.7 126.4 .024 
1024 XC2V3000 10332 101.7 101.6 .009 

[6]2 512 XC2V1500 5782 122.03 121.5 .021 
1024 XC2V3000 11520 111.3 111.1 .009 

[7] 512 XC2V1500 1678 89.3 29.71 .017 
1024 XC2V3000 3334 88.9 29.60 .008 
2048 XC2V6000 6782 87.1 29.02 .004 

[8] 512 XC2V1500 3125 72.1 71.82 .022 
1024 XC2V3000 6243 79.2 79.05 .012 

[10] 512 XC2V3000 2902 121.5 120.3 .041 
1024 XC2V3000 4512 114.2 113.4 .025 

[11] 512 XC2V1500 4029 221.9 220.2 .054 
1024 XC2V3000 8000 219.06 218.2 .027 

our 512 XC2V1500 4211 253.7 250.8 .059 
1024 XC2V3000 9213 250.5 249.07 .027 
2048 XC2V4000 17140 246.3 245.61 .014 

1: designed with Five-to-two CSA 
2: designed with four-to-two CSA 

Table III compares the results with related 
implementation on Virtex 2 FPGA. It shows that proposed 
design has more than double the frequency and throughput 
when compared to 4:2 CSA Montgomery [6]2 proposed by 
McIvor. This is because the critical path delay of proposed 
design is 3 XOR+4:1 MUX as compared to 4:1MUX+2 
Full adders + 2 XOR+ 1 AND of [6]2. Proposed 
Montgomery design has highest frequency amongst the 
designs where no output/input format conversion is done at 
the end of modular multiplication [5]-[9], [11]. When 
compared with [10] where the format conversion is done 
using carry save addition, our frequency and throughput is 
double at the cost of area. The design in [16] is a semi-
systolic. Also the approach in [11], [16] are only applicable 
for RSA MSB method. The proposed design can be used in 
both RSA MSB and LSB binary modular exponentiation 
methods. Table III shows our design has highest 
throughput/area ration for 512 bits.   

 
TABLE IV 

RSA MODULAR EXPONENTIATION ON VIRTEX 2 FPGAS 
Bit 
Len 

H/L FPGA 
Technology 

Slices Slice Flip 
Flops 

LUTs Freq 

512 H XC2V3000 6270 7960 11760 224.6 
L XC2V3000 11290 13506 21488 224.5 

1024 H XC2V6000 12930 16296 24005 222.6 
L XC2V6000 24259 28231 44829 222.1 

 
TABLE V 

RSA MODULAR EXPONENTIATION ON VIRTEX 5 FPGAS 
Bit 
Len 

H/L FPGA 
Technology 

Slice Flip 
Flops 

LUTs Freq 

512 H XC5VLX50 7795 7479 491.64 
L XC5VLX50 12932 13124 496.03 

1024 H XC5VLX50 15478 14888 441.2 
L XC5VLX50 25736 27137 445.05 
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TABLE VI 
RESULTS OF RSA MODULAR EXPONENTIATION 

 Bit Len H/L FPGA Area, A (Slices) Fre (MHz) Throughput, T (Mbps) T/A Kbps/slices 

[6]1 
512 L XC2V3000 11304 102.31 5.10 0.45 

1024 L XC2V6000 23208 95.90 4.79 0.20 

[11] 
512 H XC2V3000 6294 168.38 9.28 1.47 

1024 H XC2V6000 12537 152.49 8.44 0.67 

[16] 
512 H XC2V3000 7832 218.72 11.87 1.51 

1024 H XC2V6000 15826 215.83 11.85 0.74 

 
Our 

512 
H XC2V3000 6270 224.65 11.68 1.86 
L XC2V3000 11290 224.58 13.05 1.15 

1024 
H XC2V6000 12930 222.69 11.65 0.90 
L XC2V6000 24259 222.12 12.98 0.53 

1: designed with Five-to-two CSA 
 

RSA modular exponentiation (encryption) is 
implemented using proposed Modified Montgomery design. 
Both LSB and MSB binary method of RSA are coded in 
VHDL. Synthesis result for RSA MSB (H) and LSB (L) for 
512 and 1024 bits are given in Tables IV-VI. Detailed 
results for RSA modular exponentiation are given in Tables 
IV and V. For implementation the bits for exponent are 
taken 17 bits. Tables IV and V show the difference in LUTs 
and frequency due to different FPGA technology. The RSA 
design in this paper has frequency higher than [6], [11] and 
[16]. Also area results for RSA MSB (H) are lower than [16] 
since we are reusing registers for storing the final result 
instead of new registers (only in MSB method). RSA 
encryption can be done faster by choosing the values for 
e=3, 17, or 65537(216+1) [17]. Binary representation of 
65537 is 10000000000000001. Taking this value and 
calculating the number of Montgomery modular 
multiplication (MMM) cycles in modular exponentiation 
gives:  
MSB design- 17 squarings + 2 multiplications= 19 

Montgomery cycles in MSB=19 × (k + 6) 
LSB design- 17 squarings + 2 multiplications 

(Squarings and multiplications can be done in     
parallel)=17 

Montgomery cycles in LSB=17 × (k+6) 
Throughput of RSA given in tables is calculated using 19 

× (k+6) MMM cycles for MSB and 17 × (k+6) MMM 
cycles for LSB binary modular exponentiation. The 
throughput in [16] is better than our RSA design. The H 
algorithm of binary method for RSA modular 
exponentiation in [11], [16] adds carry save values of 
message M to get binary M. This requires additional 
conversion cycles. Thus our overall performance will be 
better when compared with [16]. If throughput / area is 
taken as efficiency factor then our RSA design has highest 
value among related designs as shown in Table VI. 

V. CONCLUSIONS  
The proposed Montgomery modular multiplication 

partitions the logic operations of addition with 4:2 
compressor which facilitates parallel computations and 
reduced delay. Though the area requirements of design are 
high but the proposed design has high throughput /area 

ratio. It is suitable for applications where high throughput is 
required and area is not a limitation.  
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