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Optimal Control of Viscoelastic Melt Spinning
Processes
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Abstract—The optimal control problem for the viscoelastic melt
spinning process has not been reported yet in the literature. In this
study, an optimal control problem for a mathematical model of a
viscoelastic melt spinning process is considered. Maxwell-Oldroyd
model is used to describe the rheology of the polymeric material, the
fiber is made of. The extrusion velocity of the polymer at the spinneret
as well as the velocity and the temperature of the quench air and the
fiber length serve as control variables. A constrained optimization
problem is derived and the first–order optimality system is set up
to obtain the adjoint equations. Numerical solutions are carried out
using a steepest descent algorithm. A computer program in MATLAB
is developed for simulations.
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I. INTRODUCTION

MAny kinds of synthetic textile fibers, like Nylon,
Polyester, etc. are manufactured by a so–called melt

spinning process. In this process, the molten polymer is
extruded through a die called the spinneret to create a slender,
cylindrical jet of viscous polymer, the fiber. Far away from the
spinneret, the fiber is wrapped around a drum, which pulls it
away at a pre–determined take–up speed. The take–up speed is
much higher than the extrusion speed; in industrial processes
the take–up speed is about 50m/s and the extrusion speed
is about 10m/s, see [2], [6]. The ratio between the take–up
speed vL and the extrusion speed v0 is called draw–ratio d.
Hence the filament is stretched considerably in length and
therefore it decreases in diameter. The ambient atmosphere
temperature is below the polymer solidification temperature
such that the polymer is cooled and solidifies before the take–
up, see Figure 1. In industrial processes a whole bundle of
hundreds of single filaments is extruded and spun in parallel,
however for the analysis we consider a single filament.

The dynamics of melt spinning processes has been studied
by many research groups throughout the world during the last
decades starting with early works of Kase and Matsuo [4] and
Ziabicki [12]. In later works, the energy balance for the heat
transfer was introduced into the model, and more and more
sophisticated descriptions, including material effects, crystal-
lization kinetics and viscoelastic behavior, were developed by
several authors in order to achieve a better understanding of
the fiber formation process. Up to now it is possible to use
the basic models with more or less modifications in different
technological aspects of the melt spinning process. Due to
the complex behaviour of the polymeric material, several
parameters are included in all the available models. Typically,
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Fig. 1. Sketch of the melt spinning process.

these parameters are hard to measure. An identification based
on comparing available data and simulations is one way
to determine those parameters. Additionally, the outcome of
the melt spinning process depends heavily on the boundary
conditions, e.g. the draw ratio, the ambient temperature, the
quench air velocity and temperature. The topic of optimizing
the fiber production with respect to the external variables has
not been widely discussed in the literature. Especially, the
viscoelastic case has not yet been treated, although the viscous
models were discussed [9].

The main goal of this study is to control the tempera-
ture profile of the fiber, such that the final temperature is
below the fiber solidification point. We consider Maxwell-
Oldroyd model to describe the viscoelastic behaviour of the
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polymeric material. The optimal control problem is considered
as a constrained minimization problem, see [3], and derived
formally the corresponding first–order optimality system via
the Lagrange functional. For the numerical computation of
the optimal control variables, a steepest descent algorithm is
presented using the adjoint variables.

II. THE OPTIMAL CONTROL PROBLEM

A. Simple Melt Spinning Model

By considering basic conservations laws (mass, momentum
and energy) one can obtain the simple model for the fiber
spinning process, see [6], [7], [8], [9].

ρAv = W0 , (1)

ρAv
dv

dz
=

dAτ

dz
−

√
AπCdρairv

2 + ρAg , (2)

ρCpv
dT

dz
= −2α

√
π√

A
(T − T∞) , (3)

where A represent spinline cross-sectional area, ρ is the
density of the fluid, g is the gravity, W0 mass throughput, v
is the spinline velocity, T represent the spinline temperature,
T0 is the initial temperature, T∞ is the air temperature, Cp is
the fluid heat capacity, z is the distance coordinate from the
spinneret. The axial stress τ is given by

τ + λ

(
v
dτ

dz
− 2τ

dv

dz

)
= 3η

dv

dz
, (4)

where η and λ denote the viscosity and the fluid characteristic
relaxation time respectively. The viscosity and the character-
istic relaxation time are given below

η = η0 exp
[

Ea

RG

(
1
T

− 1
T0

)]
, (5)

λ =
η0

G
exp

[
Ea

RG

(
1
T

− 1
T0

)]
. (6)

Here η0 > 0 is the zero shear viscosity at the initial tempera-
ture T0, Ea denotes the activation energy, RG represents the
gas constant and G denotes the fluid shear modulus.

According to [6], we assume the following relations for the
air drag coefficient

Cd = 0.37Re−0.61
air

and the heat transfer coefficient

α =
0.21
R0

κRe
1
3
air

[
1 +

64v2
c

v2

] 1
6

depending on the Reynolds–number of the quench air flow

Reair =
2vρair

ηair

√
A

π
.

Here R0 is the radius of the spinneret, ρair, ηair and κ represent
the density, viscosity and heat conductivity of the air and vc

is the velocity of the quench air.
The equations (1)—(3) are subject to the boundary condi-

tions

v = v0 and T = T0 at z = 0 (7)
v = vL at z = L (8)

where L denotes the length of the spinline.
The dimensional equations of (1)-(3) end (4) are now

rendered into dimensionless form by introducing following
quantities

v∗ =
v

v0
, z∗ =

z

L
, T ∗ =

T

T0
, A∗ =

A

A0
, and q∗ =

q

q0
,

where q = ρAτ
W0

and q0 = ρA0v0η0
LW0

. Dropping the star,
rearranging the terms, the system reads as

dv

dz
=

1
3η + ϑvq

(
qv + ϑv2 dq

dz

)
, (9)

dq

dz
= Re

(
dv

dz
− Fr−1

v
+ Cv3/2

)
, (10)

dT

dz
= −γ

T − T∞√
v

, (11)

v(0) = 1, v(1) = d(=
vL

v0
> 1), T (0) = T0, (12)

where Re = ρLv0
η0

is the Reynolds number, Fr−1 = gL
v2
0

is the

inverse of the Froude number, C = CdρairL
ρR0

is the scaled drag
coefficient and γ = 2αL

ρCpv0R0
denotes the scaled heat transfer

coefficient.
The viscosity η and ϑ are given by

η = exp
[

Ea

RGT0

(
1
T

− 1
)]

, (13)

ϑ =
η0v0

GL
exp
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RGT0

(
1
T
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)]

. (14)

B. Cost Functional

We want to control the temperature profile of the fiber,
such that the final temperature is below the solidification point
T ∗

s = Ts/T0. The air temperature T∞, the air velocity vc

and the extrusion velocity v0 can be influenced and hence
serve as control variables. In addition to the air temperature,
air velocity and the extrusion velocity the fiber length is also
considered as a control variable. Therefore, the following two
cost functionals are considered

J1(y, u) = − ω1u3 + ω2(y3(1) − T ∗
s )

+
ω3

2

∫ 1

0

(u2(z) − TR)2dz +
ω4

2

∫ 1

0
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(15a)
J2(y, u) = − ω1u3 + ω2(y3(1) − T ∗

s )

+
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+
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0

u4(z)2dz (15b)
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where y = (v, q, T ) ∈ Y denotes the vector of state variables
and control variables u ∈ U are given by

u =

{
(vc, T∞, v0) for J1

(vc, T∞, v0, L) for J2.

Here TR denotes the reference temperature.
The weighting coefficients ωi > 0, i = 1..5 allow to adjust

the cost functionals to different scenarios.
Summarizing, the following constrained optimization prob-

lems are considered

minimize J1(y, u) w.r.t u, subject to 9 − 11. (16)

minimize J2(y, u) w.r.t u, subject to 9 − 11. (17)

III. THE FIRST–ORDER OPTIMALITY SYSTEM

In this section we introduce the Lagrangian associated to the
constrained minimization problems 16 and 17 and derive the
system of first–order optimality conditions. Eventhough, two
constrained minimization problems are need to be handled,
it is enough to consider one problem to derive the necessary
theory. So we consider the problem (16) and in generally J
denotes the cost functional.

Let Y = C1([0, 1]; R3) be the state space consisting of
triples of differentiable functions y = (v, q, T ) denoting
velocity, stress and temperature of the fiber. Further, let
U = C1([0, 1]; R2) × R be the control space consisting of
a pair (u1, u2) = (vc, T∞) of differentiable functions, i.e. air
velocity and temperature, and a scalar u3 = v0 interpreted as
the inflow velocity.

The operator e = (ev, eq, eT ) : Y × U → Y ∗is defined via
the weak formulation of the state system (9)-(11):

〈e(y, u), ξ〉Y,Y ∗ = 0 ∀ξ ∈ Y ∗

where 〈·, ·〉Y,Y ∗ denotes the duality pairing between Y and its
dual space Y ∗. Now, the minimization problem (16) reads as

minimize J(y, u) w.r.t u ∈ U, subject to e(y, u) = 0. (18)

Introducing the Lagrangian L : Y × U × Y ∗ → R defined
as

L(y, u, ξ) = J(y, u) + 〈e(y, u), ξ〉Y,Y ∗ ,

the first–order optimality system reads as

∇y,u,ξL(y, u, ξ) = 0 .

Considering the variation of L with respect to the adjoint
variable ξ, one can get the state system

e(y, u) = 0

or in the classical form
dy

dz
= f(y, u), with v(0) = 1, v(1) = d, T (0) = 1 (19)

Rearranging the equations (9)–(11), f(y, u) can be obtained.
Taking variations of L with respect to the state variable y,

the adjoint system can be obtained

Jy(y, u) + e∗y(y, u)ξ = 0

or in classical form

− dξ

dz
= F (y, u, ξ) ,

with ξq(0) = 0, ξq(1) = 0, ξT (1) = −ω2 , (20)

where

F (y, u, ξ) =
(

∂f

∂y

)�
ξ .

Finally, considering variations of L with respect to the
control variable u in a direction of δu the optimality condition
can be obtained

〈Ju(y, u), δu〉 + 〈eu(y, u)δu, ξ〉 = 0 . (21)

IV. ALGORITHM

To solve the nonlinear first–order optimality
system (19), (20) and (21), an iterative steepest–descent
method is proposed.

1) Set k = 0 and choose initial control u(0) ∈ U .
2) Given the control u(k), solve the state system (19) with

a shooting method to obtain y(k).
3) Solve the adjoint system (20) with a shooting method to

obtain ξ(k).
4) Compute the gradient g(k) of the cost functional.
5) Update the control u(k+1) = u(k)−βg(k) for a step size

β > 0.
6) Compute the cost functional J (k) = J(y(k), u(k)).
7) If

∣∣g(k)
∣∣ ≥ Tol, goto 2.

Here, Tol is some prescribed tolerance for the termination of
the optimization procedure. In each iteration step, we need to
solve two boundary value problems, i.e. the state system (19)
and the adjoint system (20). Both systems are solved using a
shooting method based on a Newton–iteration.

A. Step Size Control with Polynomial Models

Crucial for the convergence of the algorithm is the choice
of the step size β (in step 5 of the algorithm) in the direction
of the gradient. Clearly, the best choice would be the result of
a line search

β∗ = argminβ>0J(uk − βgk).

However this is numerically quite expensive although it is a
one dimensional minimization problem. Instead of the exact
line search method, an approximation based on a quadratic
polynomial method is used [5] in order to find β∗ which
minimize J(uk − βgk). The quadratic polynomial for

Φ(β) = J(uk − βgk),

is constructed using following data points,

Φ(0) = J(uk), Φ(1) = J(uk − gk),

Φ′(0) = ∇J(uk)Tgk < 0.
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Then the quadratic polynomial of β reads as follows,

Λ(β) = Φ(0) + Φ′(0)β + (Φ(1) − Φ(0) − Φ′(0))β2.

The global minimum of Φ is ,

β∗ =
−Φ′(0)

2(Φ(1) − Φ(0) − Φ′(0))
∈ (0, 1).

B. Numerics

Both state and adjoint system of ODE were solved using
the MATLAB routine ode23tb. This routine uses an implicit
method with backward differentiation to solve stiff differential
equations. It is an implementation of TR-BDF2 [11], an
implicit two stage Runge-Kutta formula where the first stage
is a trapezoidal rule step and the second stage is a backward
differentiation formula of order two.

V. RESULTS

First, we consider the results for the cost functional J2.
Figure 2 shows spinline velocity, temperature, air velocity
and air temperature profiles before optimization and after
optimization for the cost functional J2. Corresponding cost
functional is shown in Figure 3 for two different tolerance
values (10−2 and 10−3 ).

It can be seen that in an optimal state final temperature
is below 50◦C and the extrusion velocity increases from
16.67m/s to 17.00 m/s. The fiber length increases from 1
m to 1.45 m. The optimal air temperature profile is more or
less close to 22.5◦C. The optimal air velocity profile is very
high near the spinneret and just after the spinneret it almost
constant and very close to zero. These details are summarized
in Table I
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Fig. 3. Cost functional J2.

The constrained optimization problem (16) does not yield
the reasonable solution. This is because of the Maxwell-
Oldroyd model has an upper bound for the final velocity and
this upper bound value is given below [10]

TABLE I
SUMMARY OF OPTIMAL VALUES FOR COST FUNCTIONAL J2 .

Value / Parameter Initial Optimal
Final Temperature ◦C 71.77 45.50
Fiber length L m 1.0 1.45
Extrusion velocity m/s 16.67 17.00

v(L) ≤ v(0) +
∫ L

0

1
λ(T )

dz . (23)

Since the fluid characteristic relaxation time depends on tem-
perature profile, the upper bound value also depends on the
temperature profile. The temperature profile varies with respect
to parameters, e.g. the air velocity and temperature. Hence
the upper bound of the final velocity varies with respect to
the parameters. Therefore, it can be easily understood that in
optimal control problem (16), after few iterations the upper
bound gets lower value than the prescribed take-up velocity.
Further, we have noticed that when the final temperature is
close to 55◦C, the upper bound is also close to 50 m/s (which
we considered as the final take-up velocity). This situation
visualize in Figure 4. Hence the constrained minimization
problem (16) does not generate suitable solutions. Unlike the
viscous models [9], in the viscoelastic models we need to han-
dle optimal control problem carefully due to the viscoelastic
effect [10]. Introducing the fiber length L as a new control
variable (cost functional J2) we overcome these difficulties.
Now each iteration the upper bound value increases since it
depends on fiber length L.
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Fig. 4. The upper bound of the final velocity versus initial guess for the
stress when the final temperature close to 55◦C.

VI. CONCLUSION

We studied an optimal control problem for a melt spinning
process. The aim was to control the temperature profile such
that final temperature is below fiber solidification point. In
addition to that we tried to maximize the outflow and min-
imize the air velocity and air temperature. In this study, the
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Fig. 2. For cost functional J2: Spinline velocity (up-left) and temperature (up-right) profiles, initial (blue) optimal (red). Air velocity (down-left) and
temperature (down-right) profiles, initial (blue) optimal (red).

Maxwell-Oldroyd model was considered. Based on the control
variables, two cost functionals were considered. Defining the
cost functional, we converted the optimal control problem
into the constrained optimization problem and derived the
first order optimality system. For the numerical solution, we
proposed the steepest descent algorithm based on adjoint
variable method. For the step size control, polynomial type
model was considered.

It can be seen that the optimal control problem (16) does
not produce the solution. From that we have experienced that
Maxwell-Oldroyd model has an upper bound for the final take-
up velocity.

In an optimal profile, final temperature was below 50◦C in
the cost functional J2 where the air temperature is also reduced
to more or less equal to 22.5◦C. The optimal air velocity
profile is high at the spinneret and just after the spinneret
it is almost constant and very close to zero. It can be noticed
that the extrusion velocity increased. Clearly, this is successful
concerning the cost.
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