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Abstract—A state of the art Speaker Identification (SI) system 

requires a robust feature extraction unit followed by a speaker 
modeling scheme for generalized representation of these features. 
Over the years, Mel-Frequency Cepstral Coefficients (MFCC) 
modeled on the human auditory system has been used as a standard 
acoustic feature set for SI applications. However, due to the structure 
of its filter bank, it captures vocal tract characteristics more 
effectively in the lower frequency regions. This paper proposes a 
new set of features using a complementary filter bank structure 
which improves distinguishability of speaker specific cues present in 
the higher frequency zone. Unlike high level features that are 
difficult to extract, the proposed feature set involves little 
computational burden during the extraction process. When combined 
with MFCC via a parallel implementation of speaker models, the 
proposed feature set outperforms baseline MFCC significantly. This 
proposition is validated by experiments conducted on two different 
kinds of public databases namely YOHO (microphone speech) and 
POLYCOST (telephone speech) with Gaussian Mixture Models 
(GMM) as a Classifier for various model orders. 
 

Keywords—Complementary Information, Filter Bank, GMM, 
IMFCC, MFCC, Speaker Identification, Speaker Recognition.  

I. INTRODUCTION 
NY speaker Identification [1] system needs a robust 
acoustic feature extraction technique as a front-end block 

followed by an efficient modeling scheme for generalized 
representation of these features. MFCC [2], [3] has been 
widely accepted as such a front-end for a typical SI 
application as it is less vulnerable to noise perturbation, gives 
little session variability and is easy to extract. An illustrative 
SI system is shown in fig. 1. 
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Fig. 1 A typical Speaker Identification System 
 

But MFCC was first proposed for speech recognition [2] to 
identify monosyllabic words in continuously spoken sentences 
and not for SI. Also, calculation of MFCC is based on the 
human auditory system aiming for artificial implementation of 
the ear physiology [4] assuming that the human ear can be a 
good speaker recognizer too. However, no conclusive 
evidence exists to support the view that the ear is necessarily 
the best speaker recognizer.  

Further, computation of MFCC involves averaging the low 
frequency region of the energy spectrum (approximately 
demarcated by the upper limit of 1 kHz) by closely spaced 
overlapping triangular filters while smaller number of less 
closely spaced filters with similar shape are used to average 
the high frequency zone. Thus MFCC can represent the low 
frequency region more accurately than the high frequency 
region and hence it can capture formants [5] which lie in the 
low frequency range and which characterize the vocal tract 
resonances [6]. However, other formants [6] can also lie 
above 1 kHz and these are not effectively captured by the 
larger spacing of filters in the higher frequency range.  

All these facts suggest that any SI system based on MFCC 
can possibly be improved. In this work, we extract a new 
feature set from the speech signal which yields information 
that is complementary in nature to the human vocal tract 
characteristics described by MFCC. This makes it very 
suitable to be used with a parallel classifier [7] to yield higher 
accuracy in SI problem. 

Improved Closed Set Text-Independent Speaker 
Identification by combining MFCC with 

Evidence from Flipped Filter Banks 
Sandipan Chakroborty*, Anindya Roy and Goutam Saha 

A 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:11, 2008

2481

 

 

 
We propose to invert the entire filter bank structure [8], [9] 

such that the higher frequency range is averaged by more 
accurately spaced filters and a smaller number of widely 
spaced filters are used in the lower frequency range. We 
calculate a new feature set named Inverted Mel Frequency 
Cepstral Coefficients (IMFCC) following the same procedure 
as normal MFCC but using this reversed filter bank structure. 
This effectively captures those high frequency formants 
ignored by the original MFCC. Further, compared to high 
level features [10] used in [11]-[13], we will show that little 
extra computational burden is incurred in the calculation of 
this complementary feature set, which can be efficiently used 
if we go for parallel implementation with MFCC.  

The importance of MFCC in SI cannot be understated. In 
order to exploit the best of both paradigms, we model two 
separate parallel classifiers using these two feature sets 
namely MFCC and IMFCC and fuse their scores to obtain the 
final classification decision. Viewed in another manner, we 
aim to reinforce the score generated by the MFCC based 
model by another score from a complementary source of 
information. A GMM [14] based classifier is developed which 
uses an unsupervised clustering technique to model the 
speakers. Since the classifiers are totally independent and 
modeled in parallel, the order of complexity is equal to that 
for a single MFCC based classifier. It is shown in the Result 
section that such parallel classifiers perform considerably 
better in all cases compared to a single classifier based on 
MFCC. 

The rest of the paper is organized as follows: Section II 
briefly reviews the concept of MFCC. The proposed feature 
set is presented in Section III. Section IV outlines the GMM 
technique while Section V explains the scheme for the fusion 
of classifiers. Section VI reports the experimental results. 
Finally, Section VII draws the principal conclusions of the 
paper.  

II. MEL FREQUENCY CEPSTRAL COEFFICIENTS AND 
THEIR CALCULATION 

According to psychophysical studies, human perception of 
the frequency content of sounds follows a subjectively defined 
nonlinear scale called the Mel scale [15] (fig. 1). This is 
defined as, 

mel 10
ff 2595 log 1

700
⎛ ⎞= +⎜ ⎟
⎝ ⎠

                       (1) 

where fmel is the subjective pitch in Mels corresponding to f, 
the actual frequency in Hz. This leads to the definition of 
MFCC, a baseline acoustic feature [7] for Speech and Speaker 
Recognition applications, which can be calculated as follows.  

Let { } sN

n 1
y( n )

=
 represent a frame of speech that is pre-

emphasized and Hamming-windowed. First, y(n) is converted 
to the frequency domain by an Ms-point DFT which leads to 
the energy spectrum, 

              
s

s

2
j 2 nkM

2 M

n 1
Y ( k ) y( n ) e

π⎛ ⎞
−⎜ ⎟

⎝ ⎠

=

= ⋅∑                        (2) 

   where, 1≤ k ≤ Ms. This is followed by the  construction of a 
filter bank with Q unity height triangular filters, uniformly 
spaced in the Mel scale (eqn. 1). The filter response Ψi(k) of 
the ith filter in the bank (fig. 3) is defined as, 
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where 1≤ i ≤ Q, Q is the number of filters in the bank, 

{ }
Q 1

i
i 0

bk
+

=

are the boundary points of the filters and k denotes 

the coefficient index in the Ms-point DFT. The filter bank 

boundary points, { }
Q 1

i
i 0

bk
+

=

 are equally spaced in the Mel scale 

which is satisfied by the definition, 

{ }
i

mel high mel low1s
b mel mel low

s

i f ( f ) f ( f )M
k f f ( f )

F Q 1
−

⎡ ⎤−⎛ ⎞
⎢ ⎥= ⋅ +⎜ ⎟ +⎢ ⎥⎝ ⎠ ⎣ ⎦

(4) 

 
Fig. 2 Response Ψi(k) of a typical Mel scale filter defined as in 
 Eqn 3. 

 
 where the function fmel (•) is defined in eqn. 1, Ms is the 

number of points in the DFT (eqn. 2), Fs is the sampling 
frequency, flow and fhigh are the low and high frequency 
boundaries of the filter bank and fmel

-1 is the inverse of the 
transformation in eqn. 1 defined as,  

melf
1 2595

mel melf ( f ) 700 10 1− ⎡ ⎤
= ⋅ −⎢ ⎥

⎣ ⎦
                   (5)  

    The sampling frequency Fs and the frequencies flow and 
fhigh are in Hz while fmel is in Mels.  For both the databases 
considered in this work, Fs are 8 kHz. Ms was taken as 256, 
flow = Fs/Ms = 31.25 Hz while fhigh = Fs/2 = 4 kHz. 
   Next, this filter bank is imposed on the spectrum calculated 
in Eqn. 2. The outputs e(i)i=1

Q of the Mel-scaled band-pass 
filters can be calculated by a weighted summation between 
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respective filter response Ψi(k) and the energy spectrum |Y(k)|2 
as  

Ms
2 2

i
k 1

e( i ) Y ( k ) ( k )Ψ
=

= ⋅∑                       (6) 

    Finally, DCT is taken on the log filter bank energies 
{log[e(i)]}i=1

Q and the final MFCC coefficients Cm can be 
written as, 

[ ]
Q 1

m
l 0

2 2l 1C log e( i 1 ) cos m
Q 2 Q

π−

=

⎡ ⎤−⎛ ⎞= + ⋅ ⋅ ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ (7) 

   where,  0≤ m ≤ R-1, R is the desired number of cepstral 
features. Typically, Q = 20 and 10 to 30 cepstral coefficients 
are taken for speech processing applications. Here we took Q 
= 20, R = 20 and used the last 19 coefficients to model the 
individual speakers. 

III. THE INVERTED MEL FREQUENCY CEPSTRAL COEFFICIENT 
Although MFCC presents a way to convert a physically 

measured spectrum of speech into a perceptually meaningful 
subjective spectrum based on the human auditory system [4], 
it is not certain that the human ear and hence MFCC is 
optimized for SI. Here we propose a new scale, the Inverted 
Mel Scale (fig. 2) defined by a competing filter bank structure 
which is indicative of a hypothetical auditory system which 
has followed a diametrically opposite path of evolution than 
the human auditory system. The idea is to capture those 
information which otherwise could have been missed by 
original MFCC. 

We obtain the new filter bank structure simply by flipping 
the original filter bank around the point f = 2 kHz which is 
precisely the mid-point of the frequency range considered for 
SI applications, i.e. {0 to 4 kHz (sec. II). This flip-over is 
expressed mathematically as,  

s
i Q 1 i

M
( k ) 1 k

2
Ψ Ψ + −

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

                    (8) 

where i ( k )Ψ  is the Inverted Mel Scale filter response while 

i ( k )Ψ  is the response of the original MFCC filter bank, 1≤  
i ≤  Q and Q is the number of filters in the bank. Analogous to 
eqn. 3 for the original MFCC filter bank, we can derive an 
expression for i ( k )Ψ i=1

 Q from eqn. 8 as follows, 
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where 1 ≤ k ≤ Ms and { }
Q 1

i
i 0

bk
+

=

, the boundary points of the Q 

filters are defined as, 

i Q 1 i
b b

Msk 1 k
2 + −

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

                         (10) 

 
TABLE I  

BOUNDARY POINTS 
ibf  AND 

ibf  IN Hz FOR THE MFCC and 

IMFCC FILTER BANKS (with Q =20, flow = 31.25Hz and fhigh = 4kHz) 
 
i 

ibf  
ibf  i 

ibf  
ibf  

0 31.25 31.25 11 11 1237.9 2957.7 
1 98.994 429.75 12 12 1417.4 3108.1 
2 173.01 794.46 13 13 1613.5 3245.7 
3 253.89 1128.2 14 14 1827.9 3371.7 
4 342.26 1433.7 15 15 2062.1 3486.9 
5 438.82 1713.3 16 16 2317.9 3592.4 
6 544.32 1969.2 17 17 2597.5 3689 
7 659.6 2203.4 18 18 2903 3777.4 

 
Now, we can frame an equation analogous to eqn.4, linking 

{ }
Q 1

i
i 0

bk
+

=

to i, flow and fhigh as, 

{ }
i

high lowmel mel1
s

b mel mel low
s

i f ( f ) f ( f )M
k f f ( f )

F Q 1
−

⎡ ⎤−⎢ ⎥⎛ ⎞
= ⋅ +⎜ ⎟ ⎢ ⎥+⎝ ⎠ ⎢ ⎥

⎣ ⎦

  (11) 

   Here, melf ( f )  is the subjective pitch in the proposed 
Inverted Mel Scale corresponding to f, the actual frequency in 
Hz. From eqns. 4, 10 and 11, it follows that, 

{ }

{ }

high lowmel mel1
s

lowmel m el
s

m el high mel low1s s
mel m el low

s

i f ( f ) f ( f )M
f f ( f )

F Q 1

i f ( f ) f ( f )M M
1 f f ( f )

2 F Q 1

−

−

⎡ ⎤−⎢ ⎥⎛ ⎞
⋅ +⎜ ⎟ ⎢ ⎥+⎝ ⎠ ⎢ ⎥

⎣ ⎦
⎡ ⎤−⎛ ⎞⎛ ⎞ ⎢ ⎥= + − ⋅ +⎜ ⎟⎜ ⎟ +⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦

 

(12) 
{ }

{ }

1 mel high mel low
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mel high mel low1s s
mel mel low

s

i f ( f ) f ( f )
f f ( f )

Q 1

i f ( f ) f ( f )F F
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(13) 
   To maintain mathematical uniformity in the calculation of 
the DFT, we chose the new Inverted Mel Scale to share 
common boundary points with the actual Mel Scale, i.e., 

lowmelf ( f ) = mel lowf ( f )and highmelf ( f ) = mel highf ( f )    
Using this choice, we derive eqns. 12 and 13 from eqn. 11 by 
suitably choosing the integers Q and i, we can represent 
any frequency f in the linear ( Hertz ) scale as,  
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{ }1 mel high mel low
mel lowmel

i f ( f ) f ( f )
f f f ( f )

Q 1
− ⎡ ⎤−

⎢ ⎥= +
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(14) 
 
From eqn. 13 it follows that, 

1s s
mel mel high mel low mel

s

F F
f f f ( f ) f ( f ) f ( f )

2 M
−⎛ ⎞⎛ ⎞ ⎡ ⎤= + − + −⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠

   

(15) 
Finally, we obtain the equation, 

s s
mel mel high mel low mel

s

F F
f ( f ) f ( f ) f ( f ) f f

2 M
⎡ ⎤

= + − + −⎢ ⎥
⎣ ⎦

 

(16) 
which relates the proposed Inverted Mel Scale to the original 
Mel Scale [2]. For the current application, we have set (sec. II) 
Fs = 8 kHz, Ms = 256, flow = Fs/Ms = 31.25Hz and fhigh = Fs/2 
=4 kHz. Hence, using these values in eqn. 15, we define the 
proposed Inverted Mel Scale as, 

10mel
4031.25 ff ( f ) 2195.2860 2595 log 1

700
−⎛ ⎞= − +⎜ ⎟

⎝ ⎠
 

(17) 

where melf ( f )  is the subjective pitch in the new scale 
corresponding to f, the actual frequency in Hz.  

 
Fig. 3 Subjective Pitch vs Frequency. For Mel scale, corresponding 
to the human auditory system, pitch increases progressively less 
rapidly as the frequency increases, In direct contrast, it increases 
progressively more rapidly in the proposed Inverted Mel Scale. 
 
  We observe that, in this scale, pitch increases more and more 
rapidly (fig. 2) as the frequency increases. As we aimed, this 
is in direct contrast to the human auditory system (eqn. 1), 
where it increases less rapidly with rising frequency. Hence, 
the higher frequency zone coarsely approximated by normal 
MFCC can be represented more finely by this new scale. 
Hence it can capture the speaker-specific formant information 
present in this zone which could have been neglected by the 
original MFCC. These facts justify our choice of flipping the 
MFCC filter bank to obtain the new IMFCC feature set. 

   We find the filter outputs { }Q

i 1
e( i )

=
 in the same way as 

MFCC from the same energy spectrum |Y(k)|2 as, 

 

Ms
2 2

i
k 1

e( i ) Y ( k ) ( k )Ψ
=

= ⋅∑                   (18) 

Computational burden is reduced since we do not need to 
recalculate the energy spectrum |Y(k)|2 (fig. 4) when we go for 
parallel classifiers one using MFCC and the other using 
IMFCC. 
 

 
Fig. 4 Plot showing filter bank structures for the two systems 

 
Finally, DCT is taken on the log filter bank energies 

{ }Q

10
i 1

log [e( i )]
=

  and the final Inverted MFCC coefficients 

{ }R

m
m 1

C
=

  can be written as,  

Q 1

m
l 0

2 2l 1C log e( i 1 ) cos m
Q 2 Q

π−

=

⎡ ⎤−⎛ ⎞⎡ ⎤= + ⋅ ⋅ ⋅⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
∑  

(19) 
As with MFCC, we took Q = 20, R = 20 and used the last 19 
coefficients to model the individual speakers. 

 
 

Fig. 5 Plot showing extraction of MFCC and IMFCC features. 
 

IV. THEORETICAL BACKGROUND ON GAUSSIAN MIXTURE 
MODELS (GMM) 

A GMM [14] can be viewed as a non-parametric, 
multivariate probability distribution model that is capable of 
modeling arbitrary distributions and is currently one of the 
principal methods of modeling speakers for SI systems. The 
GMM of the distribution of feature vectors for speaker s is a 
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weighted linear combination of M unimodal Gaussian 
densities bi

s(x), each parameterized by a mean vectors μi
s with 

a diagonal covariance matrix ∑i
s. These parameters which 

collectively constitute the speaker model are represented by 

the notation  { }Ms s s
i i i i 1

p ,μ Σ
=

 . The pi
s are the mixture 

weights satisfying stochastic constraint 
M

s
i

i 1
p 1

=

=∑  .  

For a feature vector x the mixture density for a speaker s is 
computed as 

( ) ( )
M

s s
s i i

i 1
p x | p b xλ

=

= ∑                                 (20) 

where, 

( )
( )

( ) ( ) ( )t 1s s s
i i i

1 x x
s 2
i 1D

s 22
i

1b x e
2 | |

μ Σ μ

π Σ

−⎛ ⎞− − −⎜ ⎟
⎝ ⎠= (21) 

and D is the dimension of the feature-space.  
Given a sequence of feature vectors X={x1, x2… xT} for an 
utterance with T frames, the log-likelihood of a speaker model 
s is 

( ) ( ) ( )
T

s s t s
t 1

L X log p X | log p x |λ λ
=

= = ∑  (22) 

assuming the vectors to be independent for computational 
simplicity. For SI, the value of Ls(X) is computed for all 
speaker models λs enrolled in the system and the owner of the 
model that generates the highest value is returned as the 
identified speaker. During training, feature vectors collected 
from a speaker's utterances are trained using the Expectation 
and Maximization (E & M) algorithm. This technique 
involves an iterative update of each of the parameters in λ, 
with a consequent increase in the log-likelihood at each step. 
Usually, within a few iterations (10 to 25) the model 
parameters converge to stable values. In the present work, 
initialization of seed vectors for Gaussian centers was done by 
the K-means algorithm which was terminated after 5 
iterations. This was followed by the E & M algorithm with 20 
iterations. For all cases, diagonal covariance matrices were 
chosen because DCT has already decorrelated the features by 
(eqn. 7) and (eqn 19).  
 

V. FUSION OF SPEAKER MODELS  
 Combining classifier decisions [16] to improve decision 
reliability has been successful in many pattern classification 
problems including SI. According to the available literature 
[12], [16], [17] the combination of two or more classifiers 
would perform better if they are supplied with information 
that are complementary in nature. Adopting this   idea in our 
work, we supplied MFCC and IMFCC feature vectors, which 
are complementary in information content, to two classifiers 
respectively and finally fused their decisions in order to obtain 
improved identification accuracy. In this context, it should be 
noted that our computation of complementary information 

from IMFCC involves comparably lower computational 
complexity than higher level features [11]-[13]. 
  During the training phase, two separate models were 
developed for each speaker from the MFCC and IMFCC 
feature sets respectively, using GMMM technique (Sec. IV). 
During the test phase, MFCC and IMFCC features were 
extracted in a similar way from an incoming speech utterance 
as done in the training phase and were sent to their respective 
models. For each speaker, two scores were generated, one 
each from the MFCC and IMFCC models. Since sum rule 
outperforms other combination strategies due to its lesser 
sensitivity to estimation errors [16], an uniform weighted sum 
rule [7], [12] was adopted to fuse the scores from the two 
classifiers. 
  Further, since in each case we fused the scores of two 
classifiers of the same type (GMM-GMM), no score 
adaptation or normalization was necessary before 
combination. 
  If Si

MFCC and Si
IMFCC are the scores generated by the two 

models for the ith speaker then the combined score Si
com is 

expressed as 
 ( )i i i

com MFCC IMFCCS S 1 Sα α= + −                  (23) 

  A governing equation is given below which describes fusing 
outputs of parallel classifiers methodology via weighted sum 
rule. 

( ) ( ) ( )
T T

i
com tMFCC sMFCC tIMFCC sIMFCC

t 1 t 1
S log p x | 1 log p x |α λ α λ

= =

= + −∑ ∑
(24) 

All the notations have their usual meanings. We have used α = 
0.5 as the weight [11] for all combinations. However, more 
suitable weights can be investigated further to enhance the 
performance of the combined system. Finally, the identity of 
the true speaker itrue is given by:- 

i
true comi

i arg max S=                                  (25) 

 
 

Pre-processing
Stage

Pre-processing
Stage

Train Data

Test Data

MFCC
Feature Extraction

MFCC
Feature Extraction

IMFCC
Feature Extraction

IMFCC
Feature Extraction

Speaker Modeling technique
for IMFCC feature vectors

1
2

3

N

Matching
Algorithm

Matching
Algorithm

Sum over
all frames

Sum over
all framesSUM

Final Output

1-

Score ( Si
MFCC )Score ( Si

IMFCC )

Score Score

Si
com

1
2

3

N

α αFusion

Speaker Modeling technique
for MFCC feature vectors

  
Fig. 6 Parallel classifier based SI system. 
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A schematic description of this scheme for parallel 
combination of classifiers is given in fig. 6. 
 

VI. EXPERIMENTAL EVALUATION 

A. Pre-processing stage 
In this work, each frame of speech is pre-processed by i) 
silence removal and end-point detection using an energy 
threshold criterion, followed by ii) pre-emphasis with 0.97 
pre-emphasis factor, iii) frame blocking with 20ms frame 
length, i.e Ns = 160 samples/frame (Sec. II) & 50 overlap, and 
finally iv) Hamming-windowing. Next, the MFCC and 
IMFCC feature sets are calculated (ref. Sec II & III). The first 

coefficient ( 0C  and 0C ) is discarded since it contains only 
the energy of the spectrum and the resulting 19 dimensional 
vector is used. 

B. Databases for experiments 

a) YOHO Database 
  The YOHO voice verification corpus [18] was collected 
while testing ITT's prototype speaker verification system in an 
office environment. Most subjects were from the New York 
City area, although there were many exceptions, including 
some nonnative English speakers. A high-quality telephone 
handset (Shure XTH-383) was used to collect the speech; 
however, the speech was not passed through a telephone 
channel. There are 138 speakers (106 males and 32 females); 
for each speaker, there are 4 enrollment sessions of 24 
utterances each and 10 test sessions of 4 utterances each. In 
this work, a closed set text-independent speaker identification 
problem is attempted where we consider all 138 speakers as 
client speakers. For a speaker, all the 96 (4 X 24 utterances) 
utterances are used for developing the speaker model while 
for testing, 40 (10 sessions X 4 utterances) utterances are put 
under test. Therefore, for 138 speakers we put 138 X 40 
=5520 utterances under test and evaluated the identification 
accuracies. 

b) POLYCOST Database 
  The POLYCOST database [19] was recorded as a common 
initiative within the COST 250 action during January- March 
1996. It contains around 10 sessions recorded by 134 subjects 
from 14 countries. Each session consists of 14 items, two of 
which (MOT01 & MOT02 files) contain speech in the 
subject's mother tongue. The database was collected through 
the European telephone network. The recording has been 
performed with ISDN cards on two XTL SUN platforms with 
an 8 kHz sampling rate. In this work, a closed set text 
independent speaker identification problem is addressed 
where only the mother tongue (MOT) files are used. Specified 
guideline [20] for conducting closed set speaker identification 
experiments is adhered to, i.e. ‘MOT02’ files from first four 
sessions are used to build a speaker model while ‘MOT01’ 
files from session five onwards are taken for testing. Unlike 
YOHO database all the speakers do not have the same number 
of sessions. Further, three speakers (M042, M045 & F035) are 

not included in our experiments as they provide sessions 
which are lower than 4. A total 754 ‘MOT01’ utterances are 
put under test. As with YOHO database, all speakers (131 
after deletion of three speakers) in the database were 
registered as clients. 

C. Score Calculation 
For any closed-set speaker identification problem, 
identification accuracy is defined as follows in [14] and we 
have used the same: 

No. of utterances correctly identifiedPercentage of identification accuracy (PIA)=
Total no. of utterances under test

 

(26) 

D. Experimental Results 
  For each database, we evaluated the performance of an 
MFCC based classifier, an IMFCC based classifier and a 
parallel classifier fusing both models. 

1) Results for YOHO Database 
  Table 2 describes identification results for various model 
orders of GMM. The last column in the table depicts the 
identification accuracies for the proposed combined scheme. 
The proposed scheme shows significant improvements over 
MFCC based SI system for different model orders. Further, 
even the independent performance of the IMFCC based 
classifier is comparable to that of the MFCC based classifier. 
Note that, identification accuracies increase with increase in 
model order. 
  To compare equal computation, we also implemented MFCC 
with higher no. of filters i.e. 39 from which a 38 dimensional 
cepstral vector is derived which is exactly twice as the no. of 
feature (i.e. 19) that has been already used for earlier MFCC 
implementation. Results show in fourth column of the table 
that the performances even after using higher no. of 
filter/cepstral order is worse than low dimensional MFCC. 
This is because increasing resolution neither captures spectral 
slope described by vocal tract filter nor approximate fine 
harmonic structure explained by glottal pulse. Further 
computational comparison can be made with single high 
dimensional MFCC in conjunction with 2x no. of Gaussian 
with two lower dimensional streams (MFCC and IMFCC) 
each modeled with x no. of Gaussian where, xЄ{4, 8, 16, 32, 
64}. Here also the performance of the proposed combined 
system performs much better than the high dimensional 
MFCC. 
 

TABLE II  
RESULTS (PIA) OF GMM FOR YOHO DATABASE 

No. of 
Mixtures 

MFCC 
(19) 

IFMCC 
(19) 

MFCC 
 (38) 

Combined 
System 
(19+19) 

2 75.05% 77.12% 66.18% 83.04% 
4 84.96% 86.39% 71.18% 90.56% 
8 91.87% 92.07% 79.86% 94.89% 

16 94.09% 94.18% 87.01% 95.72% 
32 96.20% 95.14% 91.07% 97.19% 
64 97.19% 95.30% 94.42% 97.74% 
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2) Results for POLYCOST 
  Table shows the identification accuracies for the 
POLYCOST database. As with the YOHO database, it can be 
observed from these tables that our proposed combined 
scheme shows significant improvement over the baseline 
MFCC based system in all cases. Also, results improve as 
model order increases. We restrained ourselves to 4 different 
sized mixtures for GMM. This is because less number of 
feature vectors is obtained from the POLYCOST database that 
prevents development of meaningful higher order GMMs. 
 
   Higher order MFCC is also implemented with increased 
resolution for this database and results indicate that the 
proposed fused system outperforms both low dimensional and 
high dimensional MFCC based SI system. 
 

TABLE III  
RESULTS (PIA) OF GMM FOR POLYCOST DATABASE 

No. of 
Mixtures 

MFCC  
19 

IFMCC 
19 

MFCC 
38 

Combine
d System 
(19+19) 

2 64.19% 58.49% 67.37% 68.83% 
4 72.41% 67.50% 68.83% 77.58% 
8 76.79% 74.54% 72.68% 79.71% 

16 78.91% 77.32% 77.32% 81.57% 
 
  It is observed that the independent performance of IMFCC is 
not as good as MFCC for POLYCOST database as compared 
to YOHO. This is due to the fact that the data in POLYCOST 
is based on telephone speech where higher frequency 
information used by IMFCC are somewhat distorted. 
Nevertheless, results show that the complementary 
information supplied by it helps to improve the performance 
of MFCC in parallel classifier to a great extent. Results also 
show that improvement of the proposed scheme is massive in 
case of lower order models especially in GMM and VQ based 
systems for both the databases. Thus it can be said that, 
compared to a single MFCC based classifier; a speaker can be 
modeled with the same accuracy but at a comparatively lower 
order model by an MFCC-IMFCC parallel classifier.  
  Further, a comparison with higher order of MFCC is also 
made for both the databases to ensure that the proposed 
system can also perform satisfactorily with lower order of 
Gaussian Mixtures. 

VII. CONCLUSION 
A new front-end acoustic feature set complementary to MFCC 
is proposed here that provides higher order speaker specific 
formant information usually ignored by MFCC. The proposed 
feature is extracted by flipping the triangular filter bank 
structure described by MFCC. Speaker models developed 
from this proposed feature when fused with existing MFCC 
based speaker models via weighted sum rule, gives significant 
improvements over the baseline system which can be 
attributed to availability of complementary information to two 
parallel models. The experiment is conducted with three 
different classifiers over different model orders on two kinds 

of databases, one based on microphone speech and the other 
on telephone speech. The results prove the superiority of our 
proposition irrespective of data type, amount of data and 
model orders. Further, the proposed scheme utilizes the same 
computational basis as MFCC unlike high level features that 
needs computationally expensive algorithms for extraction. 
The processing time could also be compared to a single-
stream based system because of the inherent parallelism of the 
two feature sets. Performance could be further improved by 
choosing optimal weights to fuse the scores before the 
classification decision. 
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