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A note on potentially power-positive sign patterns
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Abstract—In this note, some properties of potentially power-
positive sign patterns are established, and all the potentially power-
positive sign patterns of order < 3 are classified completely.
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I. INTRODUCTION

N qualitative and combinatorial matrix theory, a method-

ology based on the signs of the elements of a matrix is
very often useful in the study of some properties of matrices.
A sign pattern is a matrix with entries in {4, —,0}. For a
real matrix A, sgn(A) is the sign pattern whose entries are the
signs of the corresponding entries of A. If A is an n-by-n sign
pattern, the qualitative class of A, denoted by Q(.A), is the set
of all n-by-n real matrices A with sgn(A)= A, and we call
A is a realization of A. A subpattern of A is an n X n sign
pattern obtained from A by replacing some (possibly, none)
nonzero entries of A with zeros. If B is a subpattern of A,
then A is a superpattern of 5. A permutation pattern is simply
a sign pattern matrix with exactly one entry in each row and
column equal to +, and the remaining entries equal to 0. A
product of the form ST AS, where S is a permutation pattern
and A is a sign pattern matrix of the same order as S, is
called a permutation similarity. Two sign patterns .4 and B
are equivalent if 4 = PTBP, or A = PTBTP, where P is
a permutation pattern. A pattern A is reducible if there is a
permutation matrix P such that

T (A1 O
P AP_<A21 Asa )’

where A;; and Ay, are square matrices of order at least one.
A pattern is irreducible if it is not reducible.

For a sign pattern A, we define the positive part of A to
be AT = [oz;;] and the negative part of A to be A~ = [a],
where oz;.; =+ if ay; = +, a;;. =0if a; = 0 or —, and
a;j:—ifaij:—,ai_jzoifaij:(]or—l—.

Since graph theoretical methods are often useful in the study
of sign patterns, we now introduce some graph theoretical
concepts (see, for example, [1, 2]).

An n-by-n sign pattern A has signed digraph I'(A) with ver-
tex set {1,2,---,n} and a positive (negative) arc from i to j if
and only if «;; is positive (negative). A (directed) simple cycle
of length k is a sequence of k arcs (i1, 2), (i2,3), -, (ik, 1)
such that the vertices 1, - - -, 4 are distinct. A digraph D is
primitive if it is strongly connected and the greatest common
divisor of the lengths of its cycles is 1. A sign pattern A
is primitive if its signed digraph I'(A) is primitive. For a
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nonnegative sign pattern A, the Frobenius Test for primitivity
tells us that the signed digraph I'(A) is primitive if and only
if for some (and hence for all) A € Q(A), there exists a
nonnegative integer m such that A* > 0 for all k > m.

In order to state our results clearly, we need the following
definitions.

Definition 1.1. [3] An n-by-n real matrix A is eventually
positive if there exists a positive integer ko such that A* >0
for all k > k.

Definition 1.2. [4] An n-by-n real matrix A is power-
positive if there exists a positive integer k such that A* > 0.

Definition 1.3. [5, 6] An n-by-n sign pattern A is potentially
eventually positive (PEP) if there exists some real matrix A €
Q(A) that is eventually positive.

Definition 1.4. [7] An n-by-n sign pattern A is potentially
power-positive (PPP) if there exists some A € Q(A) that is
power-positive.

In [5], Ellison, Hogben, Tsatsomeros studied the sign
patterns that require eventual positivity or require eventual
nonnegativity. Sign patterns that allow eventual positivity have
been studied in [6]. A characterization of potentially power-
positive sign patterns was given in [7] by Catral, Hogben,
Olesky and Driessche. It was shown that the sign pattern A
is potentially power-positive if and only if A or —A is poten-
tially eventually positive. However, for the characterization of
potentially eventually positive sign patterns is still open, the
characterization of potentially power-positive sign patterns is
open and the classification of potentially power-positive sign
patterns is also open.

In this paper, we address on the potentially power-positive
sign patterns of order < 3. This work is organized as follows:
Some definitions and notations are given in Section 1. In
Section 2, some properties of potentially power-positive sign
patterns are discussed. In Section 3, the potentially power-
positive sign patterns of order < 3 are classified. Conclusions
and open questions are given in Section 4.

II. SOME PROPERTIES OF PPP SIGN PATTERNS

We begin this section by stating some properties of power-
positive matrices without any proof.

Lemma 2.1. Let A be an n-by-n real matrix. Then the
following statements are equivalent:

(1) A is power-positive.

(2) —A is power-positive.

(3) AT is power-positive.

(4) PTAP is power-positive, where P is a permutation
matrix of the same order.

Lemma 2.2. (see [6, Theorem 2.1]) Let A be an n-by-n
sign pattern. If its signed digraph T'(A™) is primitive, then A
is PEP.
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Next, we discuss some properties of PPP sign patters.
Following [6], we use [+] (respectively, [—]) to denote a sign
pattern consisting entirely of positive (respectively, negative)
entries.

Proposition 2.3. If A is the checkerboard block sign pattern

[+ =] ]
-l [+ [
+ =] ]
with square diagonal blocks and there are at least two diag-
onal blocks, then A is not PPP.

Proof: Proposition 2.3 follows from the fact that the
checkerboard block sign pattern A and its negation —.A4 are
not PEP.

Proposition 2.4. If A is the block sign pattern,

A A
.A = )
< Aar Az
with Ajs = A, Az = Afy, and A1y and Aso square, then
A is not PPP. Moreover, if Ayz = A}, Aa = A5, and Ay,

and Aso square, then A is also not PPP.
Proof: We first claim that the block pattern
Bi1 Biz
b= ( By B ) :

with Biy = BE, By1 = B,; and diagonal block Bi; and
Bsyo square, is not PEP. By a way of contradiction suppose B
is PEP. Then there exists some real matrix B € Q(B) such
that B is eventually positive. By Theorem 2.2 in [3], B” is
eventually positive. It follows that sign pattern BT =sgn(B7)
is PEP. Then Theorem 5.2 in [6] is contradicted. Hence B is
not PEP and —A is also not PEP. Therefore, A is not PPP.

Theorem 2.5. Let A be an n-by-n sign pattern. If A is PPP,
then every superpattern of A is PPP. If A is not PPP, then
every subpattern is not PPP.

Proof: If A is PPP, then eithor A or —A is PEP. If A is
PEP, then every superpattern A of A is PEP and PPP. If — A is
PEP, then every superpattern (—.A) of (—.A) is PEP and —A,
the negation of every superpattern of .4, is PEP. Hence, every
superpattern A is PPP. For the second statement, if A is not
PPP but has a subpattern that is PPP, then it is a contradiction
to the first statement.

Proposition 2.6. Let A be an n-by-n sign pattern. Then the
following statements are equivalent:

(1) Ais PPP.

(2) —A is PPP.

(3) AT is PPP.

(4) PTAP is PPP, where P is an n-by-n permutation
pattern.

Proof: Theorem 2.7 follows directly from Lemma 2.1.

The following conditions are necessary for an n-by-n sign
pattern to be potentially power-positive. We state them without
proof.

Proposition 2.8. Let A be an n-by-n sign pattern. If A is
PPP, then the following hold:

(1) A is irreducible.

(2) Every row of A has at least one nonzero.
(3) Every column of A has at least one nonzero.
(4) The minimum number of nonzero entries of A is n+ 1.

1II. PPP SIGN PATTERS OF ORDER < 3

In this section, we classify the n-by-n PPP sign patterns of
order < 3. To state clearly, we use the notation ? to denote
one of 0,+, —, © to denote one of 0, —, & to denote one of
0, +.

Proposition 3.1. The 1-by-1 sign pattern A is PPP if and
only if A is either [+] or [—], and the 2-by-2 sign pattern A

is PPP if and only if A is equivalent to either < ot or

+ 7
- 7
Proof: The first statement is obvious. The second state-

ment follows from the fact that the 2-by-2 sign pattern A is
+ +
+ 7

Theorem 3.2. Let A be a 3-by-3 sign pattern such that
I'(A") and T(A™) are not primitive. Then A is PPP if and
only if A is equivalent to

its negation, i.e.,

PEP if and only if A is equivalent to

+ - 0
B=| + @&
-+

+ 1

or its negation

-+ 0
- 6 +
+ — —
Proof: Sufficiency: if A is equivalent to B (respectively,

—B), then A (respectively, —A) is a superpattern of sign
pattern sgn(B) (respectively, sgn(—B)), where

1.3 =03 0
B = 1.3 0 —-0.3
-031 03 1.01

It follows that A (respectively, —A) is PEP by Example 2.2
in [6]. Therefore, A is PPP.

Necessity: if A is PPP, then either A or —A is PEP. If A
is PEP, then I'(A™) is primitive or 4 is equivalent to B* by
Theorem 6.4 in [6], where

©
B* = -

|+ +

?

+ +
As T'(A7) is not primitive, the (1, 3)-th entry of B* must be 0,
and the (2, 2)-th entry of B* must be — or 0. It shows that A is
equivalent to B. If —A is PEP, then I'((—.A)™) is primitive or
A is equivalent to —B*. As I'((—.A) ™) is primitive if and only
if (A7) is primitive, it follows that 4 is equivalent to—B".
By a similar discussion, we have A is equivalent to

-+ 0
- e +
+__
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The following result follows readily from Theorem 3.2
and characterizes the potentially power-positive 3-by-3 sign
patterns completely.

Corollary 3.3. Let A be a 3-by-3 sign pattern. Then A is
potentially power-positive if and only if one of the following
conditions hold: (1) T(A™T) is primitive.

(2) T'(A™) is primitive.

+

(3) A is equivalent to B= | +

-+
(4) A is equivalent to - ©
+ —_

T+t e +o
+

IV. CONCLUDING REMARKS

We have extended some sufficient conditions for PEP sign
pattern to PPP sign pattern. Some properties of PPP sign
patterns are established. Finally, we classified the PPP sign
patterns of order < 3. However, identification of the sufficient
and necessary conditions for an n-by-n sign pattern (n > 4)
to be PEP or PPP remain still open.
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