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Abstract—In this paper is investigated a possible 

optimization of some linear algebra problems which can be 
solved by parallel processing using the special arrays called 
systolic arrays. In this paper are used some special types of 
transformations for the designing of these arrays. We show 
the characteristics of these arrays. The main focus is on 
discussing the advantages of these arrays in parallel 
computation of matrix product, with special approach to the 
designing of systolic array for matrix multiplication. 
Multiplication of large matrices requires a lot of 
computational time and its complexity is ( )3nO . There are 
developed many algorithms (both sequential and parallel) with 
the purpose of minimizing the time of calculations. Systolic 
arrays are good suited for this purpose. In this paper we show 
that using an appropriate transformation implicates in finding 
more optimal arrays for doing the calculations of this type.  
 

Keywords—Data dependences, matrix multiplication, systolic 
array, transformation matrix. 

I. INTRODUCTION 
ATRIX multiplication plays a crucial role in many 
scientific disciplines. This multiplication can be thought 

of as the main tool for many other computations in different 
areas. Matrix multiplication in array of processors has been 
studied and a different arrays has been proposed [8, 10,12]. In 
this paper are used a special designs named systolic arrays 
which are suitable for matrix multiplication algorithm and 
offers both pipelineability and parallelism. Systolic approach 
and studying how to optimize these arrays is also studied 
extensively [1,3,4,5,9,10,11]. The main purpose of this paper 
is to discuss about characteristics of these arrays. It is done 
basically using different mathematical transformations for 
their construction. In addition there is done comparison of 
three different systolic arrays concluding about the optimality 
as well.  

II. DESIGNING SYSTOLIC ARRAY FOR MATRIX MULTIPLICATION 
USING LINEAR TRANSFORMATION 

Let A and B be two matrices of size NxN and we consider 
the problem of finding the resulting matrix C using the 
algorithm for matrix multiplication given below: 
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Let ( ){ }NkjikjiPind ≤≤= ,,1/,,  be index space of used 

and computed data for matrix multiplication. Then we define 
the linear transformation matrix T given below: 
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Where [ ]1312111 tttT =  is the scheduling vector (in case of 

matrix multiplication is always [ ]111 ) and 
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S is transformation which maps indP  

into 2-dimensional systolic array.   
 Data dependency matrix for algorithm 1 is given with: 
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The matrix T is associated with the so called projection 
direction Tuuuu ][ 321= (there are some possible 
allowable projection vectors, see [1]), so that the following 
conditions must satisfied: 
 

1. 0det ≠T                                                             (2)                   
2. 02 =uT and 03 =uT                                        (3)                   

3. { }1,0,1−∈=Δ SDS                                            (4)    
 

The transformation matrix T  maps the index point 
( ) indPkji ∈,,  into the point ( ) indPTyxt ⋅∈,,  where:    

[ ] kjikjiTt T ++== 1                            (5) 
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 [ ] [ ]TT kjiSyx =  For ( ) indPkji ∈,,             (6) 
 

In this case t  is time where calculations are performed, and 
( )yx,  are the coordinates of processors elements on 2-
dimensional systolic array.  

Let us consider the case where [ ]Tu 111= . From (3) 
there is: 

 
 00 2322212 =++⇒= tttuT              (7) 

00 3332313 =++⇒= tttuT               (8) 
 
Considering (1), (2), (4), (7) and (8), below are given all 

possible transformation matrices: 
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To implement the mapping ( ) ( )yxtkji T ,,,, ⎯→⎯ , first 

there is defined a linear mapping ( )21 , LLL =  such 

that
−

⎯→⎯⎯→⎯ ind
T

ind
L

ind PPP * . 
Let transformation matrix be: 
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If there is taken the matrix ( )21, LLL =   given with: 
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Then the elements ∗∈ indPwvu ),,(  are obtained from: 
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From (6) for the new vector ( )wvu ,,  the position of PEs 

can be found: 
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The new initial space is obtained: 
 

( ){ }nkikiiaPin ≤≤−+= ,1/1,0,)(ˆ  

( ){ }nkjikijibPin ≤≤−+−+= ,,1/1,1,0)(ˆ       (12) 

( ){ }njijiicPin ≤≤−+= ,1/0,1,)(ˆ  
 

If for the new position of the vector { }cba ,,, ∈γγ  is 
taken ( ) 32 γγγ ekjipp −++−=∗ then: 
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[ ]T
in kijikjibP 1,1,24)( −+−+−−−=∗  

[ ]T
in jijiicP −−−+=∗ 23,1,)(  

Finally  the positions of input data and communication links 
in the array can be found: 
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For the coordinate system and for the data flow given with: 
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There is obtained that b is flowing diagonally down, a  is 
flowing up and c  to the left. The corresponding hexagonal 
array for N=4 is given in the figure 1: 
 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:4, 2010

464

 

 

22c

12a

43c

23c

31c

11a31a

33c

32c14b

21a

14b

11c

34c

22b
23b

12c

14a

43a
24a

34b

32a

13c24c

41c

42c

44c

21c 14c

13a

23a

12b

31b41b

13b
24b

43b
32b 24b42b

42b
34b 13b 32b

41b 43b

21b

31b33b 12b

22a

44a

33a

23b44b21b

42a 34a

4111ab

0
0

0

0

  
Fig. 1 Systolic array for N=4 using the mapping L  

III. STANDARD HEXAGONAL SYSTOLIC ARRAY 
If there is taken the transformation matrix given with: 
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Then the obtained results are: 
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The positions of input data in the array are given with: 
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Communication links are given with: 
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For the coordinate system and for the corresponding data flow 
which is like below: 
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The conclusion is that b  is flowing down, a  to the right and 
c  diagonally up. In the figure 2 this array is given for N=4. 
(This array is called standard hexagonal systolic array-SHSA, 
and first was proposed by Kung and Leiserson [10]). 
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Fig. 2 the SHSA array for N=4 

IV. SYSTOLIC ARRAY FOR MATRIX MULTIPLICATION USING 
NONLINEAR TRANSFORMATION 

The transformation matrix which is used in this case is: 
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To solve the problem of unwanted delays in processing and 

in the output of the results, we define the time scheduling 
compression function λ+++= wvupt )(  where λ  is 

determined by the condition 0)( min =pt . The reposition of 
the elements is given with the following equation: 

 
      ( ) 3* )1)((),,(,, reptwvupwvup +−=               (18) 

 
In this case is added 1 in order to take non-negative values 

for the new produced time steps. 3e ensures the appropriate 
direction of each element.  { }1,1 −∈r  and it takes the value -
1 in the region of applying the nonlinear transformation when, 
with linear transformation the elements are placed in negative 
positions. The concept of two processing streams defined in 
[2] is used. Top stream (ts) and bottom stream (bt). For each 
of these streams there is used different transformation matrix. 
So, the new scheduling compression function is: 
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Where λ  is determined by the condition: 
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In equations given above is used the parameter j in place of 1, 
because transforming the equation of matrix multiplication 
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So, the final results for the constant λ are: 
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Finally applying the nonlinear transformation defined with: 
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[6], and ( )Tkjia ,,= . 
Now the position of input data can be determined: 
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The positions of systolic cells for top stream will be: 
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In similar manner: 
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The positions of systolic cells for bottom stream are: 
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And similarly: 
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For the coordinate system and for the corresponding data flow 
which is like below: 
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The corresponding systolic array is: 
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Fig. 3 the systolic for N=4 (with using the nonlinear mapping) 

V. COMPARISON OF THREE DIFFERENT DESIGNING METHOD 
Total running time is calculated using the formula 

outexeintot TTTT ++=  (time of putting the input data, time 
of execution and time of obtaining the output results). In the 
case of SHSA array there can be calculated that 

45 −= nTtot . The number of PEs for the same array is 

given by the formula 133 2 +−=Ω nn . The speed up is 

calculated by the formula
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These parameters in the case of array obtained by the using 
of linear transformation L  are given below: 
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Obtained result after the calculation of these parameters for 
the systolic array using nonlinear transformation are: 
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For the case of N=4 the discussion is already done. 
Analyzing two other cases for N=5 and N=10 (there can be 
taken each other integer value for n) the table of obtained 
results is given below:  

 
TABLE I 

COMPARISON OF THREE DIFFERENT PARAMETERS 
n=4 n=5 n=10  

Ω T E Ω T E Ω T E 
Using 
lin. Tr. 
L 

16 10 40 25 13 38 100 28 35 

Using 
nonlin. 
Tr  

20 14 23 35 18 20 140 38 19 

SHSA 
array 

37 16 18 61 21 9.
8 

271 46 8 

 

VI. CONCLUSION 
In this paper are given models of three different systolic 

arrays. We emphasized the characteristics of each one giving 
detailed explanation of their construction. From the table 1 it 
is clear that in each case, the systolic array obtained using 
transformation matrix L is more optimal comparing with two 
others. An interesting conclusion is that even the array 
obtained by the use of nonlinear transformation offers better 
results comparing with the SHSA array where isn’t used any 
type of transformation. 
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