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Optimization of communication protocols by
stochastic delay mechanisms

J. Levendovszky, I. Koncz, P. Boros

Abstract— The paper is concerned with developing stochastic
delay mechanisms for efficient multicast protocols and for smooth
mobile handover processes which are capable of preserving agiven
Quality of Service (QoS). In both applications the participating
entities (receiver nodes or subscribers) sample a stochastic timer
and generate load after a random delay. In this way, the load on the
networking resources is evenly distributed which helps to maintain
QoS communication. The optimal timer distributions have been
sought in different p.d.f. families (e.g. exponential, power law and
radial basis function) and the optimal parameter have been found
in a recursive manner. Detailed simulations have demonstrated the
improvement in performance both in the case of multicast and
mobile handover applications.

Keywords— Multicast communication, Stochactic delay mecha-
nisms

I. I NTRODUCTION

EFFICIENT multicast communication is one of the toughest
challenges in packet switched networking and optimal protocols

are still under development [5]. One of the difficulties arises from
the large amount of signaling information (ACK/NACK) exchanged
between the server and users which can overwhelm network capaci-
ties [7]. The objective is to develop stochastic timer distributions for
generating NACK signals which avoid the misuse of bandwidth, i.e.
the NACK signals do not flood the network with overwhelming sig-
naling information. Therefore, the timer distribution should guarantee
that the tail distribution of the number of NACKs is under a given
threshold.
On the other hand, in mobile communication a large number of
simultaneous reactive handovers has a negative impact on the access
network performance, i.e. they can cause serious QoS degradation
[2], [3], [4]. To circumvent this effect, a stochastic delaymechanism
can spread the handover requests in time, resulting in a morebalanced
network load. To investigate the effect of the random delayson the
handover mechanisms we have created a queueing model where the
queues are organised into a tree topology. In this model single queues
represent the performance of various system components, while the
load which is caused by a handover request is modeled by a single
packet [7].
The paper provides novel approaches to these problems by intro-
ducing a stochastic timer which can smooth out either the load
presented by signaling information (ACK/NACK) in the case of
multicast protocol or the handover requests presented by mobile users
in b3G networks. The optimal timer distribution has been found n
the families of exponential and power law distributions based on
adaptive optimization. The solution can be applied to the most general
networking scenario (heterogeneous networks with arbitrary random
link delays).

Budapest University of Technology and Economics, Department of
Telecommunications, Magyar tudosok korutja 2, H-1117 Budapest, Hungary,
{borosp, levendov}@hit.bme.hu

II. OPTIMAL STOCHASTIC DELAY MECHANISM FOR

MULTICAST COMMUNICATION

A. The model

Let us assume that there is a graphG(V, E, d), with a node
s ∈ V referred to as "sender" and a subset of other nodes
{rj , j = 1, ..., J} ⊂ V referred to as "receivers". There is
a vectorc = (c1, ..., cJ) characterizing the distances of each
receiver from the sender, and a matrixC, the Cij element
of which describes the distance between receiver nodei and
receiver nodej.
Upon sending a message, the sender also sends a timer p.d.f.
to each receiver denoted byf(t) (or specifies a parameter of a
certain density family). When sending feedbacks, the receivers
sample this timer p.d.f. and wait accordingly. If no feedback
from other nodes arrives during the waiting period, then a
feedback is generated on the corresponding node. Otherwise
the feedback is suppressed.
In order to formulate the problem, letXi ∈ {0, 1} denote the
random variable expressing whether a feedback is generated
on nodei (Xi = 1) or not (Xi = 0). We are concerned
with evaluating the distribution of the aggregated number of
NACKs Y :=

∑J

j=1 Xj. Our endeavour is to develop some
optimal timer distributionsf (opt)(t) in order to achieve some
desired properties of the distribution ofY denoted byPY .
One of such desired properties can be given as follows:

f (opt)(t) : max
f(t)

P (A < Y < B) (1)

for a given A and B. Before we delve into solving this
problem, we list the possible density families we seek the
optimum timer p.d.f. within.

B. The timer distributions

We considered the following timer distributionsf(t,w),
wherew denotes the free parameter(s) subject to optimization:

• the timer density is selected from the exponential distri-
bution family:

fexp(t, λ) =

=
{ 1

1−exp(−λ)

(
λ
T

)
exp

(
− λ

T t
)

0 ≤ t ≤ T

0 otherwise

wherew = λ.
• the timer density is selected from the "power-law" distri-

bution family:

fpow(t, a) =
{

a
T

(
t
T

)a−1 0 ≤ t ≤ T
0 otherwise
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wherew = a.
• the timer density is selected from the Radial Basis Func-

tion distribution family:

fRBF (t,x,m, σ) =

=




∑
K

i=1
xie

− 1
2 (

t−mi
σ )2

∫
T

0

∑
K

i=1
xie

− 1
2 (

t−mi
σ )2

dt

0 ≤ t ≤ T

0 otherwise

wherew = (x,m, σ), K denotes the number of compo-
nents ,xi (i = 1, . . . , K) is the weight of componenti,
mi (i = 1, . . . , K) is the "mean" value of componenti,
andσ is the common variance.

The RBF family has the advantage that it is a universal approx-
imator in L2, thus it can capture almost anyL2 measurable
density function. The corresponding distribution functions can
be expressed as follows:

• Exponential timer:

Fexp =




0 t < 0
1−exp(− λ

T t)
1−exp(−λ) 0 ≤ t ≤ T

1 T < t

• Power-law timer:

Fpow =




0 t < 0(
t
T

)a 0 ≤ t ≤ T
1 T < t

• RBF timer:

FRBF =

=




0 t < 0∫
t

0

∑
K

i=1
xie

− 1
2

(
l−mi

σ

)2
dl∫

T

0

∑
K

i=1
xie

− 1
2

(
l−mi

σ

)2
dl

0 ≤ t ≤ T

1 T < t

C. Timer optimization assuming deterministic homogeneous
delays

A homogeneous network is characterized by a graph with
uniform link delays denoted byc. Now, with the distributions
at hand,P (Xi = 1) can be calculated based on the following
expression:

p(w) := P (Xi = 1) = (2)

=
∫ c+T

c

f(t − c,w)
J∏

j=1,j 6=i

(1 − F (t − 2c,w))dt.

It is clear thatY =
∑J

j=1 Xj follows a binomial distribution,
thus

P (A ≤ Y ≤ B) =
B∑

l=A

(
J
l

)
p(w)l (1 − p(w))J−l .

Sincep is a function of vectorw, therefore our objective is
to find

wopt : max
w

Ψ(w), (3)

whereΨ (w) = P (A ≤ Y ≤ B). This means that we have to
solve the following optimization problem for free parameters
of the timer distribution functions:

wopt : max
w

Ψ(w) = max
w

P

(
A ≤

J∑
i=1

Xi ≤ B

)
=

max
w

B∑
l=A

(
J
l

)
p(w)l (1 − p(w))J−l

.

Due to the fact that the binomial distribution is differentiable
with respect top(w) and p(w) is differentiable with respect
to w, the optimization problem set forth by (3) can be solved
by the gradient search method:

wk+1 = wk + δkgradΨ(wk),

whereδk is referred to as a relaxation parameter.

D. Timer optimization in the case of random homogeneous
delays

As in a real communication network the link delays are
random, parameterc is assumed to be a random variable
with density g(c). This case is referred to as "random and
homogeneous" as each delay in the graph changes subject to
the same random variable. This random variable is supposed
to follow either a Gaussian or a uniform distribution. We
characterized both of these distributions by their mean and
variances. Therefore our objective function can be expressed
as follows:

Ψ (w|c) = P (A ≤ Y ≤ B|c)

Ψ (w) = EcΨ (w|c) =
∫

Ψ (w, c) g(c)dc,

whereg(c) = 1
√

2πσ
e−

(c−m)2

2σ2 in the case of a normal distri-
bution andg(c) = 1

U−L
in the case of a uniform distribution,

whereL = m −
√

12σ
2 andU = m +

√

12σ
2 .

Now we have to perform the following optimization problem
based on (3):

• Normal distribution:

Ψ (w) = K

∫ T

0

Ψ (w|c)
1

√
2πσ

e−
(c−m)2

2σ2 dc,

whereK = 1∫
T

0
1

√
2πσ

e
−

(c−m)2

2σ2 dc

.

• Uniform distribution:

Ψ (w) = Z

∫ min(T,U)

max(0,L)

Ψ (w|c)
1

U − L
dc

whereZ = 1∫ min(T,U)

max(0,L)
1

U−L

= U−L
min(T,U)−max(0,L) .

As a result, it can be proven that the obtainedΨ (w) is
differentiable again with respect tow which means thatwopt :
maxw Ψ(w) can be solved by gradient search:

wk+1 = wk + δkgradΨ(wk).
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Fig. 1. Expected number of feedback messages dependent on the
number of receivers.

E. Numerical results

We have investigated the average number of NACKs E(Y )
as a function of the number of recievers in the case of
homogenous deterministic delays. The length of the delay
interval wasT = 10c, while the parameter of the stochastic
timer distribution was set toλ = 10 in the case of exponential;
anda = 10 in the case of power law distribution. The obtained
results are depicted by Figure (1). The simulations were
carried out for exponential, power law and RBF distribution.

It can be inferred that the number of NACKs can further
be decreased by using RBF. Furthermore, one can investigate
the probability of the number of NACKs falling into a pre-
determined interval. The corresponding results are indicated
by Figure 2. One can see that in the case of exponential
delay distribution the optimalλ parameter (which maximizes
the probability that the number of NACKs falls into the
region 0 ≤ Y ≤ 7) is λopt = 2.21 , while in the case of
power-law distribution the optimal value isaopt = 1.55. The
maximal probability that the number of NACKs falls into the
region 0 ≤ Y ≤ 7 is 0.661, while in the case of power-
law distribution the maximal probability is 0.416. The RBF
function gives the best result, the optimal probability is 0.981.

Secondly, numerical results have been calculated for the case
of inhomogeneous and deterministic link delays by using
exponential, power-law and RBF timer distributions. The
corresponding numerical results are shown in figure 2.

One can see that in the case of exponential delay distribution
the optimalλ parameter (which maximizes the probability that
the number of NACKs falls into the region0 ≤ Y ≤ 7) is
λopt = 1.64 , while in the case of power-law distribution the
optimal value isaopt = 1.45. The maximal probability that
the number of NACKs falls into the region0 ≤ Y ≤ 7 is
0.683, while in the case of power-law distribution the maximal
probability is 0.611. The RBF function gives the best result,
the optimal probability is 0.823.

In the case of homogeneous but random link delays, we tested
a network which included 15 receivers too, and the maximal

Fig. 2. Probability of aggregated NACK message numbers (P (0 ≤

Y ≤ 7)) for several timer distributions in the case of 15 receivers
with deterministic and homogenous(a) , and non homogenous link
delay

timer delay value was setT = 10. Furthermore, we assumed
that the link delays are subject to a uniform p.d.f. Based on the
optimizedw parameters, the obtained performance is indicated
in Figure 3, where the probabilityP (0 ≤ Y ≤ 7) is plotted
againstE(Y ).

Fig. 3. Probability of aggregated NACK message numbers (P (0 ≤

Y ≤ 7)) for several timer distributions in the function of ’mean’
parameter, and in the case of RBF method

From this figure, one can see that for lower mean delay
values the timer distributions yield nearly the same perfor-
mance, while in the case of higher mean delay values the
RBF distribution gives a much better performance. This comes
down to the extraordinary approximation capabilities of RBF.
In the case of inhomogeneous random link delays we tested
the methods with exponential, power-law and RBF timer
distributions on the same network topology. The possible
link delays werec−1 = 0.3 msec, c0 = 1.1 msec and
c1 = 1.9 while the the average delay wasE(c0) = 0.99).
The maximal timer delay value was setT = 10. Based on the
optimizedw parameters, by using the RBF method borrowed
from reliability analysis the obtained performance is shown by
Figure 3.
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III. STOCHASTIC DELAY MECHANISM FOR SMOOTH

HANDOVER

The rapidly growing bandwidth demand in mobile appli-
cations accelerated the development of novel mobile commu-
nication technologies leading to the concept of Beyond-3G
Networks (B3G). This concept is fully based on the Internet
Protocol (IP) and is not restricted to any specific access
technology or mobility protocol. Therefore, the most important
properties of the B3G networks are mobility support, high
throughput, and Quality of Service (QoS) provisions.
To ensure QoS communication, upon a handover request
the mobile nodes sample a stochastic timer and handover
is initiated only after the sample expires. In this way, the
handover requests are spread in time so that each one can be
processed accordingly and the radio link will not be congested
at all. As a consequence, QoS can be maintained and more
effective resource utilization becomes possible.

A. The model

Based on the general properties of the B3G networks a
queueing network model is constructed to find an optimal
handover strategy. This model takes the additional processing
load which is generated by a handover which appears at
different levels of network hierarchy into account. As a result,
the stochastic timer described by a p.d.f. will determine
the input distribution of a hierarchical queueing network.
Our analysis aims at deriving the QoS parameters (Packet
Loss Probability and Mean Packet Delay) based on the
stationary distribution of this queueing network. In this way,
the analytical relationship between the timer p.d.f. and QoS
measures can be revealed and the parameters of the timer
p.d.f. can be subject to optimization for guaranteeing smooth
handover in terms of optimal QoS parameters.
The p.d.f. of the stochastic timer introduced to avoid large
load caused by simultaneous handovers is denoted byf(t).
The investigated p.d.f is the truncated exponential described
in Section 1. Users initiating handover sample this stochastic
timer and the handover will commence if the random time
provided by the stochastic timer has elapsed. [7], [5], [6]

B. Modeling the input process generated by the handover

Let pk =
∫ tk+1

tk
f (t) dt denote the probability that the

sampled timer expires in the time interval in the[tk; tk+1].
The input process generated by the handover is denoted by
Y (k) has the following distribution

P (Y (k) = n|N (k) = m) = (4)

=
(

m
n

)
pn

k (1 − pk)m−n
, (5)

where

P (N (k) = m) = (6)

=
(

N (0)
m

)(∫ k∆

0

f (t) dt

)m

∗ (7)

(
1 −

∫ k∆

0

f (t) dt

)N(0)−m

. (8)

C. Handover processing in queueing scenarios - the single
queue approach

A G/D/1 queueing model can be used to represent the
handover process, where the queue length fulfils the following
stochastic differential equation:

q (k + 1) = ⌈q (k) − 1⌉+ + Y (k + 1) . (9)

Here q (k) stands for the number of waiting requests in the
queue with a length ofL packets andY (k) denotes the
number of arriving requests at timek. Y (k) is a stochastic
variable.

The stationary distribution of the queue lengthπ can be
calculated by solving the equationπ = Pπ. Based onπ the
QoS parameters (cell loss probability and the mean cell delay)
can be calculated as

Pcell loss =
∑

∞

k=1 k
∑L

l=0 πlPL−l+k+1∑M

i=1 nimi

(10)

and

E (q) =
L∑

k=1

kπk. (11)

We assume that no packets are waiting at time0: π(k) =
[π0(k), π1(k), . . . , πL(k)] = [1, 0, . . . , 0]. [1] Thus, π(1) can
be written as

π(1) = π(0)P(0), (12)

and consequently,

π(k) = π(0)
k−1∏
j=0

P (k). (13)

Our goal is to find an optimal stochastic timer distribution
f

(W )
opt (t) for which

f
(W )
opt (t) :

min
W

(
Pcell loss(k),E(q) (k)

)
, (14)

∀k ∈ [0, . . . , J ]

We seek the optimal timer distribution in the family of trun-
cated exponential and a Radial Basis functions, which yielda
one- or multi-dimensional optimization problem, respectively.

D. Handling handovers in a hierarchical network structure

Queues are connected according to a tree topology. In the
following example a two-level queueing system is described
(see figure 4) where two G/D/1/L queues are connected to a
third one. A handover request can enter the system on the
lower level and it is considered to be successful if it leaves
the upper and lower buffer with minimal delay.

q1(k + 1) = ⌈q1(k) − 1⌉+ + Y1(k + 1) (15)

q2(k + 1) = ⌈q2(k) − 1⌉+ + Y2(k + 1) (16)

Q(k + 1) = ⌈Q(k) − 1⌉+ + U(k + 1) (17)

U(k) =
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q (k)
1

G/D/1/L

U

Q(k)

Fig. 4. A two-level queueing system

labeleq : U − k =




2 if q1(k) 6= 0 ∪ q2(k) 6= 0
1 if q1(k) = 0 ∪ q2(k) 6= 0
; ; |q1(k) 6= 0 ∪ q2(k) = 0

0 if q1(k) = 0 ∪ q2(k) = 0

(18)

Considering thatY1 and Y2 are independent, it can be
written:

P (U (k) = 2) = (19)

= P (q1(k) > 0)P (q2(k) > 0) = (20)

= (1 − π
(1)
0 )(1 − π

(2)
0 ) (21)

P (U(k) = 1) = (1 − π
(1)
0 )π(2)

0 + (22)

= (1 − π
(2)
0 )π(1)

0 (23)

P (U(k) = 0) = π
(1)
0 π

(2)
0 (24)

Our goal is to find the optimalf (W )
opt stochastic timer

distributions so that

f
(W )
opt (t) :

min
W

(Pcell loss(k),E (k)) , (25)

∀k ∈ [0, . . . , J ]

where based on equation (10) and (11):

Pcell_loss(k) = (26)

=
3∑

q=1

P
(q)
cell_loss(k) + (27)

+P
(1)
cell_loss(k)P (3)

cell_loss(k) + (28)

+P
(2)
cell_loss(k)P (3)

cell_loss(k), (29)

E(k) = max(E(1)(k)+ (30)

E(3)(k),E(2)(k) + E(3)(k))

∀k ∈ [0, . . . , J ]

Since equation (14) and (25) has transformed the problem
of finding the proper timer distribution into a multidimen-
sional optimization problem, here we focus on the numerical
approaches of optimization.

To find an optimalf (W)(t) we used exhaustive search on
the discretised timer distribution. The maximum allowableloss
probability was 0.05.
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Fig. 5. Queue utilization and handover failure probabilitywhen no stochastic
timer is used
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Fig. 6. Queue utilization and handover failure probabilitywhen using an
exponential timer distribution

E. Numerical results

For performance analysis, the following parameters were
used: queue length is 10 requests, service time is 1 request
per unit time, the number of mobile nodes is 20. In a working
network configuration the service time is in the range of 0.1-1
ms, depending on the performance of the components. Based
on this if we transform our values for a real configuration
then we can say that a handover is successful only if its
serving latency is below 2-20 ms. If the delay is more than
this (the queue runs over) the handover is considered to be
unsuccessful, and handover request retransmission occurs.
In figure 5 the handover-request-queue utilization and han-
dover failure probability is shown when no stochastic timeris
used.

9 out of 20 requests are dropped, this indicates that a delay
mechanism should be used to lower the load on the network.
In figure 6 the effect of an exponential timer distribution with
parameterλ = 0.5 is shown. It can be seen, that the overall
utilization is much better now and the failure ratio stays ona
moderate level as well.

In figure 7 the queue utilization and cell loss probability is
shown when using near-optimal timer distribution for a single
queue model. The utilization in the early phase is high, and is
decreasing with time. The cell loss probability is acceptable,
as well.

In figure 8 the used stochastic timer distributions are shown.
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IV. CONCLUSIONS

In this paper novel stochastic delay mechanisms have been
developed for optimal multicast and handover performance.In
both applications the participating entities sample a stochastic
timer and generate load after a random delay. In this way,
the load on the networking resources is evenly distributed
which helps to maintain QoS communication. The optimal
timer distributions have been sought in different p.d.f. families
(e.g. exponential, power law and radial basis function) and
the optimal parameter have been found in a recursive manner.
Detailed simulations have demonstrated the improvement in
performance both in the case of multicast and mobile handover
applications.
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