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Abstract—In this paper, we have combined some spatial 
derivatives with the optimised time derivative proposed by Tam and 
Webb in order to approximate the linear advection equation which is 

given by .0=
∂

∂
+

∂

∂

x

f

t

u
 These spatial derivatives are as follows: a 

standard 7-point 6 th -order central difference scheme (ST7), a 

standard 9-point 8 th -order central difference scheme (ST9) and 
optimised schemes designed by Tam and Webb, Lockard et al., 
Zingg et al., Zhuang and Chen, Bogey and Bailly.  Thus, these seven 
different spatial derivatives have been coupled with the optimised 
time derivative to obtain seven different finite-difference schemes to 
approximate the linear advection equation.  We have analysed the 
variation of the modified wavenumber and group velocity, both with 
respect to the exact wavenumber for each spatial derivative.  The 
problems considered are the 1-D propagation of a Boxcar function, 
propagation of an initial disturbance consisting of a sine and 
Gaussian function  and the propagation of a Gaussian profile.  It is 
known that the choice of the cfl number affects the quality of results 
in terms of dissipation and dispersion characteristics.  Based on the 
numerical experiments solved and numerical methods used to 
approximate the linear advection equation, it is observed in this 
work, that the quality of results is dependent on the choice of the cfl 
number, even for optimised numerical methods.  The errors from the 
numerical results have been quantified into dispersion and dissipation 
using a technique devised by Takacs.  Also, the quantity, Exponential 
Error for Low Dispersion and Low Dissipation, eeldld has been 
computed from the numerical results. Moreover, based on this work, 
it has been found that when the quantity, eeldld can be used as a 
measure of the total error. In particular, the total error is a minimum 
when the eeldld is a minimum. 
 

Keywords—Optimised time derivative, dissipation, dispersion, 
cfl number. 

Nomenclature: k : time step;  h : spatial step; :β advection velocity;  

r: cfl/Courant number; 
h

k
r

β
= ; w = h θ :  exact wave number; n : 

time level;  RPE : Relative phase error per unit time step;  AFM :  
modulus of  amplification factor. 
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I. INTRODUCTION 
OMPUTATIONAL aeroacoustics (CAA) has been given 
increased interest because of the need to better control 

noise levels from aircrafts, trains and cars due to increased 
transport and stricter regulations from authorities [13].  Other 
applications of CAA are in the simulation of sound 
propagation in the atmosphere to the improved design of 
musical instruments [13]. 
The field of CAA has grown rapidly during the last decade 
and there has been a resurgence of interest in aeroacoustic 
phenomena characterised by harsher legislation and increasing 
environmental awareness.  CAA is concerned with the 
accurate numerical prediction of aerodynamically generated 
noise as well as its propagation and far-field characteristics. 

CAA involves mainly the development of numerical 
methods which approximate derivatives in a way that better 
preserves the physics of wave propagation unlike typical 
aerodynamic computations [13]. 

In this paper, we shall be concerned with problems in which 
low amplitude wave propagation takes place over distances 
characterised by large multiples of wavelength.  Such 
problems arise in the following areas [16]: 

1) Acoustics and Aeroacoustics, for noise abatement 
2) Electromagnetics, for microcircuit design 
3) Elastodynamics, for nondestructive testing 
4) Seismology, for oil exploration 
5) Medical Imaging, for accurate diagnosis 
6) Hyperthermia, for noninvasive surgery 
Both dissipation and dispersion errors are important.  

However, dissipation is more damaging to practical 
calculations.  A wave that is excessively damped disappears 
and hence there is no solution to see.  On the other hand, 
dispersion leaves the wave intact, but in the wrong place.  In 
general, higher order schemes would be more suitable for 
CAA than the lower-order schemes since, overall, the former 
are less dissipative [11].  This is the reason why higher-order 
spatial discretisation schemes have gained considerable 
interest in computational acoustics. 

Aerodynamics and other areas of fluid mechanics have 
benefitted immensely from the development of CFD [23].  
The numerical analysis of flows around full aircraft 
configurations has become feasible with advances in both 
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numerical techniques and computing machines. The 
temptation to apply effective CFD methods to aeroacoustic 
problems has been unavoidable and has been met with some 
success but in some cases, it has been observed that there is a 
necessity for some numerical protocols specific to problems 
involving disturbance propagation over long distances.  The 
difference between aerodynamic and aeroacoustic problems 
lies mainly in the fact that for aeroacoustic computations, the 
solution is desired at some large distance from the 
aerodynamic source but in the case of aerodynamic problems, 
flow properties are required accurately only on the body itself  
[23]. 

Most aerodynamics problems are time independent, 
whereas 
aeroacoustics problems are by definition, time dependent [20].    
There are computational issues that are unique to 
aeroacoustics. Thus, computational aeroacoustics requires 
somewhat independent thinking and development [20]. 

At specific Courant numbers and angles of propagation, the 
perfect-shift property can be obtained, leading to exact 
propagation for all wavenumbers [25].  The perfect shift 
property refers to the situation when the error from the spatial 
discretisation precisely cancels that from the temporal 
discretisation.  Several schemes which combine the spatial and 
temporal discretisation produce the perfect shift property at 
specific Courant numbers [25]. Often this perfect cancellation 
of temporal and spatial errors occur at cfl 1.0.  For such 
methods, the error increases as the cfl number is decreased 
and no longer cancels the spatial error.  As the cfl numbers 
tend to zero, so does the temporal error and thus only spatial 
error remains.  For most schemes a low cfl represents the 
worst case associated with large dispersion or large dissipation 
errors as there is no cancellation of temporal and spatial errors 
[25]. 

Thus it is important to assess numerical methods over a 
range of Courant numbers [25].  However, this not an issue 
for schemes built up from a high-accuracy spatial 
discretisation with a high-accuracy time-marching method.  
These schemes generally do not rely on cancellation to 
achieve high accuracy and thus the error does not increase as 
the Courant number is reduced. 

The concept of Minimised Integrated Square Difference 
error, (MISDE) has been introduced in [1].  It mainly deals 
with the notion that dissipation inherent to a numerical scheme 
can be used to curb the prevailing dispersion optimally.  The 
work in [2] serves as a prelude to the concept of MISDE.  In a 
nutshell, MISDE has been used to optimise the cfl number or 
both the cfl number and another parameter with the aim of 
improving the shock capturing abilities of numerical schemes 
[1, 3, 4, 5]. 

Recently an improved technique of optimisation has been 
devised termed as Minimised Integrated Exponential Error for 
Low Dispersion and Low Dissipation, MIEELDLD [6].  This 
technique uses the notion that dissipation curbs dispersion in a 
numerical scheme under consideration and at the same time, 
the amount of dissipation and dispersion at which the optimal 

cfl or optimal parameter is obtained must be rather small. The 
concept of MIEELDLD enables better control over the grade 
and balance of dispersion and dissipation as compared to 
MISDE. 

The quantities sde, eeldld denote the Square Difference 
Error, Exponential Error for Low Dispersion and Low 
Dissipation.  

We now give the formulation of the two quantities which 
are concerned with the techniques of optimisation namely, 
MISDE and MIEELDLD.  These are described as follows: 

dwsdeISDE   ∫= and ∫= ,  dweeldldIEELDLD where 

( )2
AFMRPEsde −=  and  

.2))1(1exp()1(1exp --AFMRPE|||-AFMRPE|-||eeldld +−+−=  
 

The errors from the numerical results are quantified into 
dissipation and dispersion according to a technique devised by 
Takacs [21]. 

 
The paper is organised as follows.  We give a description of 

the spatial and temporal discretisations considered in this 
work.  We next perform a spectral analysis of the spatial 
derivatives.  Lastly, the results are displayed and errors are 
tabulated for some 1-D wave propagation problems and some 
concluding remarks are made. 

 

A. Spatial and Optimised Time Discretisations 
A four-level finite difference approximation of the form 

in
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is considered for the time marching scheme. 
For consistency, three of the four coefficients have been 

chosen so that eq. (1) is satisfied to order ( )3
k when both 

sides are expanded by Taylor series. 

This yields ,
12
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The coefficient 0b  is determined by requiring the Laplace 
transform of the scheme to be a good approximation to that of 
the partial derivative.  Tam and Webb [19] obtained the value 
of 0b  as 2.30255809.  Thus, 1b =-2.49100760, 

2b =1.57434093 and 3b =-0.38589142. 
The spatial derivative proposed by Tam and Webb [19], 
Lockard et al. [14], Zhuang and Chen [26], Bogey and Bailly 
[8] is approximated by 
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In the case of the spatial discretisation proposed by Zingg et 
al. 
[24], we have  
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We now give a description of the spatial derivatives used in 
the course of this work, in Tables I and II. 
 

TABLE I 
COEFFICIENTS FOR SPATIAL DERIVATIVES FOR ST7, ST8 AND THOSE DERIVED 

BY TAM AND WEBB [19], BOGEY AND BAILLY [8] 
Coeffs ST7 ST9 TAM BOGEY 

0a  0 0 0 0 

11 −−= aa  45/60 224/280 0.770882 0.841570 

22 −−= aa  -9/60 -56/280 - .166705 0.244678 

33 −−= aa  1/60 32/840 0.020843 0.059463 

44 −−= aa        - -1/820       - -0076509 

 
 

TABLE II 
COEFFICIENTS FOR SPATIAL DERIVATIVES DERIVED BY LOCKARD ET AL. [14], 

ZINGG ET AL. [24], ZHUANG AND CHEN [26] 
LOCKARD ZINGG ZHUANG 

=−4a 0.0103902 =1a 0.75996126 =−4a 0.0161405 

=−3a -.08466975 =2a -0.15812197 =−3a -0.1228213 

=−2a 0.3420311 =3a 0.01876090 =−2a 0.4553323 

=−1a 1.05268128 =0d 0.1 =−1a -1.2492596 

=0a 0.28727412 =1d -0.07638462 =0a 0.50189044 

=1a 0.58616247 =2d 0.03228962 =1a 0.43993219 

=2a -0.09814428 =3d -0.00590500 =2a -0.04121454 

=3a 0.00966226             -            - 

 

B. Stability of Finite Difference Schemes 
The stability of the finite difference scheme developed by 

Tam and Webb [19] which is 7-point in space and 4-point in 
time, referred to as the DRP scheme satisfies the stability 
condition, 211.0≤r as described in [15].  The interval 

41.00 * << kw  has been chosen in order to maintain 

satisfactory temporal resolution, where the term kw*  is the 
effective angular frequency of the time marching scheme. 
 

We have derived the amplification factor, ξ  of the DRP 
scheme as the roots of the following equation : 

,0   38589142.0   57434093.1

   49100760.2   30255809.21

11
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4

 )(
 )( )(
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)). sin(3  (2  0.02084314

)) (2sin  (2 40.16670590-))sin( (2 0.770882381

h

hhA

θ
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Solving eq.(2) for ξ  is impossible using the Maple 
software.  We have even tried to make use of the quartic 
formula developed by Lodovico Ferraria [10] to solve the 
equation but this has not been possible as the equation is a 
complicated quartic.  Consequently, the stability region cannot 
be obtained using the Von Neumann Stability Analysis. Thus, 
the optimal cfl using the technique of Minimised Integrated 
Exponential Error for Low Dispersion and Low Dissipation 
Square [6] cannot be computed as an expression for the 
amplification factor cannot be obtained. 

A study performed by Popescu and Shyy [15] show that in 
the case of the DRP scheme, a cfl number less than 0.21 
guarantees numerical stability and negligible numerical 
damping.   

 
C.  Spectral Analysis of Some Spatial Schemes 
Due to the difference between the physical and numerical 

wavenumber, some wave components propagate faster or 
slower than the wave speed of the original PDE [17].  This is 
how dispersion errors are induced.  The real part of the 
modified wavenumber determines the dispersive error while 
the imaginary part determines the dissipative error [25].  Plots 
of the real part and imaginary part of the modified 
wavenumber v/s exact wavenumber for some numerical 
schemes have been made in [22]. 

A numerical method with a larger range over which the 
ratio of modified wavenumber to the exact wavenumber is 
close to one is more accurate in spectral space.  This definition 
of accuracy is not related to the formal accuracy which is 
defined in terms of truncation error. 
Expressions for the modified wavenumber in terms of the 
exact wavenumber for ST7, ST9 schemes and those proposed 
by Tam and Webb [19], Lockard et al. [14], Zingg et al. [24], 
Zhuang and Chen [26], Bogey and Bailly [8] have been 
computed.  The plots of the real and imaginary parts of the 
modified wave number v/s the exact wavenumber are 
displayed in Figs. 1 to 4. 

Figs. 1 and 3 show dispersion curves. These are often used 
to display the accuracy of numerical methods. The plots show 
how the numerical value of the wavenumber departs from the 
exact.  The method proposed by Lockard et al. enters the 
upper triangle for ]75.1,5.0[∈w  as shown in Fig.(1).  This 
indicates that the numerical phase velocities are greater than 
the exact phase velocity for ]75.1,5.0[∈w . 
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Fig. 1 Plot of real part of modified wavenumber v/s exact 

wavenumber for the spatial derivatives: the standard 7-pt, standard 9-
pt and the schemes designed by Tam and Webb and by Lockard et al. 
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Fig. 2 Zoomed plot of Fig. 1 

 
Fig. 3 Plot of real part of modified wavenumber v/s exact 

wavenumber for the spatial derivatives: the standard 7-pt and those 
designed by Zingg et al, Zhuang and Chen, Bogey and Bailly 

 

 
Fig. 4 Zoomed plot of Fig. 3 

 
The imaginary part of the modified wavenumber represents 

numerical dissipation only when it is negative [18]. Fig.(5) 
shows that schemes proposed by Lockard et al., Zingg et al., 
Zhuang and Chen have some dissipative properties.  Also, the 
scheme designed by Zhuang and Chen is most dissipative 
while the one by Zingg et al. is least dissipative.  On the other 
hand, the spatial derivatives proposed by Tam and Webb and 
by Bogey and Bailly are non-dissipative. 
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Fig. 5 Plot of imaginary part of modified wavenumber v/s exact 

wavenumber for spatial derivatives designed by Lockard et al, Zingg 
et al, and Zhuang and Chen 

 
The group velocity of a wavepacket governs the 

propagation of energy of the wave packet.  When the 
numerical wavenumber is purely real, this indicates that the 
scheme is non-dissipative [7].  It may also be observed that 
the numerical wavenumber provides a good approximation of 
the actual wavenumber only over a limited portion of the 
wavenumber spectrum.  The group velocity is characterised by 

( ) 0.1Re * 
)(

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
h

hd

d
θ

θ
which should be almost one in order to 

reproduce exact result [15].  Otherwise, dispersive patterns 

appear.  When ( ) 0.1Re * 
)(

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
h

hd

d
θ

θ
, the scheme has the 

same group velocity or speed of sound as the original 
governing equations and the numerical waves are propagated 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:2, 2009

83

 

 

with correct wave speeds. 
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Fig. 6 Plot of group velocity v/s phase angle for the spatial 

derivative: stanadard 7-pt, standard 9-pt and those designed by Tam 
and Webb and Lockard et al 
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Fig. 7 Plot of group velocity v/s phase angle for the spatial 

derivatives designed by Zingg et al, Zhuang and Chen, Bogey and 
Bailly 

 

D. 1-D Wave Propagation Problems 
Propagation of Boxcar function [17] 

This test problem involves discontinuous initial conditions.  
The initial disturbance can be written as:  

),25()25()( −−+= xHxHxg for 4500 ≤≤ x  where )(xH  is 
the Heaviside function.  The Fourier  transformation of )(xg  
consists of high frequency components.  These need to be 
damped so as to avoid spurious high frequency waves.  
Hence, )(xg  can be used to study the effect of artificial 
damping. 

We next present the results for the spatial schemes 
proposed by Tam and Webb [20], Lockard et al. [14], Zingg et 
al. [24], Zhuang and Chen [26], Bogey and Bailly [8], all 
coupled coupled with the optimised time marching scheme 
designed by Tam and Webb, at the dimensionless time, t=400 
at some different cfl numbers.  Based on the numerical 
experiments performed, it has been found that the maximum 

stability limit of these schemes are 0.21, 0.21, 0.254, 0.17 and 
0.22 respectively. 

 
Fig. 8a Propagation of Boxcar function at dimensionless time, t=400 

at cfl 0.05 using the ST7 scheme coupled with the optimised time 
discretisation designed by Tam and Webb 
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Fig. 8b Propagation of Boxcar function at dimensionless time, t=400 

at cfl 0.10 using the ST7 scheme coupled with the optimised time 
discretisation designed by Tam and Webb 
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Fig. 8c Propagation of Boxcar function at dimensionless time, t=400 

at cfl 0.15 using the ST7 scheme coupled with the optimised time 
discretisation designed by Tam and Webb 
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Fig. 8d Propagation of Boxcar function at dimensionless time, t=400 

at cfl 0.20 using ST7 scheme coupled with the optimised time 
discretisation designed by Tam and Webb. 
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Fig. 8e Propagation of Boxcar function at dimensionless time, t=400 

at cfl 0.25 using ST7 scheme coupled with the optimised time 
discretisation designed by Tam and Webb. 
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Fig. 9a Propagation of Boxcar function at a dimensionless time, 

t=400 at cfl 0.05 using ST9 scheme coupled with the optimised time 
discretisation designed by Tam and Webb. 
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Fig. 9b Propagation of Boxcar function at a dimensionless time, 

t=400 at cfl 0.10 using ST9 scheme coupled with the optimised time 
discretisation designed by Tam and Webb. 
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Fig. 9c Propagation of Boxcar function at a dimensionless time, 

t=400 at cfl 0.15 using ST9 scheme coupled with the optimised time 
discretisation designed by Tam and Webb. 
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Fig. 9d Propagation of Boxcar function at a dimensionless time, 

t=400 at cfl 0.20 using ST9 scheme coupled with the optimised time 
discretisation designed by Tam and Webb. 
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Fig. 10a Propagation of Boxcar function at dimensionless time, t=400 
at cfl 0.05 using the spatial scheme coupled with the optimised time 

discretisation designed by Tam and Webb (DRP scheme) 
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Fig. 10b Propagation of Boxcar function at dimensionless time, 

t=400 at cfl 0.10 using the spatial scheme coupled with the optimised 
time discretisation designed by Tam and Webb (DRP scheme) 
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Fig. 10c Propagation of Boxcar function at dimensionless time, t=400 

at cfl 0.15 using the spatial coupled with the optimised time 
discretisation designed by Tam and Webb (DRP scheme) 
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Fig. 10d Propagation of Boxcar function at dimensionless time, 

t=400 at cfl 0.20 using the spatial scheme coupled with the optimized 
time discretisation designed by Tam and Webb (DRP scheme) 
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Fig. 11a Propagation of Boxcar function at dimensionless time, t=400 

at cfl 0.05 using the spatial scheme proposed by Lockard et al. 
coupled with the optimized time discretisation designed by Tam and 

Webb 
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Fig. 11b Propagation of Boxcar function at dimensionless time, 

t=400 at cfl 0.10 using the spatial scheme proposed by Lockard et al. 
coupled with the optimised time discretisation designed by Tam and 

Webb 
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Fig. 11c Propagation of Boxcar function at dimensionless time, t=400 

at cfl 0.15 using the spatial scheme proposed by Lockard et al. 
coupled with the optimised time discretisation designed by Tam and 

Webb 
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Fig. 11d Propagation of Boxcar function at dimensionless time, 

t=400 at cfl 0.20 using the spatial scheme proposed by Lockard et al. 
coupled with the optimised time discretisation designed by Tam and 

Webb 
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Fig. 12a Propagation of Boxcar function at dimensionless time, t=400 
at cfl 0.05 using the spatial scheme proposed by Zingg et al. coupled 
with the optimised time discretisation designed by Tam and Webb 

 

0 50 100 150 200 250 300 350 400 450
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

u

r = 0.10
exact

 
Fig. 12b Propagation of Boxcar function at dimensionless time, 

t=400 at cfl 0.10 using the spatial scheme proposed by Zingg et al. 
coupled with the optimised time discretisation designed by Tam and 

Webb 
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Fig. 12c Propagation of Boxcar function at dimensionless time, t=400 
at cfl 0.15 using the spatial scheme proposed by Zingg et al. coupled 
with the optimised time discretisation designed by Tam and Webb 
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Fig. 12d Propagation of Boxcar function at dimensionless time, 

t=400 at cfl 0.20 using the spatial scheme proposed by Zingg et al. 
coupled with the optimised time discretisation designed by Tam and 

Webb 
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Fig. 12e Propagation of Boxcar function at dimensionless time, t=400 
at cfl 0.25 using the spatial scheme proposed by Zingg et al. coupled 
with the optimised time discretisation designed by Tam and Webb 
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Fig. 13a Propagation of Boxcar function at dimensionless time, t=400 

at cfl 0.05 using the spatial scheme proposed by Zhuang and Chen 
coupled with the optimised time discretisation designed by Tam and 

Webb 
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Fig. 13b Propagation of Boxcar function at a dimensionless time, 

t=400 at cfl 0.10 using the spatial scheme proposed by Zhuang and 
Chen coupled with the optimised time discretisation designed by 

Tam and Webb 
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Fig. 13c Propagation of Boxcar function at dimensionless time, t=400 

at cfl 0.15 using the spatial scheme proposed by Zhuang and Chen 
coupled with the optimised time discretisation designed by Tam and 

Webb 
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Fig. 14a Propagation of Boxcar function at dimensionless time, t=400 

at cfl 0.05 using the spatial scheme proposed by Bogey and Bailly 
coupled with the optimised time discretisation designed by Tam and 

Webb 
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Fig. 14b Propagation of Boxcar function at dimensionless time, 

t=400 at cfl 0.10 using the spatial scheme proposed by Bogey and 
Bailly coupled with the optimised time discretisation designed by 

Tam and Webb 
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Fig. 14c Propagation of Boxcar function at a dimensionless time, 
t=400 at cfl 0.15 using the spatial scheme proposed by Bogey and 
Bailly coupled with the optimised time discretisation designed by 

Tam and Webb 
 

0 50 100 150 200 250 300 350 400 450
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

u

r = 0.20
exact solution

 
Fig. 14d Propagation of Boxcar function at a dimensionless time, 
t=400 at cfl 0.20 using the spatial scheme proposed by Bogey and 
Bailly coupled with the optimised time discretisation designed by 

Tam and Webb 
 
We quantify the errors in the numerical results according to a 

technique devised by Takacs  [21].  Based on Tables III to 
IX, it is observed that when the total error is least at a 
particular cfl number, at the same time, the quantity, eeldld  is 
also least.  The ST7 and those schemes proposed by Tam and 
Webb and by Zhuang and Chen coupled with a time derivative 
designed by Tam and Webb are most effective at cfl numbers 
close to 0.15. In the case of ST9, Lockard et al. and Bogey 
and Bailly, the optimal cfl is close to 0.20. The scheme 
proposed by Zingg et al. is optimised at a cfl close to 0.05. 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE III 
QUANTIFYING DISSIPATION AND DISPERSION ERRORS FROM SOLUTIONS OF 
BOXCAR PROPAGATION MODELED USING THE ST7 SCHEME COUPLED WITH 

THE OPTIMISED TIME DISCRETISATION DESIGNED BY TAM AND WEBB 
cfl Dissipatio

n error 
/ 610−×  

Dispersio
n error 
/ 310−×  

Total 
error 
/ 310−×  

eeldld 

/ 310−×  

0.05 2.160407 2.556805 2.558965 5.120152 
0.10 2.314094 2.536655 2.538969 5.079750 
0.15 2.665509 2.464418 2.467084 4.934914 
0.20 3.429495 2.531297 2.534727 5.069007 
0.25 4.662076 2.557502 2.562164 5.121550 
 

TABLE IV 
QUANTIFYING DISSIPATION AND DISPERSION ERRORS FROM SOLUTIONS OF 
BOXCAR PROPAGATION MODELED USING THE ST9 SCHEME COUPLED WITH 

THE OPTIMISED TIME DISCRETISATION DESIGNED BY TAM AND WEBB 
cfl Dissipation 

error/
510−×  

Dispersion 
error/

210 −×  

Total 
error/

210−×  

eeldld 

/ 210 −×  

0.05 1.140688 2.750905 2.752046 5.578184 
0.10 1.105151 2.695485 2.696590 5.464284 
0.15 1.097861 2.667495 2.668593 5.406782 
0.20 1.141162 2.565923 2.567065 5.198252 
 

TABLE V 
QUANTIFYING DISSIPATION AND DISPERSION ERRORS FROM SOLUTIONS OF 

BOXCAR PROPAGATION MODELED USING THE SPATIAL DISCRETISATION 
COUPLED WITH THE OPTIMISED TIME DISCRETISATION DESIGNED BY TAM 

AND WEBB 
cfl Dissipatio

n error 
/ 610−×  

Dispersio
n error / 

310−×  

Total 
error / 

310−×  

eeldld 

/ 310−×    

0.05 2.045489 1.714735 1.716781 3.432412 
0.10 2.210867 1.657635 1.659846 3.318019 
0.15 2.596401 1.584709 1.587305 3.171931 
0.20 3.414697 1.603478 1.606892 3.209528 
 

TABLE VI 
QUANTIFYING DISSIPATION AND DISPERSION ERRORS FROM SOLUTIONS OF 
BOXCAR PROPAGATION MODELED USING THE SPATIAL DISCRETISATION OF 

LOCKARD ET AL. COUPLED WITH THE OPTIMISED TIME DISCRETISATION 
DESIGNED BY TAM AND WEBB 

cfl Dissipatio
n error 
/ 510−×  

Dispersio
n error 
/ 310−×  

Total 
error 
/ 310−×  

eeldld 

/ 310−×  

0.05 2.071901 1.382941 1.403660 2.767796 
0.10 1.919610 1.312450 1.331646 2.626624 
0.15 1.770409 1.279176 1.296880 2.559989 
0.20 1.637648 1.247946 1.264323 2.497450 
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TABLE VII 

QUANTIFYING DISSIPATION AND DISPERSION ERRORS FROM SOLUTIONS OF 
BOXCAR PROPAGATION [19] MODELED USING THE SPATIAL DISCRETISATION 

OF ZINGG ET AL. COUPLED WITH THE OPTIMISED TIME DISCRETISATION 
DESIGNED BY TAM AND WEBB 

cfl Dissipatio
n error 
/ 610−×  

Dispersio
n error 
/ 310−×  

Total 
error 
/ 310 −×  

eeldld 
/ 310−×  

0.05 4.795034 1.498266 1.50306 2.998778 
0.10 5.215704 1.518621 1.523837 3.039549 
0.15 5.663652 1.514522 1.520186 3.031339 
0.20 6.188563 1.616254 1.622443 3.235121 
0.25 6.902871 1.720093 1.726995 3.443146 
 
 

TABLE VIII 
QUANTIFYING DISSIPATION AND DISPERSION ERRORS FROM SOLUTIONS OF 

BOXCAR PROPAGATION [19] MODELED USING THE SPATIAL DISCRETISATION 
OF ZHUANG AND CHEN COUPLED WITH THE OPTIMISED TIME DISCRETISATION 

DESIGNED BY TAM AND WEBB 
cfl Dissipatio

n error 
/ 510−×  

Dispersio
n error 
/ 310−×  

Total 
error  
/ 310−×  

eeldld 

/ 310−×  

0.05 2.346288 1.473060 1.496523 2.948291 
0.10 2.168320 1.426275 1.447958 2.854586 
0.15 1.992908 1.404311 1.424240 2.810596 
 
 

TABLE IX 
QUANTIFYING DISSIPATION OND DISPERSION ERRORS FROM SOLUTIONS OF 

BOXCAR PROPAGATION [19] MODELED USING THE SPATIAL DISCRETISATION 
OF BOGEY AND BAILLY COUPLED WITH THE OPTIMISED TIME DISCRETISATION 

DESIGNED BY TAM AND WEBB 
cfl Dissipatio

n error 
/ 510−×  

Dispersio
n error 
/ 310−×  

Total 
error  
/ 310−×  

eeldld  
/ 310−×  

0.05 1.139693 1.422212 1.433609 2.869274 
0.10 1.100064 1.295012 1.306013 2.591702 
0.15 1.094133 1.199335 1.210276 2.400109 
0.20 1.136627 1.181182 1.192548 2.363760 
 
 
 

Initial disturbance consisting of sine and gaussian functions 
[11] 

The numerical experiment involves the long-range 
propagation of one-dimensional disturbance, allowing the 
observation of dispersion or dissipation errors.  Initial 
disturbances at t=0 are defined by 

      
 (3) 
 
 

where xaΔ is the dominant wavelength and xbΔ the half-width 
of the Gaussian function.  The parameters a and b affect the 
spectral contents of the disturbance.  In this problem, we set 
a=8 and b=3. 

The initial perturbation is characterised by wavenumbers in 
the 

range 
2

0
π

θ << h  with a peak for 
4

π
θ =h , i.e., for eight 

points per wavelength. 
We obtain the numerical solution after the initial 

disturbance has propagated over xΔ800 corresponding to 100 
times the dominant wavelength, in order to stress the possible 
numerical numerical errors.  The numerical results when 
solved using spatial schemes proposed by Tam and Webb 
[19], Lockard et al. [14], Zingg et al. [25], Zhuang and Chen 
[26], Bogey and Bailly [8], all combined with the time 
derivative designed by Tam and Webb are illustrated in Figs. 
(15) to (19). 
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Fig. 15 Solution for one-dimensional disturbance at dimensionless 

time, t=800 at 2 different cfl numbers using the spatial scheme 
coupled with the optimised time discretisation designed by Tam and 

Webb (DRP scheme) 
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Fig. 16 Solution for one-dimensional disturbance at dimensionless 

time, t=800 at 2 different cfl numbers using the spatial scheme 
proposed by Lockard et al. [14] coupled with the optimised time 

discretisation designed by Tam and Webb 
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Fig. 17 Solution for one-dimensional disturbance at dimensionless 

time, t=800 at 2 different cfl numbers using the spatial scheme 
proposed by Zingg et al. [24] coupled with the optimised time 

discretisation designed by Tam and Webb 
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Fig. 18 Solution for one-dimensional disturbance at dimensionless 

time, t=800 at 2 different cfl numbers using the spatial scheme 
proposed by Zhuang and Chen [26] coupled with the optimised time 

discretisation designed by Tam and Webb 
 
 

 
Fig. 19 Solution for one-dimensional disturbance at dimensionless 

time, t=800 at 2 different cfl numbers using the spatial scheme 
proposed by Bogey and Bailly [8] coupled with the optimised time 

discretisation designed by Tam and Webb 
 
 
 
 
 

TABLE X 
QUANTIFYING DISSIPATION AND DISPERSION ERRORS FROM SOLUTIONS OF 

THE LONG-RANGE PROPAGATION OF ONE-DIMENSIONAL DISTURBANCE 
USING SPATIAL SCHEME COUPLED WITH THE OPTIMISED TIME 

DISCRETISATION DESIGNED BY TAM AND WEBB [19] (DRP SCHEME) 
cfl Dissipation 

error 
Dispersio
n 
Error 
/ 310−×  

Total 
Error  
/ 310−×  

eeldld 
/ 310−×  

0.05 8.166709 
1010 −×  

1.399802 1.399803 2.801564 

0.10 9.171561 
1010 −×  

1.349753 1.349754 2.701328 

0.15 3.115731 
710 −×  

1.248022 1.248333 2.497602 

0.20 7.875999
610−×  

1.122106 1.129982 2.245472 

 
 

TABLE XI 
QUANTIFYING DISSIPATION AND DISPERSION ERRORS FROM SOLUTIONS OF 

THE LONG-RANGE PROPAGATION OF ONE-DIMENSIONAL DISTURBANCE 
USING SPATIAL SCHEME OF LOCKARD ET AL. [14] COUPLED WITH THE 
OPTIMISED TIME DISCRETISATION DESIGNED BY TAM AND WEBB [19] 

cfl Dissipatio
n 
Error 
 

Dispersio
n  
Error 
/ 410−×  

Total 
Error 
/ 410−×  

eeldld  

0.05 9.740815 
510−×  

4.714690 5.688771 9.43170 
410−×  

0.10 9.685720 
510−×  

4.908912 5.877484 9.82033 
410−×  

0.15 9.731555 
510−×  

5.761992 6.735148 1.152740 
310−×  

0.20 1.047971 
410−×  

7.140597 8.188568 1.428640 
310−×  

 
 

TABLE XII 
QUANTIFYING DISSIPATION AND DISPERSION ERRORS FROM SOLUTIONS OF 

THE LONG-RANGE PROPAGATION OF ONE-DIMENSIONAL DISTURBANCE 
USING SPATIAL SCHEME OF ZINGG ET AL. [24] COUPLED WITH THE 

OPTIMISED TIME DISCRETISATION DESIGNED BY TAM AND WEBB [19] 
cfl Dissipatio

n error 
/ 410−×  

Dispersio
n error 
/ 310−×  

Total 
error 
/ 310−×  

eeldld 
/ 310 −×  

0.05 1.999592 1.005770 1.205729 2.012592 
0.10 1.986953 1.051157 1.249852 2.011282 
0.15 1.986153 1.165015 1.363630 2.331427 
0.20 2.038447 1.262122 1.465967 2.525879 
0.25 2.245064 1.465909 1.690415 2.934018 
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TABLE XIII 
QUANTIFYING DISSIPATION AND DISPERSION ERRORS FROM SOLUTIONS OF 

THE LONG-RANGE PROPAGATION OF ONE-DIMENSIONAL DISTURBANCE 
USING SPATIAL SCHEME OF ZHUANG ET AL. [26] COUPLED WITH THE 

OPTIMISED TIME DISCRETISATION DESIGNED BY TAM AND WEBB [19] 
cfl Dissipatio

n 
Error 
/ 410−×  

Dispersio
n 
Error 
/ 410−×  

Total 
Error 
/ 310−×  

eeldld 
/ 310−×  

0.05 2.004390 9.386854 1.137124 1.878292 
0.10 1.991618 9.963253 1.195487 1.993683 
0.15 1.989300 1.144283 1.343213 2.289916 
 
 

TABLE XIV 
QUANTIFYING DISSIPATION AND DISPERSION ERRORS FROM SOLUTIONS OF 

THE LONG-RANGE PROPAGATION OF ONE-DIMENSIONAL DISTURBANCE 
USING SPATIAL SCHEME OF BOGEY AND BAILLY [8] COUPLED WITH THE 
OPTIMISED TIME DISCRETISATION DESIGNED BY TAM AND WEBB [19] 

cfl Dissipatio
n error 

Dispersio
n error 

Total 
error 

eeldld 

0.05 9.246997 
1010−×  

3.979900 
410−×  

3.979909 
410−×  

7.96138 
410−×  

0.10 5.614171 
1010 −×  

4.49797 
410 −×  

4.490803 
410 −×  

8.98361 
410 −×  

0.15 3.565916 
710 −×  

6.921090 
410 −×  

6.924656 
410 −×  

1.384697 
310 −×  

0.20 8.195438 
610 −×  

1.228249 
310 −×  

1.236444 
310 −×  

2.458007 
310 −×  

 
 

Tables X to XIV show that in the case of the long-range 
propagation of the 1-D disturbance, both the total error and 
the quantity, eeldld are both least at the same cfl number for a 
numerical method approximating the linear advection 
equation, under consideration.  The scheme proposed by Tam 
and Webb [19] is most effective at a cfl close to 0.20.  On the 
other hand, the methods proposed by Lockard et al, [14], 
Zingg et al. [24], Zhuang and Chen [26], Bogey and Bailly [8] 
when coupled with the optimized time derivative designed by 
Tam and Webb are all most effective at cfl numbers close to 
0.05. 
 
Initial disturbance consisting of Gaussian profile [12,15] 
 
We consider the following problem 
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We present the results using the spatial derivatives proposed 
by Tam and Webb [19] and by Bogey and Bailly [8].  Also, 
three categories of waves are considered namely; 
1) short waves (b = 3) 
2) intermediate waves (b = 6) 
3) long waves (b = 20). 

 

The results are displayed in Figs.(20) to (27) and the errors 
tabulated in Tables XV to XX. 
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Fig. 20 Solution for initial disturbance consisting of a Gaussian 

profile at dimensionless time, t=400 using the DRP scheme [19] at 
cfl number 0.15, with b = 3 
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Fig. 21 Solution for initial disturbance consisting of a Gaussian 

profile at dimensionless time, t=400 using the DRP scheme [19] at 
cfl number 0.20, with b = 3 

 

 
Fig. 22 Solution for initial disturbance consisting of a Gaussian 

profile at dimensionless time, t=400 using the DRP scheme [19], 
with b = 6 
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Fig. 23 Solution for initial disturbance consisting of a Gaussian 

profile at dimensionless time, t=400 using the DRP scheme [19], 
with b = 20 

 

385 390 395 400 405 410 415
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

u

r = 0.05
exact

 
Fig. 24 Solution for initial disturbance consisting of a Gaussian 

profile at dimensionless time, t=400 using the spatial discretisation 
proposed by Bogey and Bailly [8] coupled with the optimized time 

discretisation designed by Tam and Webb [19] at cfl=0.05, with b = 3 
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Fig. 25 Solution for initial disturbance consisting of a Gaussian 

profile at dimensionless time, t=400 using the spatial discretisation 
proposed by Bogey and Bailly [8] coupled with the optimised time 

discretisation designed by Tam and Webb [19] at cfl=0.20, with b = 3 
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Fig. 26 Solution for initial disturbance consisting of a 

Gaussian profile at dimensionless time, t=400 using the spatial 
discretisation proposed by Bogey and Bailly [8] coupled with 
the optimized time discretisation designed by Tam and Webb 

[19], with b = 6 
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Fig. 27 Solution for initial disturbance consisting of a 

Gaussian profile at dimensionless time, t=400 using the spatial 
discretisation proposed by Bogey and Bailly [8] coupled with 
the optimised time discretisation designed by Tam and Webb 

[19] with b = 20 
 

TABLE XV 
QUANTIFYING DISSIPATION AND DISPERSION ERRORS FROM SOLUTIONS OF 

THE GAUSSIAN PROPAGATION OF USING THE SPATIAL SCHEME COUPLED WITH 
THE OPTIMISED TIME DISCRETISATION DESIGNED BY TAM AND WEBB [19], 

WITH B = 3 
cfl Dissipatio

n error 
 

Dispersio
n error 
/ 610−×  

Total 
error 
/ 610−×  

eeldld 
/ 610−×  

0.05 2.432768 
1110−×  

4.821456 4.821480 9.642 

0.10 1.186329 
1110−×  

3.531614 3.531626 7.064 

0.15 6.595188 
1210−×  

3.105185 3.105191 6.210 

0.20 2.703211 
1110−×  

4.988251 4.988278 9.976 
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TABLE XVI 
QUANTIFYING DISSIPATION AND DISPERSION ERRORS FROM SOLUTIONS OF 

THE GAUSSIAN PROPAGATION OF USING SPATIAL SCHEME COUPLED WITH THE 
OPTIMISED TIME DISCRETISATION DESIGNED BY TAM AND WEBB [19], WITH B 

= 6 
cfl Dissipatio

n error 
/ 710−×  

Dispersio
n error 
/ 510−×  

Total 
error 

eeldld 
/ 510−×  

0.05 5.481085 4.665514 4.720325 
410−×  

9.3312 

0.10 4.334617 3.817972 3.861318 
510−×  

7.6361 

0.15 3.402044 3.190306 3.224326 
510−×  

6.3807 

0.20 2.676630 2.522800 2.549567 
510−×  

5.0457 

 
 

TABLE XVII 
QUANTIFYING DISSIPATION AND DISPERSION ERRORS FROM SOLUTIONS OF 

THE GAUSSIAN PROPAGATION OF USING SPATIAL SCHEME COUPLED WITH THE 
OPTIMISED TIME DISCRETISATION DESIGNED BY TAM AND WEBB [19], WITH B 

= 20 
cfl Dissipatio

n error 
/ 510−×  

Dispersio
n error 

Total 
error 

eeldld 
/ 310−×  

0.05 3.979960 1.089400 
310−×  

1.129199 
310−×  

2.179988 

0.10 3.477232 9.754649 
410−×  

1.010237 
310−×  

1.951883 

0.15 3.103162 8.713757 
410−×  

9.024073 
410−×  

1.743512 

0.20 2.883936 7.119052 
410−×  

7.407446 
410−×  

1.424318 

 
 

TABLE XVIII 
QUANTIFYING DISSIPATION AND DISPERSION ERRORS FROM SOLUTIONS OF 
THE GAUSSIAN PROPAGATION OF USING SPATIAL SCHEME OF BOGEY AND 

BAILLY COUPLED WITH THE OPTIMISED TIME DISCRETISATION DESIGNED BY 
TAM AND WEBB [19], WITH B = 3 

cfl Dissipatio
n error 

Dispersio
n error 

Total 
error 

eeldld 
/ 510−×  

0.05 3.599248 
1010−×  

5.630459 
610−×  

5.630819 
610−×  

1.1261 

0.10 2.037520 
1010−×  

9.602210 
610−×  

9.602413 
610−×  

1.9204 

0.15 1.064683 
1010−×  

1.078054 
510−×  

1.078065 
510−×  

2.1561 

0.20 7.078462 
1110−×  

2.443306 
510−×  

2.443313 
510−×  

4.8866 

 
 
 
 

TABLE XIX 
QUANTIFYING DISSIPATION AND DISPERSION ERRORS FROM SOLUTIONS OF 
THE GAUSSIAN PROPAGATION OF USING SPATIAL SCHEME OF BOGEY AND 

BAILLY COUPLED WITH THE OPTIMISED TIME DISCRETISATION DESIGNED BY 
TAM AND WEBB [19], WITH B = 6 

cfl Dissipatio
n error 

Dispersio
n error 

Total 
error 

eeldld 
/ 410−×  

0.05 1.762725 
610−×  

1.048510 
410−×  

1.066138 
410−×  

2.09713 

0.10 1.432981 
610−×  

8.942894 
510−×  

9.086193 
510−×  

1.78866 

0.15 1.174016 
610−×  

7.763200 
510−×  

7.880602 
510−×  

1.55270 

0.20 9.707269 
710−×  

6.205850 
510−×  

6.302923 
510−×  

1.24121 

 
 

TABLE XX 
QUANTIFYING DISSIPATION AND DISPERSION ERRORS FROM SOLUTIONS OF 
THE GAUSSIAN PROPAGATION OF USING SPATIAL SCHEME OF BOGEY AND 

BAILLY COUPLED WITH THE OPTIMISED TIME DISCRETISATION DESIGNED BY 
TAM AND WEBB [19], WITH B = 20 

cfl Dissipatio
n error 
/ 510−×  

Dispersio
n error 
/ 310−×  

Total 
error 
/ 310−×  

eeldld 
/ 310−×  

0.05 7.737032 1.474945 1.552316 2.952073 
0.10 6.995402 1.363594 1.433548 2.729053 
0.15 6.513239 1.254267 1.319399 2.510112 
0.20 6.192883 1.100220 1.162149 2.201654 
 
 

Based on the values of eeldld, it is concluded that the DRP 
scheme is most effective at cfl close to 0.15 to model the 
propagation of the gaussian function with b = 3.  For other 
values of b, such as 6 and 20, the optimal cfl is 0.20.   
Considering the method based on the spatial discretisation 
proposed by Bogey and Bailly [8] and the temporal 
discretisation proposed by Tam and Webb [19], with reference 
to the eeldld values, we deduce that for b = 3, the optimal cfl 
is close to 0.05 but for other types of waves  (b = 6, b = 20), 
the most suitable value of the cfl is close to 0.20. 

 

II.  CONCLUSION 
In this work, we have combined some spatial derivatives 

with the optimised time derivative derived by Tam and Webb 
[19] to obtain seven different multi-level finite difference 
schemes.  We have also analysed the variation of the modified 
wavenumber and group velocity, both with respect to the 
exact wavenumber for each of the seven spatial derivatives 
used.  The problems solved deal with the 1-D wave 
propagation like the Boxcar function, an initial disturbance 
containing sine and gaussian functions and the propagation of 
a gaussian profile with three categories of waves considered.  
We have quantified the dissipation and dispersion errors from 
the numerical results obtained at some different cfl numbers.  
Based on the numerical experiments solved using a given 
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optimised numerical method, it can seen that the results are 
dependent on the type of waves which are simulated and also 
on the Courant number used. 

ACKNOWLEDGMENT 
Mr. Appadu is a Phd student at the University of Mauritius 

(UOM) and has been partially supported by the Tertiary 
Education Commission (TEC) and the UOM for the research 
through a bursary. 

REFERENCES   
[1] A.R. Appadu, M.Z. Dauhoo and S.D.D.V. Rughooputh.  Optimisation of 

Numerical Schemes Using the Minimised Integrated Square Difference 
Error.  Research and Innovation Challenges. University of Mauritius, 16-
20 January 2007. 

[2] A.R. Appadu, M.Z. Dauhoo and S.D.D.V. Rughooputh.  Control of 
Numerical Effects of Dispersion and Dissipation in Numerical Schemes 
for Efficient Shock-Capturing Through an Optimal Courant Number. 
Computers and Fluids, Vol. 37, No. 6, 2008, pp. 767-783. 

[3] A.R. Appadu and M.Z. Dauhoo.  A Note on the Two Versions of Lax-
Friedrichs Scheme.  Proceedings of The 2007 International Conference 
on Scientific Computing. CSREA Press, Editors: H. R. Arabnia and J. Y. 
Yang and M. Q. Yang. 

[4] A.R. Appadu, M.Z. Dauhoo and S.D.D.V. Rughooputh. Efficient Shock-
Capturing Numerical Schemes Using the Approach of Minimised 
Integrated Square Difference Error for Hyperbolic Conservation Laws.  
Proceedings of Computational Science and Its Applications- ICCSA 
2007.  Lecture Notes in Computer Science. Editors: O. Gervasi Osvaldo 
and M.L. Gavrilova, Vol. III. 

[5] A.R. Appadu and M.Z. Dauhoo.  On the Concept of Minimised 
Integrated Square Difference Error:  Its Mechanism and Some of Its 
Applications. Submitted to SIAM Journal of Numerical Analysis 
(September 2008). 

[6] A.R. Appadu and M.Z. Dauhoo.  The Concept of Minimised Integrated 
Exponential Error for Low Dispersion and Low Dissipation.  Submitted 
to International Journal for Numerical Methods in Fluids (September 
2008). 

[7] G. Ashcroft and X. Zhang. Optimised prefactored compact schemes, 
Journal of Computational Physics, vol. 190, 2003, pp. 459-477. 

[8] C. Bogey and C. Bailly. A Family of Low Dispersive and Low 
Dissipative Explicit Schemes for Computing the Aerodynamic Noise. 
AIAA-Paper 2002. 

[9] C. Bogey and C. Bailly. A Family of Low Dispersive and Low 
Dissipative Explicit Schemes for Flow and Noise Computations. Journal 
of Computational Physics, 2004, vol. 194, pp. 194-214. 

[10] Lodovica Ferraria. 
http://www.sosmath.com/algebra/factor/fac12/fac12.html. 

[11] R. Hixon. Evaluation of high-accuracy MacCormack-Type scheme using 
Benchmark Problems, NASA Contractor Report 202324, ICOMP-97-03-
1997. 

[12] F.Q. Hu, M.Y. Hussaini and J. Manthey.  Low-Dissipation and 
Dispersion Runge-Kutta Schemes For Computational Acoustics.  
Technical Report: TR-94-102, 1994. 

[13] S. Johansson. High Order Finite Difference Operators with the 
Summation by Parts Property based on DRP Schemes, Division of 
Scientific Computing-Department of Information Technology, Uppsala 
University, Sweden, 2007. 

[14] D.P. Lockard, K.S. Brentner and H.L. Atkins. High-accuracy algorithms 
for computational aeroacoustics.  AIAA Journal, vol. 33, No. 2, pp. 246-
251, 1995. 

[15] M. Popescu and W. Shyy. Dispersion-Relation-Preserving and Space-
Time schemes for Wave Equations, AIAA, Paper No. 202-0225, 2002. 

[16] P. Roe. Linear Bicharacteristics schemes without dissipation. SIAM 
Journal of Scientific Computing, vol. 19, No.  5, (1998), pp. 1405-1429. 

[17] W. De Roeck, M. Baelmans, and P. Sas. An overview of high-order 
finite difference schemes for computational aeroacoustics, International 
Conference on Noise and Vibration Engineering. Katholieke Universiteit 
Leuven, Belgium, ISMA 20-22 September 2004, pp. 353-368. 

[18] T.K. Sengupta, G. Ganeriwal and S. De. Analysis of Central and Upwind 
Compact Schemes. Journal of Computational Physics, Vol. 192, 2003, 
pp. 677-694. 

[19] C.K.W. Tam and J.C. Webb.  Dispersion-Relation-Preserving Finite 
Difference Schemes for Computational Acoustics.  Journal of 
Computational Physics, Vol. 107, 1993, pp. 262-281. 

[20] C.K.W. Tam. Computational Aeroacoustics: Issues and Methods.  
AIAA, 33, 10, pp. 1788-1796, October 1995. 

[21] L. Takacs. A Two-step scheme for the Advection Equation with 
Minimized Dissipation and Dispersion errors.  Monthly Weather 
Review.  113, (1985), pp. 1050-1065. 

[22] D. J. Webb, B.A. De Cuevas and C.S. Richmond. Improved Advection 
Schemes for Ocean Models.  Journal of Atmospheric and Oceanic 
Technology.  Vol. 15, No. 5, 1998, pp. 1171-1187. 

[23] V.L.Wells and R.A.Renault. Computing Aerodynamically Generated 
Noise, Annual Rev. Fluid Mechanics, vol. 29, 1997, pp.161-199. 

[24] D.W. Zingg, H. Lomax and H.M. Jurgens. High-Accuracy finite 
difference schemes for linear wave propagation.  SIAM Journal of 
Scientific Computing, vol. 17, no. 2, 1996, pp. 328-346. 

[25] D.W. Zingg. Comparison of High-Accuracy Finite-Difference Methods 
for Linear Wave Propagation.  SIAM Journal of Scientific Computing. 
Vol. 22,no. 2, pp. 476-502, 2001. 

[26] M. Zhuang and R.F. Chen. Application of high-order optimised upwind 
schemes for computational aeroacoustics.  AIAA Journal, vol. 40,No. 3, 
2002, pp. 443-449. 

 
 

 


