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Abstract—Segmentation techniques based on Active Contour
Models have been strongly benefited from the use of prior information
during their evolution. Shape prior information is captured from
a training set and is introduced in the optimization procedure to
restrict the evolution into allowable shapes. In this way, the evo-
lution converges onto regions even with weak boundaries. Although
significant effort has been devoted on different ways of capturing
and analyzing prior information, very little thought has been devoted
on the way of combining image information with prior information.
This paper focuses on a more natural way of incorporating the
prior information in the level set framework. For proof of concept
the method is applied on hippocampus segmentation in T1-MR
images. Hippocampus segmentation is a very challenging task, due
to the multivariate surrounding region and the missing boundary
with the neighboring amygdala, whose intensities are identical. The
proposed method, mimics the human segmentation way and thus
shows enhancements in the segmentation accuracy.

Keywords—Medical imaging & processing, Brain MRI segmen-
tation, hippocampus segmentation, hippocampus-amygdala missing
boundary, weak boundary segmentation, region based segmentation,
prior information, local weighting scheme in level sets, spatial
distribution of labels, gradient distribution on boundary.

I. INTRODUCTION

S
EGMENTATION of anatomical structures from medical

images, such as MRI and CT, has found numerous ap-

plications. Current image-based diagnosis, therapy evaluation,

surgical planning and navigation highly depend on the seg-

mentation procedure. Medical expert’s time though, is both

limited and valuable to perform manual segmentations, which

also lack reproducibility. The need for automatic segmentation

in medical images and its challenging nature, are the main

reasons that attract researchers on the topic.

The main challenges of the topic arise from the fact that

neighboring structures share the same intensity characteristics

and weak boundaries. This exactly is the case with the

hippocampus and amygdala complex (Fig. 1). Evidences that

alterations of hippocampus and amygdala could serve as po-

tential biomarkers for mental diseases [13] [5], have increased

the interest for automated methods that would accurately,

robustly and reproducibly segment those structures.

Due to the importance of the problem and the variety of

other applications, extensive study has been carried out and
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Fig. 1. MRI of a brain with highlighted the hippocampus and amygdala
structures.

various methods and techniques have been proposed which are

mainly based on deformable models. Active Contour Models

(ACM) have been proved to be the most efficient formulation

for such segmentations. ACMs try to deform a contour, by

following information extracted from the given image, under

some pre-defined constraints. The nature of the constraints

differentiate the methods to two types: the gradient-edge based

methods [2] and the region-based methods [4]. Though a

hybrid model that combines them has also been proposed

[18], the second type still seems to offer more solutions in

the medical image domain, since it utilizes regional statistical

information of the intensities to control the contour. Thus,

is much less sensitive to noise and performs robustly in the

case of weak and smooth edges, in contrast with the edge-

based models that utilize gradient stopping functions, which

by definition can not handle those cases. Due to these highly

attractive properties, a lot of variations of the original region-

based model have been proposed in the literature. In [8]

a new variational level set formulation has been proposed

that does not require re-initialization. [17] is a quite recent

formulation with selective local-global behaviour in the seg-

mentation. Those models though, solely depend on current

information, i.e. the image at hand. However, in medical image

analysis prior information is critical for understanding and

segmentation of anatomical structures, since their shape shares

common characteristics over the population.

Significant effort has been devoted on ways for capturing

and analyzing shape prior information. The most common

approach is to perform a statistical analysis over the distance

maps of known shapes through PCA to produce a shape vari-

ational model [7]. In [6] wavelet analysis is performed on the

coordinates of the structure’s boundaries and the PCA analysis

uses the wavelet coefficients, to overcome the problem of small

training set. One of the first attempts to incorporate shape prior

knowledge in the level set segmentation process was made in
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[7], where the shape prior was attracting the evolution, at each

deformation iteration, on a shape that would be acceptable to

the shape prior. Since then a lot of other techniques have been

proposed that try to bias the segmentation towards learned

shapes [15], [3], [1].

Yang et. al in [16], moved a step further and introduced

along with the shape prior, the neighborhood prior knowledge,

in an effort to take advantage during the evolution informa-

tion from neighboring structures. The prior knowledge was

embedded into the region-based framework, by adding the

prior energy term into the optimization formulation. The way

though, that the two energy terms are merged, does not take

full advantage of the prior knowledge, as they are merged

through a global weighting scheme. The hippocampus bound-

ary suffers from missing boundaries mainly in the borders with

amygdala. In most of the rest boundary, evident, if not strong,

gradients do exist. Why is then the prior energy term affecting

the contour evolution in regions with high gradients? And why

is the image term affecting the contour evolution in the borders

with amygdala, though there is no practical evidence that this

term would converge on the actual boundary?

Knowing, through experience, the expecting gradient values

on the perimeter of the structure of interest is an excellent way

to balance locally between the two energy terms. Capturing

this information, forms a novel, energy blending scheme, that

locally defines the expected importance of each energy term.

The proposed local weighting matrix defines the extent to

which one should trust the image’s gray-scale information or

the prior knowledge at a voxel level.

The proposed method utilizes region-based segmentation

algorithms using active contours based on the level set dis-

tribution model. A prior information model is introduced, that

is formulated from a labelled training set, which captures

the spatial distribution of the hippocampus labels. The active

contours evolve according to the image information and the

prior knowledge in a single framework. Those two driving

forces are combined through a novel local weighting matrix,

the Gradient Distribution on Hippocampus Boundary (GDHB)

map, i.e. a local weighting matrix which acts as an experi-

enced balancer between the image and the prior information.

In contrast to global multiplicative weighting factors, which

act globally on the whole term, GDHB contains statistical

information about the magnitude of the image gradient on the

boundary of hippocampus, and thus can act on each boundary

voxel independently.

In the following sections we give the necessary background

on region-based segmentation with shape prior, and thor-

oughly explain our contributions in full exploitation of prior

knowledge. Experimental results will prove the validity of the

proposed method by comparison with the existing shape prior

based segmentation technique.

II. LEVEL SETS WITH VARIATIONAL SHAPE PRIOR

A. Region Based Segmentation

The model, that is used for the image term of the segmenta-

tion process, is based on intensity statistical information of the

inner and outer regions of the evolving contour. The average

intensities inside and outside the contour adjust the image

update term in order to separate the structure of interest from

the background. The model used in this work is the well know

Chan-Vese framework [4], which can be seen as a special case

of the Mumford-Shah [12] problem:

Let Ω denote a bounded open subset of R
2 , with ϑΩ its

boundary, and C(s) : [0, 1] → R
2 is a parameterized curve

in Ω. The curve C can be also implicitly represented via

a Lipschitz function φ by C = {(x, y)|φ(x, y) = 0}. C

partitions Ω into the inside C set Ω1 in which φ(x, y) > 0,

and the outside C set Ω2 in which φ(x, y) < 0. For a given

image I in domain Ω the Chan-Vese model is formulated by

minimizing the following energy functional:

ECV = λ1

∫

Ω1

|I(x, y)− c1|
2
dxdy+

+λ2

∫

Ω2

|I(x, y)− c2|
2
dxdy, (x, y) ∈ Ω (1)

where c1 and c2 are the average intensities of Ω1 and Ω2
respectively. By minimizing equation (1), c1 and c2 are cal-
culated as:

c1(φ) =

∫

Ω
I(x, y) ·Hǫ(φ)dxdy
∫

Ω
Hǫ(φ)dxdy

(2)

c2(φ) =

∫

Ω
I(x, y) · (1−Hǫ(φ))dxdy
∫

Ω
(1−Hǫ(φ))dxdy

(3)

where Hǫ(φ) is the Heaviside function. Furthermore, aug-
menting the energy term in equation (1) with regularization
terms of length and area energy terms, results to a smoother
solution. By minimizing it, the corresponding variational level
set formulation is obtained:

ϑφ

ϑt
= δǫ(φ)

[

µdiv

(

∇φ

|∇φ|

)

− ν − λ1(I − c1)
2 + λ2(I − c2)

2

]

(4)

where µ, ν ≥ 0 control the smoothness and the evolution speed

respectively, while λ1, λ2 > 0 control the image data driven

force inside and outside C respectively. δǫ denotes the Dirac

function. This model has been widely used in applications

that require segmentation on weak boundary objects. However,

when background intensities are of similar value to that of

the object to be segmented, and their regions are separated

with vague boundaries (e.g. hippocampus and amygdala), the

contour can leak and start expanding on the background. Due

to the nature of the problem, the segmentation model by

itself is not adequate to separate the hippocampal voxels from

the rest of the brain structures. Figure 2(a) shows how this

model fails to capture the hippocampus boundaries and how

challenging the problem is.

B. Variational Shape Prior Modeling through PCA

To overcome this situation, Leventon et.al [7] proposed the
use of a probabilistic shape prior model, captured from a
training population through a PCA analysis. This approach
was also followed by Yang et. al [16]. The difference between
those two methods was that in [7] gradient based geodesic
active contours (GAC) model was used, while in [16] the
aforementioned Chan-Vese framework. Following the analysis
in [16], after incorporating the shape prior model in the energy
term, the evolution equation becomes:

ϑφ

ϑt
= δǫ(φ)

[

µdiv

(

∇φ

|∇φ|

)

− ν − λ[(I − c1)
2 − (I − c2)

2]

]

−
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(a) (b)

Fig. 2. (a) Segmentation outcome of the Chan-Vese model (red contour) that
leaks from the hippocampus-amygdala boundary (blue contours) on a central
slice of the hippocampus. (b) Segmentation outcome when variational shape
prior is introduced.

−ω · g{UKΣ−1
k U

T

k [G(φ− φ̄)]} (5)

where λ = λ1 = λ2 and ω are the two “global” weighting

factors that balance between the image data term and the

shape prior term. G(·) is an operator that generates the vector

representation of a matrix by column scanning and g(·) the

inverse operator of G. Uk, Σk and φ̄ are the k-principal

component basis functions matrix, the singular values matrix

and the mean shape of the training set produced by PCA,

respectively.

The results using this shape prior model are promising, as

can be seen in figure 2(b), but still leave enough space for

more contributions.

III. PROPOSED MODEL

Incorporating prior knowledge in the segmentation proce-

dure proved a very reasonable and successful choice. However

the trade off among the two energy terms, i.e. the image

data term and the shape prior term, is not straightforward and

highly depends on the specific structure under investigation.

Still, in all previous works, this balance is modelled through

global weighting factors, which is not the way a human rater

would perform the procedure. The human expert would trust

the image information for the regions of the hippocampus

boundary that border with the white matter, but would use his

experience to trace the weak borders with amygdala. Thus,

in order to model this procedure, one has to blend the two

energy terms in a local fashion. This means to learn where to

trust the image information, and where to neglect it and use

prior information instead. This way prior knowledge is being

exploited to its full extend.

However, a variational shape prior model could not be

applied on a locally defined weighting scheme, since such a

term tries to find the boundary with the most likely shape,

describing it by a set of global coefficients (i.e. the PCA

projection coefficients). Thus, the prior information that will

get included in the segmentation process, should also be

locally defined. The following sections describe how the local

weighting scheme, called GDHB, and the prior information

term are formed and incorporated in the region based seg-

mentation framework.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Illustration of the GDHB map generation. (a) Outlines of the
hippocampus and amygdala, (b) the gradient values on the boundary of
hippocampus, (d)-(e)-(f) thresholding outcomes with ascending threshold
values and (c) the final averaged GDHB map revealing how much the
evolving contour should trust the image information and how much the prior
information on every voxel.

A. Building Gradient Distribution on Hippocampus Bound-

aries

GDHB derives from image gradient analysis on the training

set. More specifically, in each image, we isolate the hippocam-

pus’s boundary and calculate the magnitude of the image gra-

dient on it. Practically, low gradient magnitude values on the

perimeter of the structure of interest are associated with high

probability of contour leakage during the evolution process.

On the other hand, higher values decrease the probability to

leak from those specific boundary pixels.

A thresholding operation is performed on the gradient

values, which also tries to connect neighboring pixels with

similar gradient value and direction. Binarization separates

the boundary to its strong and weak gradient parts. This

procedure is depicted in figure 3 for various thresholds. A

map is produced that shows on which parts, of this particular

boundary, image information should drive the segmentation

and on which the prior term should take over. In an effort

to build something more generic, this information is propa-

gated to the surrounding region, by applying morphological

operations; a long and narrow structuring element, aligned

for each pixel on the boundary’s normal direction, performs

dilation. Hence, the values of this map represent the likelihood

that an evolving contour will face regions with either strong

or weak borders, while it evolves towards the boundary. The

above process is repeated for each of the training images. The

produced individual GDHB maps, are averaged and the final

GDHB map with values in [0, 1], is produced (Fig 3(c)) that

contains generalized gradient distribution information of the

hippocampus boundary.

B. Modeling Prior Information

In order to satisfy the constraint that the prior information

should be defined locally to be applicable to the GDHB frame-

work, a voxel-based statistical model is defined. Adopting the

voxel-based context of atlas based segmentation, where an

atlas image assigns a label l to each voxel v, a statistical

model of spatial class label distribution is produced, over the

training set. Each labelled image Ln, n = 1, . . . , N is a
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binary image, with Ln(v) = 1 for voxels v that belong to

the hippocampus and 0 otherwise. In order to construct the

empirical spatial distribution of labels, the N labelled images

are rigidly registered based on the hippocampus and their

labels’ sum is averaged over the population, producing image

L (see figure 4) which gives the empirical probability for every

voxel p(lv) ∈ [0, 1] to belong to hippocampus, based on its

coordinates. This image models the spatial distribution of the

labels, and has higher values at voxels along the expected

shape of hippocampus and lower values at distant voxels of the

mean shape. When a test image is registered on the training

images, it assigns to each pixel, based on its location, the

probability to belong to the desired structure.

C. Incorporating Prior Information into the Segmentation

Process

Proper incorporation of the prior knowledge in the level set
evolution framework is obviously of critical importance. The
choice of modeling the prior knowledge with the labels’ distri-
bution has a huge advantage, since it can be straightforwardly
used as a second input image on the regional segmentation
framework of Chan-Vese. Thus, averaging probabilities of
voxels that belong inside and outside of the evolving contour.
This leads to an energy minimization problem which forces
the contour to evolve between regions that are more likely
than others representing lower probabilities.

EPR = v1

∫

Ω1

|L(x, y)− d1|
2
dxdy+

+v2

∫

Ω2

|L(x, y)− d2|
2
dxdy, (x, y) ∈ Ω (6)

where d1 and d2 are now the probabilities of the regions

inside and outside C and are calculated similarly with c1 and

c2. v1 and v2 correspond to λ1 and λ2. Keeping v1 and v2

coefficients equal, forces the prior information to be equally

balanced between high likely voxels (red region in Figure

4) and marginal voxels (light blue-yellow). Adjusting v1 and

v2 balances the weight between highly probable areas and

marginal areas.
Combining the two energy terms through GDHB gives the

total energy to be optimized:

E = GDHB ·ECV + (1−GDHB) · EPR (7)

whose update equation becomes:

ϑφ

ϑt
= δǫ(φ)

[

µdiv

(

∇φ

|∇φ|

)

− ν

−GDHB ·
(

λ1(I − c1)
2 − λ2(I − c2)

2
)

−(1−GDHB) ·
(

v1(L− d1)
2 + v2(L− d2)

2
)

]

(8)

Due to the nature of the labels’ spatial distribution mask

and the values of the GDHB, this model always converges on

a boundary that is indeed near the hippocampus. The leakage

phenomenon is totally diminished, since in the regions away of

the hippocampus, GDHB guides the segmentation solely based

on the prior information, and on those regions, the labels’ spa-

tial distribution mask points that there is zero likelihood those

regions to belong to hippocampus. This leakage preventing

behaviour can not be guaranteed with the variational shape

prior models.

(a) (b)

Fig. 4. Illustration of the Spatial Distribution of Hippocampal labels, as a
gray scale image and as a surface.

IV. EXPERIMENTAL RESULTS

Evaluation Dataset

The proposed methodology has been tested on 13 T1

weighted MP-RAGE MR images, randomly chosen from the

OASIS database [10]. All subjects in the OASIS database

are healthy and right handed, of both sexes. The MR images

were acquired on a 1.5-T Vision scanner. For every subject,

3-4 different MRIs were captured and the first of these was

registered on the atlas space of Talairach and Tournoux [14].

The remaining scans were registered on the first one and

averaged. After resampling the result is a single, high-contrast,

isotropic image with 1mm voxel thickness. A professional

radiologist manually traced the hippocampus volume on those

13 images, in order to build the training set. Apart of the

OASIS pre-processing, the selected MR images were further

rigidly registered on the hippocampus center of mass. Level

set functions were used to formulate the problem and signed

distance maps in order to represent the hippocampal structures.

Each of the curves in the training dataset is embedded in the

proposed model as the zero level set of a higher dimensional

level set function.

Comparisons

The proposed algorithm was evaluated in the context of the

leave-one-out procedure. For every excluded test image, a new

hippocampus spatial distribution map and GDHB map was

generated. For comparison purposes, results of the combined

framework of Chan-Vese and variational shape prior have been

calculated, which will be abbreviated as SP in the following

text.

To initialize the algorithm, we took advantage of the cap-

tured prior knowledge. The seeding region was selected as

the set of voxels with very high probability to belong to

the hippocampus. The hippocampus spatial distribution map

directly gives this information. For the SP method we followed

the seeding technique of [16], where it was argued that the

SP methodology is quite invariant to its initialization. Three

seeds inside the body of hippocampus (in the head, in the

tail and in the central area of the hippocampus) was used for

initialization. However, to avoid any possible unfairness, in

the following experiments the same seeding region with the

proposed method was used as a second alternative for the SP

method.

The advantages of using the hippocampus spatial distribu-

tion map to provide the initialization, is that it is automatic,

and offers a large and very reliable seeding region along the

complete body of the hippocampus. This is advantageous,
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Fig. 5. Comparisons based on (a) the Haussdorf distance, and (b) the
undirected averaged distance.

since larger area of initialization leads to more accurate cal-

culation of the average intensities c1 and c2 and consequently

to lower number of iterations to fully segment an object from

the background.

The following results refer to segmentations performed on a

central sagittal slice of each MRI. Performance and accuracy

of the two comparing methods is evaluated through several

popular metrics, i.e. the Hausdorff distance [9] in figure 5(a),

the undirected averaged distance [16] in figure 5(b), precision

vs recall [11] in figures 6(a),(b) and the Fb measure (Fig.

6(c)) which is a proportional combination of precision-recall

measures with a weighting factor b to balance between the

importance of precision vs recall. b = 1 assigns equal

weight, and F1 equals the Dice coefficient which measures

set agreement. In terms of false positive, false negative and

true positive counts, F1 equals:

F1 =
2 · TP

(FP + TP ) + (TP + FN)
, F1 ∈ [0, 1] (9)

A value of F1 = 0 indicates no overlap between the actual

and estimated volume, while a value of F1 = 1 indicates

perfect agreement. In figures 6(a) and (b) the results of the

proposed and SP method were connected for each image,

which shows the tendency of the proposed method to climb

towards the upper-right corner, which obviously corresponds

to higher F1 values. Table I shows averaged results for each

of the evaluation metrics on the whole dataset, the bold ones

being the best in each case.

TABLE I
AVERAGED COMPARISON RESULTS

F1 Precision Recall Haussdorf Average dist

GDHB 0.88 0.85 0.92 2.51 0.66

SP 0.79 0.69 0.94 5.63 1.46
SP (3-ceeds) 0.76 0.68 0.89 5.82 1.53

As can be seen, the evaluation metrics report the superiority

of the proposed method. The only exception is image #7 where

the Hausdorff and the undirected averaged distance report

slightly better results, in terms of actual and estimated bound-

ary distances, but the other metrics report similar performance.

In every testing case, the use of GDHB map, diminishes

leakage and constraints the contour in the bounded area that

describes. Shape prior methodology is not able to segment all
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Fig. 6. Comparisons based on Precision vs Recall diagrams and the F1/Dice
coefficient. In (a) and (b) results of the two methods are connected with dashed
lines to show the improvement the proposed method achieved.

(a) (b)

(c) (d)

Fig. 7. Segmentation results of the proposed method on the four images
with indexes 11, 5, 1 and 4 respectively. The thin black contour depicts the
ground truth, while the red one is the outcome of the proposed method. Note
the difference in segmentation quality between the proposed method in (b)
and the SP method in 2(b) which are on the same MR image #5.

MR images with satisfying results, especially when initialized

with the three seeds. Moreover, through experimentation, it

became evident that the proposed method does not require fine

tuning of the parameters, contrary with the SP case, where it

was hard to find a set of parameters that satisfy the whole

set. Furthermore, the results also show the contribution of

the hippocampus spatial distribution map in the initialization

procedure, since this utilization yields overall better accuracy

and lower distance errors.

The segmentation procedure lasts no more than 10 seconds
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for our experiments, in a quad-core PC, 2.8 GHz with 3.5 GB

of RAM.

V. CONCLUSION

The proposed method utilizes two terms in the evolution

process; the regional intensity based Chan-Vese model and

a prior knowledge term. Previous works that incorporated

prior knowledge into their models have succeeded efficient

segmentations. However, the way that these two terms are

combined is based on global weight multiplicative factors,

which act globally on both terms, which contradicts with the

nature of the hippocampus boundary. Our work proposes the

use of the GDHB map in order to estimate locally, how much

the image data are to be trusted or not. GDHB acts as a

multiplicative weighting map to both terms, which mimics,

even more, the way human experts perform the procedure.

Early results verify this argument.
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