
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:12, 2013

1535

Abstract—Encryption and decryption in RSA are done by

modular exponentiation which is achieved by repeated modular
multiplication. Hence efficiency of modular multiplication directly
determines the efficiency of RSA cryptosystem. This paper designs
a Modified Montgomery Modular Multiplication in which addition
of operands is computed by 4:2 compressor. The basic logic
operations in addition are partitioned over two iterations such that
parallel computations are performed. This reduces the critical path
delay of proposed Montgomery design. The proposed design and
RSA are implemented on Virtex 2 and Virtex 5 FPGAs. The two
factors partitioning and parallelism have improved the frequency
and throughput of proposed design.

Keywords—RSA, Montgomery modular multiplication, 4:2

compressor, FPGA.

I. INTRODUCTION
HE growth of data communications and other internet
services has made security a vital service to electronic

communications. Four basic services like confidentiality,
integrity, authentication and non repudiation are required
by communication systems. RSA is a popular public key
cryptosystem for encryption and digital signatures [1].
Encryption, decryption and digital signatures are modular
exponentiation operations which are achieved by repeated
modular multiplications. The security of RSA
cryptosystem depends on inability to efficiently factorize
the modulus of size 1024 bits or more. Hence the security
of RSA will be more if the operands are of large size. But
for the large size operands, high throughput rate for RSA is
hard to achieve. Many researchers have worked to improve
the throughput of RSA by improving the modular
multiplication design.

In 1985, P.L. Montgomery [2] proposed an efficient method
for modular multiplication which replaces trial division by
modulus with series of additions and shift operations. The
critical operation in Montgomery design is addition of large
size operands. To avoid the carry propagation during addition
several architectures are proposed in literature such as systolic
array modular multipliers [3], [4] and carry save adder (CSA)
architectures [5]-[11]. McIvor et al. [5], [6] proposed two
Montgomery modular multiplication architectures: five-to-
two CSA (three levels of carry save logic) and four-to-two
CSA with two additional registers (two levels of carry save
logic and extra control logic). These designs take input
(except the modulus) and give output in carry save format.

Rupali Verma is with PEC University of Technology, Chandigarh, India
(e-mail: rupali@ pec.ac,in).

Maitreyee Dutta is with National Institute of Technical Teachers Training
and Research, Chandigarh, India (e-mail: d_maitreyee@yahoo.co.in).

Renu Vig is with U.I.E.T, Panjab University, Chandigarh, India (e-mail:
renuvig@hotmail.com).

This avoids repeated output/input format conversion, lengthy
and costly conventional additions. Also, the critical path delay
of Montgomery architectures with carry save adders is word
length independent [6]. The New Montgomery multiplication
proposed by K. Manochehri et al. [8] has higher throughput
than [5], [6] as it calculates quotient in parallel with the
summation of partial sum and partial product. H. Thapliyal et
al. [9] have used 4:2 compressor and carry save adder in five-
to-two CSA and novel hardware unit in 4:2 CSA to reduce the
critical path delay. M.D. Shieh [11] proposed new modular
exponentiation architecture with unified multiplication/square
module in which the number of operands was reduced by
mathematical manipulation. The critical path was reduced to 4
to 2 CSA with limited overhead but it could be used only for
H algorithm of modular exponentiation.

The work in this paper is based on rearrangement of logic
operations for addition with 4:2 compressor. It extends from
existing 4:2 compressor applied in 4:2 CSA Montgomery [9].
Parallel and partitioned computations have reduced the critical
path delay of proposed Montgomery modular multiplication.
Our work has high throughput and is suitable for both H and L
binary methods of RSA Modular Exponentiation. Section II
gives brief introduction to Montgomery algorithms. Section
III discusses the Modified Montgomery design. Section IV
gives implementation results on FPGAs. Finally section V
concludes the paper.

II. MONTGOMERY MODULAR MULTIPLICATION
Montgomery modular multiplication treats the digits of

multiplier from least significant bit to most significant bit,
performs shift down of partial result instead of shift up,
and add rather than subtracting multiples of the modulus. It
is most efficient method for performing modular
multiplication in which the quotient only depends on the
least significant digit of operands and the time consuming
division is avoided by shifting modular addition. It is
suitable for both hardware and software implementations.
This has led to extensive research in Montgomery modular
multiplication and form the basis of most of the reported
high performance RSA hardware architectures.
Montgomery’s algorithm computes modular multiplication
with inputs A, B and n. Inputs A and B are in
Montgomery’s domain and n is k bit modulus. Then the
output is S such that S=A×B×r-1 mod n where r=2k. The
transformations between the n-residue (Montgomery
domain) and the integer set are done using Montgomery’s
modular multiplication (MMM).
• A, the n residue of a is obtained as follows

MMM (a, r2, n) = a×r2×r-1 mod n

Rupali Verma, Maitreyee Dutta, Renu Vig

Modified Montgomery for RSA Cryptosystem

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:12, 2013

1536

A=a × r mod n (1)

• The n residue to integer value is obtained as follows

a=MMM (A, 1, n) = A×1×r-1 mod n (2)

Algorithm 1 MMM (A, B, n)
// Montgomery’s modular multiplication algorithm
// Inputs: A and B (multiplier and multiplicand in
// Montgomery’s domain, k bits)
// n (k bits modulus), A, B < n
// Output S= A×B×r-1 mod n, where r=2k

1. S=0;
2. for i=0 to k-1
3. { q[i]=(S+ Ai × B) mod 2;
4. S= (S + Ai × B + q[i] × n)/2; }
5. if(S ≥ n)
6. S=S-n;
7. return S;

 After k iterations if the final result S ≥ n then an extra
operation S=S-n is needed. To remove this subtraction,
C.D. Walter [12] kept the range of convergence at [0, 2n)
and increased the number of iterations from k to k+2. Thus
the bit width of the operands and the value of r were
changed accordingly.

Algorithm 2 Walter MMM (A, B, n)
// Walter’s Montgomery modular multiplication algorithm
// Inputs: A (multiplier in Montgomery’s domain, k+2 bits
// A k+1=0
// B (multiplicand in Montgomery’s domain, k+1 bits)
// n (k bit modulus), A, B < 2n
// Output S= A×B×r-1 mod n, where r= 2 k+2,
// 0 ≤ S < 2n

1. S=0;
2. for i=0 to k+1
3. { q[i]= (S + Ai × B) mod 2;
4. S= (S + Ai ×B + q[i]×n)/2; }
5. return S;

 To further simplify the quotient computation the
multiplicand B can be shifted up by one bit to make B0=0
[8]. The price for this simplification is one extra iteration
by making A k+2 = 0.

Algorithm 3 Modified MMM (A, B, n)
// Montgomery’s modular multiplication algorithm
// Inputs A (k+3 bit multiplier) Ak+2=0, Ak+1= 0
// B (k+2 bit multiplicand) B0=0
// n (k bit modulus)
// Output S= A×B×r-1 mod n, where r= 2k+3

1. S=0;
2. for i=0 to k+2
3. { q[i]= S0 mod 2;
4. S=(S + Ai × B + q[i]×n)/2; }
5. return S;
Step 4 in algorithm 3 requires addition of long operands.

To avoid long carry propagation delay, carry save logic can
be applied to solve the problem. Therefore step 3 and 4

become

q[i]= (S10 + S20) mod 2; (3)

S1, S2 = (S1+S2+Ai × (B1 + B2) + q[i]×n)/2; (4)

In [13] a Modified 4:2 CSA Montgomery has been
presented where the input and output operands are in carry
save format. Each iteration computes quotient for next
iteration. It has two levels of carry save logic with
additional control logic to determine the operands for
addition. Algorithm 4 considers the Walter approach and
extends the operands and bit width of r accordingly for the
design in [13].

Algorithm 4 Modified 4:2 Carry Save Montgomery
Modular Multiplication (A1, A2, B1, B2, n)
//Inputs A1, A2 (carry save format of multiplier, k+3 bits.
// A1k+2=0, A2k+2=0, A1k+1=0, A2k+1=0
// B1, B2 (k+2 bit multiplicand B10=0, B20=0
// n (k bits modulus), r=2k+3

// Output S1[k+3], S2[k+3]
// = (A1+A2) × (B1+B2) × r -1 mod n
 1a. (S1[0],S2[0])=(0,0)
 1b. P1[-1]=0, P2[-1]=0;
 1c. carry=0;
 1d. D1, D2= CSR (B1+B2+n)
 /*Pre-computation of operands */
 1e. q[0]=0; // S1[0]0 ⊕ S2[0]0
 1f. (carry, A0 = A10 + A20 + carry);
 2a. for i in 0 to k+2 loop
 2b. if (Ai=0 and q[i] = 0) then P1[i]=0, P2[i]=0;

 elsif(Ai=1 and q[i]=0) then P1[i]=B1, P2[i]=B2;
 elsif(Ai=0 and q[i]=1) then P1[i]=0, P2[i]=n;
 else P1[i]=D1, P2[i]=D2;
 endif;

 2c. S1[i+1], S2[i+1]
 =CSR(S1[i]+S2[i]+P1[i]+P2[i])/2;
 2d. q[i+1]=(S1[i+1]0 ⊕ S2[i+1]0) ;
 2e. (carry, Ai+1)=A1i+1+A2i+1+carry);

 end loop;
/* Steps 2a-2d are parallel to step 2e */

 3.return (S1[k+3], S2[k+3]);

 The critical path delay in algorithm 4 is 4:1 MUX + 2
Full Adders+1XOR. It requires only 1 XOR delay to
compute quotient whereas 4:2 and 5:2 CSA Montgomery
designs [5], [6] have quotient delay of 2 XOR + 1 AND. In
[9], the authors used 4:2 compressor to reduce critical path
delay in Montgomery designs [5], [6]. The addition
operation S1[i] + S2[i] + P1[i] + P2[i] with 4:2 compressor
[14] is shown in Fig 1. In this paper, a Modified
Montgomery design is proposed which uses 4:2
compressor for addition of operands
S1[i]+S2[i]+P1[i]+P2[i] such that logic operations are
partitioned over two iterations to perform parallel
computations.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:12, 2013

1537

Fig. 1 Addition with 4:2 compressor

III. PROPOSED MONTGOMERY MODULAR MULTIPLICATION
The features of proposed design are:

(1) There are 2 phases: pre-computation and computation.
Modular Multiplication iterations span from i =0 to k+2

with additional iteration i= -1. During this iteration shift
down of result gives the same value 0
(2) In pre-computation three operands B1, B2 and n are

added. Intermediate result BX is stored in register.
Also DX is computed. BX and DX are used when
operands are added.

(3) Each ith iteration computes S1[i+1], S2[i+1]=
S1[i]+S2[i]+P1[i]+P2[i] with 4:2 compressor by
applying 2P approach: parallelism and partitioning.

(4) Each iteration computes quotient for next iteration
q[i+1] and multiplier bit Ai+2.

(5) Also each iteration computes intermediate results SP[i],
MC[i] and SX[i+1] and PX[i+1]

(6) Multiplier bit Ai+1 and quotient bit q[i+1] determines
operands P1[i+1], P2[i+1] and PX[i+1] for next
iteration.

Algorithm 5 Proposed Modified 4:2 Compressor
Montgomery Modular Multiplication (A1, A2, B1, B2, n)
// Inputs: A1, A2 (carry save format of multiplier,
// k+3 bits)
// A1k+2=0, A2k+2=0, A1k+1=0, A2k+1=0
// B1, B2 (k+2 bit multiplicand) B10= 0, B20= 0
// n (k bits modulus), r=2k+3

// Output
//S1[k+3],S2[k+3]=(A1+A2)×(B1+B2)×r-1 mod n

 1.1a. (S1[-1], S2[-1])= (0,0)
 1b. P1[-1]=0, P2[-1]=0, PX[-1]=0, SX[-1]=0
 1c. carry=0

 2. 2a. BX=B1⊕ B2;
 2b. D1= (BX • n) + • Β1);

 2c. D2= BX ⊕ n;

 2d. DX= D1 ⊕ D2;
 /* D1, D2=CSR (B1 + B2 + n) */
 2e. carry, A0 =A10 + A20 + carry;
 3. for i in -1 to k+2 loop
 3a. SP[i] = SX[i] ⊕ PX[i];
 parallel
 MC[i] = (SX[i] • P1[i]) + (•S1[i]) ;
 3b. S2[i+1]= (SP[i] ⊕ (MC[i],0))/2 ;
 parallel
 S1[i+1]=((SP[i]• (MC[i],0)) + (•P2[i]))/2;
 3c. SX[i+1]= S1[i+1] ⊕ S2[i+1];
 parallel

 { q[i+1] =S1[i+1]0 ⊕ S2[i+1]0;
 if (Ai+1=0 and q[i+1] =0)
 then P1[i+1]=0; P2[i+1]=0; PX[i+1]=0;

 elsif (Ai+1=1 and q[i+1] =0)
 then P1[i+1]=B1; P2[i+1]=B2; PX[i+1]=BX;
 elsif(Ai+1=0 and q[i+1] =1)
 then P1[i+1]=0; P2[i+1]= n; PX[i+1]= n;
 else P1[i+1]=D1; P2[i+1]=D2; PX[i+1]=DX
 end if;
 }
 parallel

 carry, Ai+2 =A1i+2 + A2i+2 + carry;
 4. Return (S1 [k+3], S2[k+3]);
 /* Steps 3a to 3c are parallel with computation of Ai+2*/

 During pre-computation, D1 and D2 are computed with
multiplexer in carry path. Intermediate result, BX is used
for 4:2 addition when multiplier bit is 1 and quotient bit is
0. Also DX is computed and used when both multiplier and
quotient bits are 1.

Step 3 of algorithm 5 iterates to perform the
computations. Each iteration performs lower 2 levels of
addition and first level of addition for next iteration of Fig.
1. Based on quotient and multiplier bits of next iteration P1,
P2 and PX are determined.

• P1[i+1]=0 , P2[i+1]= 0
 then PX[i+1]=0 (0 ⊕ 0=0)
• P1[i+1]=B1 , P2[i+1]=B2

 then PX[i+1]=BX (B1 ⊕ B2=BX)
• P1[i+1]=0 , P2[i+1]=n
 then PX[i+1]=n (0 ⊕ n=n)
• P1[i+1]=D1, P2[i+1]=D2

 then PX[i+1]=DX (D1 ⊕ D2=DX)

IV. IMPLEMENTATION RESULTS AND ANALYSIS

A. Synthesis Results
The proposed Montgomery design and RSA modular

exponentiation (encryption) are coded in VHDL and
synthesized in XILINX ISE 8.1i (Virtex 2) and XILINX
ISE 12.4 (Virtex 5 XC5VLX50 package FF1153 speed -3).
The synthesis results of proposed Montgomery design for
operand size 512, 1024 and 2048 bits are in Tables I-III.
Area is in terms of number of slices. Frequency is in MHz.
Area and frequency (minimum period) are generated in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:12, 2013

1538

synthesis report. Throughput is calculated as bit length
multiplied by the frequency and divided by number of
clock cycles. The proposed Montgomery design takes k+6
clock cycles where k is bit length of operands. Table I give
detailed area results on Virtex 2 and Virtex 5 FPGAs.

TABLE I

AREA RESULTS FOR PROPOSED MONTGOMERY ON VIRTEX 2 FPGAS
Bit
Len

FPGA
Technology Slices Slice Flip Flops LUTs Freq

512 XC2V1500 4211 5288 7955 253.7
1024 XC2V3000 9213 10963 16917 250.5
2048 XC2V4000 17140 21544 32001 246.3

TABLE II

AREA RESULTS FOR PROPOSED MONTGOMERY ON VIRTEX 5 FPGAS
Bit
Len

FPGA
Tech Slice Flip Flops Slice

LUTs Freq Throu
ghput

512 XC5VLX50 5142 4637 534.7 528.5
1024 XC5VLX50 10267 9247 530.7 527.6
2048 XC5VLX50 20509 18463 530.7 529.1

Tables I and II show that when the proposed design is

implemented on Virtex 2 and Virtex 5 FPGAs, there is little
difference in number of slice flip flops but the difference in
LUTs is large. Each slice on Virtex 2 FPGA has two 4
input function generator which can be programmed as 4
input LUTs. Whereas there are four 6 input LUTs in
SLICEL and SLICEM on Virtex 5 FPGAs. Therefore to
implement a function on Virtex 2 requires more LUT
combining and hence more number of LUTs to implement
a design. The frequency results are more than double on
Virtex 5 FPGAs. This is due to improved version of wiring
architecture named “Diagonally symmetric interconnect
pattern” [15]. This type of architecture reduces the delays,
thus making more logic blocks accessible with a smaller
number of hops (switch blocks).

TABLE III

FPGA IMPLEMENTATION OF MONTGOMERY MODULAR MULTIPLIERS
 Bit

Len
FPGA
Tech

Area ,A
(Slices)

Freq
(MHz)

Throughp
ut Rate, T
(Mbps)

T/A
(Mbps/
Slices)

[6]1

512 XC2V1500 5170 126.7 126.4 .024
1024 XC2V3000 10332 101.7 101.6 .009

[6]2 512 XC2V1500 5782 122.03 121.5 .021
1024 XC2V3000 11520 111.3 111.1 .009

[7] 512 XC2V1500 1678 89.3 29.71 .017
1024 XC2V3000 3334 88.9 29.60 .008
2048 XC2V6000 6782 87.1 29.02 .004

[8] 512 XC2V1500 3125 72.1 71.82 .022
1024 XC2V3000 6243 79.2 79.05 .012

[10] 512 XC2V3000 2902 121.5 120.3 .041
1024 XC2V3000 4512 114.2 113.4 .025

[11] 512 XC2V1500 4029 221.9 220.2 .054
1024 XC2V3000 8000 219.06 218.2 .027

our 512 XC2V1500 4211 253.7 250.8 .059
1024 XC2V3000 9213 250.5 249.07 .027
2048 XC2V4000 17140 246.3 245.61 .014

1: designed with Five-to-two CSA
2: designed with four-to-two CSA

Table III compares the results with related
implementation on Virtex 2 FPGA. It shows that proposed
design has more than double the frequency and throughput
when compared to 4:2 CSA Montgomery [6]2 proposed by
McIvor. This is because the critical path delay of proposed
design is 3 XOR+4:1 MUX as compared to 4:1MUX+2
Full adders + 2 XOR+ 1 AND of [6]2. Proposed
Montgomery design has highest frequency amongst the
designs where no output/input format conversion is done at
the end of modular multiplication [5]-[9], [11]. When
compared with [10] where the format conversion is done
using carry save addition, our frequency and throughput is
double at the cost of area. The design in [16] is a semi-
systolic. Also the approach in [11], [16] are only applicable
for RSA MSB method. The proposed design can be used in
both RSA MSB and LSB binary modular exponentiation
methods. Table III shows our design has highest
throughput/area ration for 512 bits.

TABLE IV

RSA MODULAR EXPONENTIATION ON VIRTEX 2 FPGAS
Bit
Len

H/L FPGA
Technology

Slices Slice Flip
Flops

LUTs Freq

512 H XC2V3000 6270 7960 11760 224.6
L XC2V3000 11290 13506 21488 224.5

1024 H XC2V6000 12930 16296 24005 222.6
L XC2V6000 24259 28231 44829 222.1

TABLE V

RSA MODULAR EXPONENTIATION ON VIRTEX 5 FPGAS
Bit
Len

H/L FPGA
Technology

Slice Flip
Flops

LUTs Freq

512 H XC5VLX50 7795 7479 491.64
L XC5VLX50 12932 13124 496.03

1024 H XC5VLX50 15478 14888 441.2
L XC5VLX50 25736 27137 445.05

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:12, 2013

1539

TABLE VI
RESULTS OF RSA MODULAR EXPONENTIATION

 Bit Len H/L FPGA Area, A (Slices) Fre (MHz) Throughput, T (Mbps) T/A Kbps/slices

[6]1
512 L XC2V3000 11304 102.31 5.10 0.45

1024 L XC2V6000 23208 95.90 4.79 0.20

[11]
512 H XC2V3000 6294 168.38 9.28 1.47

1024 H XC2V6000 12537 152.49 8.44 0.67

[16]
512 H XC2V3000 7832 218.72 11.87 1.51

1024 H XC2V6000 15826 215.83 11.85 0.74

Our

512
H XC2V3000 6270 224.65 11.68 1.86
L XC2V3000 11290 224.58 13.05 1.15

1024
H XC2V6000 12930 222.69 11.65 0.90
L XC2V6000 24259 222.12 12.98 0.53

1: designed with Five-to-two CSA

RSA modular exponentiation (encryption) is
implemented using proposed Modified Montgomery design.
Both LSB and MSB binary method of RSA are coded in
VHDL. Synthesis result for RSA MSB (H) and LSB (L) for
512 and 1024 bits are given in Tables IV-VI. Detailed
results for RSA modular exponentiation are given in Tables
IV and V. For implementation the bits for exponent are
taken 17 bits. Tables IV and V show the difference in LUTs
and frequency due to different FPGA technology. The RSA
design in this paper has frequency higher than [6], [11] and
[16]. Also area results for RSA MSB (H) are lower than [16]
since we are reusing registers for storing the final result
instead of new registers (only in MSB method). RSA
encryption can be done faster by choosing the values for
e=3, 17, or 65537(216+1) [17]. Binary representation of
65537 is 10000000000000001. Taking this value and
calculating the number of Montgomery modular
multiplication (MMM) cycles in modular exponentiation
gives:
MSB design- 17 squarings + 2 multiplications= 19

Montgomery cycles in MSB=19 × (k + 6)
LSB design- 17 squarings + 2 multiplications

(Squarings and multiplications can be done in
parallel)=17

Montgomery cycles in LSB=17 × (k+6)
Throughput of RSA given in tables is calculated using 19

× (k+6) MMM cycles for MSB and 17 × (k+6) MMM
cycles for LSB binary modular exponentiation. The
throughput in [16] is better than our RSA design. The H
algorithm of binary method for RSA modular
exponentiation in [11], [16] adds carry save values of
message M to get binary M. This requires additional
conversion cycles. Thus our overall performance will be
better when compared with [16]. If throughput / area is
taken as efficiency factor then our RSA design has highest
value among related designs as shown in Table VI.

V. CONCLUSIONS
The proposed Montgomery modular multiplication

partitions the logic operations of addition with 4:2
compressor which facilitates parallel computations and
reduced delay. Though the area requirements of design are
high but the proposed design has high throughput /area

ratio. It is suitable for applications where high throughput is
required and area is not a limitation.

REFERENCES
[1] R. Rivest et al., “A method for obtaining digital signatures and public

key cryptosystems,” Commun. ACM, vol 21, issue 2, Feb 1978, pp. 120-
126.

[2] P.L. Montgomery, “Modular multiplication without trial division,” Math
Comput, vol 44, Apr. 1985, pp. 519-521.

[3] C.D. Walter, “Systolic modular multiplication,” IEEE Trans. Comput,
vol 42, no 3, Mar 1993, pp. 376-378.

[4] S.E. Elridge et al., “Hardware implementation of Montgomery’s
modular multiplication algorithm,” IEEE Trans. Comput., vol. 42, no. 6,
Jun 1993, pp. 693-699.

[5] C. McIvor et al., “Fast Montgomery modular multiplication and RSA
Cryptographic processor architectures,” Proc. 37th Asilomar Conf.
Signals, Syst. Comput., vol. 1, Nov. 2003, pp. 379-384.

[6] C. McIvor et al., “Modified Montgomery modular multiplication and
RSA exponentiation techniques,” Proc. IEEE Comput. Digit.
Techniques, vol. 151, no.6, Nov. 2004, pp. 402-408.

[7] K. Manochehri et al., “Fast Montgomery modular multiplication by
pipelined CSA architecture,” Proc. IEEE Int. Conf. Microelectron, Dec.
2004, pp. 144-147.

[8] K. Manochehri et al., “Modified Radix 2 Montgomery Modular
Multiplication to Make It Faster and Simpler,” In Proc. Int. Conference
on Information Technology: Coding and Computing, Apr 2005, pp. 598-
602.

[9] H. Thapliyal et al., “Modified Montgomery Modular Multiplication
Using 4:2 Compressor and CSA Adder,” In Proc. Of Third Int.
Workshop on Electronic Design, Test and Applications, 2005.

[10] Y. Y Zhang et al., “An efficient CSA architecture for Montgomery
modular multiplication,” Microprocessors and Microsystems, vol 31, no.
7, Nov.2007, pp. 456-459.

[11] M.D. Shieh et al., “A New Modular Exponentiation Architecture for
Efficient Design of RSA Cryptosystem,” IEEE Trans. On Very Large
Scale Integration Systems, vol. 16, no. 9, Sept 2008, pp. 1151-1161.

[12] C.D. Walter, “Montgomery exponentiation needs no final subtractions,”
Electron. Lett., vol. 32, no. 21, Oct. 1999, pp. 1831-1832.

[13] R. Verma et al., “Modified Montgomery Modular Multiplication for
RSA Cryptosystem,” Int. Journal of Computational Intelligence and
Information Security, vol 2, no. 9., Sept 2011, pp. 39-47.

[14] S. Veeramachaneni et al., “Novel Architectures for High Speed and Low
Power 3-2, 4-2 and 5-2 Compressors,” In 20th Int. Conf. on VLSI design,
2007.

[15] P.B. Minev et al., “The Virtex 5 Routing and Logic Architecture,”
Electronics-ET 2009, 14-17 Sept, Sozopol, Bulgaria.

[16] M.D. Shieh et al., “A New Algorithm for High Speed Modular
Multiplication Design,” IEEE Trans. On Circuits and Systems-I: Regular
Papers, vol. 56, no. 9, Sept. 2009, pp. 2009-2019.

[17] B. Schneier, Applied Cryptography Protocols, Algorithms and Source
Code in C: Second edition, Wiley.

