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Abstract—In this paper we study the fuzzy c-mean clustering algo-
rithm combined with principal components method. Demonstratively
analysis indicate that the new clustering method is well rather than
some clustering algorithms. We also consider the validity of clustering
method.
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I. FUZZY SET THEORETIC SIMILARITY
MEASURES

ONE of the most important issues in recommender sys-
tems research is computing similarity between users, and

between items (products, events, services, etc.). This in turns
highly depends on the appropriateness and reliability of the
methods of representation. The set-theoretic, proximity-based
and logic-based are the three classes of measures of similarity.
In fuzzy set and possibility framework, similarity of users or
items is computed based on the membership functions of the
fuzzy sets associated with the users or item features. Based
on the work of Cross and Sudkamp [1], those similarity mea-
sures [2] that are relevant to item recommendation application
are adapted.

For itemsIj and Ik that are defined as{xi, µxi
(Ij)), i =

1, 2, . . . , N} and{xi, µxi
(Ik)), i = 1, 2, . . . , N}, a similarity

measure betweenIj and Ik is denoted byS(Ik, Ij), and the
different similarity measures are defined as

S1(Ik, Ij) =
∑

i min(µxi
(Ik), µxi

(Ij))
∑

i max(µxi
(Ik), µxi

(Ij))
, (1)

S2(Ik, Ij) =
∑

i µxi
(Ik)µxi

(Ij)
√

∑

i (µxi
(Ik))2

√
∑

i (µxi
(Ij)))

2
, (2)

S3(Ik, Ij) = 1− d2(Ik, Ij)
max

i
{µxi

(Ik), µxi
(Ij)}

, (3)

S4(Ik, Ij) = 1− 2
ZIk

+ ZIj

d2(Ik, Ij)
2
, (4)

where

d2(Ik, Ij) =
√

∑

i
(µxi

(Ik)−µxi
(Ij))

2
,

ZIa
=

∑

i
(2µxi

(Ia) − 1)2for a = k or j.
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In this article we define a new similarity measures as below:

S(Ik, Ij) =
∑

i 2µxi
(Ik)µxi

(Ij)
∑

i (µxi
(Ik))2 +

∑

i (µxi
(Ij))

2 . (5)

Formula (5) has the following character
(a) Reflexive, i.e., for allIk

S(Ik, Ik) = 1. (6)

(b) Symmetric i.e., for allIk, Ij ,

S(Ik, Ij) = S(Ij , Ik). (7)

(c) Transitive, i.e., ifµxi
(Ik) < µxi

(Ij) < µxi
(Im), then

S(Ik, Ij) ≥ S(Ik, Im). (8)

By using formula (5) we can obtain a real symmetry matrix.
Let X be a real matrix

X =









x11 x12 ... x1p

x21 x22 ... x2p

... ... ... ...
xn1 xn2 ... xnp









Then

R(X) = (rkj)p×p is a real symmetry matrix,

where

rkj =
2

n
∑

i=1

xikxij

n
∑

i=1

x2
ik +

n
∑

i=1

x2
ij

, (k, j = 1, 2, ..., p).

Furthermore, we have

Theorem 1: Let X = (xij)n×p be a real matrix, matrixY
is standardization of matrixX ,
then

R(Y ) = corrcoef(X),

where

Y = (yij)n×p, yij = (xij − x̄j)/sj, x̄j = 1
n

n
∑

i=1

xij , sj =
√

1
n−1

n
∑

i=1

(xij − x̄j)2, corrcoef(X) is correlation matrix
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Proof:

2

n
∑

i=1
yikyij

n∑

i=1
y2

ik

n
∑
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y2
ij

=

n
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√
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√

n
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√

n
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n
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n
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√

n
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n
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n
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+
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n
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n
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i=1
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√

n
∑

i=1
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√
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=
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√
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(xik − x̄k)2
n
∑

i=1

(xij − x̄j)2
.

II. ORIGINAL FUZZY C-MEANS ALGORITHM

For a given data setX = {X1, X2, ..., XN} ⊂ Rp, FCM is
an iterated process involving cluster centerC = (v1, v2, ..., vc)
and membership matrixU = (uij), i = 1, 2, ..., c, j =
1, 2, ..., n, whereuij denotes the grade of j-th object which
belongs to centervi.The process is listed as follows [3]:

Step 1: Given a positive integerc which can be decided
by some rules. Initialize the membership matrixU by random
uniform numbers in interval [0, 1].

Step 2: Fori = 1, 2, · · · , c, j = 1, 2, ..., n, andm > 1, we
calculate the cluster centerC,

v
(l)
i =

N
∑

k=1

(u(l)
ik )mxk/

N
∑

k=1

(u(l)
ik )m (9)

and new membership matrix

u
(l+1)
ik = 1/

c
∑

j=1

(dik/djk)
2

m−1 (10)

and update the initialized fuzzy membership matrix which has
the following character.

Step 3: Compute the objective function

J(U, V ) =
N

∑

k=1

c
∑

i=1

(uik)m(dik)2. (11)

Step 4: Givenε > 0, if max
{

|ut
ik − ut−1

ik |
}

< ε, then the
procedure ends, else go to step 2.

III. WEIGHTED FCM

Weighted FCM is the following programming:

min J(U, V, c) =
N

∑

k=1

c
∑

i=1

(uik)m(
√

wjdik)2,

s.t































0 ≤ uik ≤ 1, 1 ≤ i ≤ c, 1 ≤ k ≤ N
c

∑

i=1

uik = 1, 1 ≤ k ≤ N

0 <
N
∑

k=1

uik < N, 1 ≤ i ≤ c

1 ≤ m ≤ ∞.

wherewj can be computed by three steps.
Berget et al [4] obtained a new modification and application

of fuzzy c-mean methodology. Our method is as below:
Step 1: To perform a fuzzy similarity matrixY = (yij),

where

yij = 2
n

∑

i=1

xik · xij/(
n

∑

i=1

x2
ik +

n
∑

k=1

x2
ij).

Step 2: Compute eigenvalueλi of matrix Y .
Step 3: Compute weight vectorw = (w1, w2, ..., wp),

where

wi = λi/

p
∑

i=1

λi.

We next use the weighted FCM to deal with the partition
problem of Iris database consisting of 150 samples and three
classes in Fisher. Each sample has four features: sepal length,
sepal width, and petal length and petal width. The error rates
of four different methods for this data set are listed in Table
1. For the Iris databasethe Weighted FCM works very well.
From Table 1, one can see the performance of weighted FCM
is better than those of Wang et al [5], Zhang et al [6] and Hung
et al [7] which resorted to bootstrap method.

By using MATLAB software, we obtain that when2 < m ≤
2.5, error rates=5/150. Meanwhile we have Table 1 and Fig.1.

IV. CLUSTER VALIDITY

The main purpose of studying cluster validity is to deter-
mine the optimal cluster number and partitions [8,9,10]. As
mentioned earlier, the degree of variation can be quantized
by computing the intra cluster errors. Some cluster validity
indices available as below:

TABLE I
THE ERROR RATES OF FOUR METHODS FORIRIS DATA

m 1.5
Methods Original FCM Wang et al. Hung et al. Zhang et al. Our method
Error rates 16/150 9/150 9/150 8/150 6/150
m 2
Methods Original FCM Wang et al. Hung et al. Zhang et al. Our method
Error rates 16/150 8/150 9/150 9/150 6/150
m 5
Methods Original FCM Wang et al. Hung et al. Zhang et al. Our method
Error rates 15/150 10/150 8/150 8/150 6/150
m 10
Methods Original FCM Wang et al. Hung et al. Zhang et al. Our method
Error rates 12/150 10/150 7/150 10/150 6/150

1061
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(a) Bezdek

VPE = −1
n

n
∑

j=1

c
∑

i

uij loga(uij). (12)

In general, we find an optimalc∗ by solving min
2≤c≤n−1

VPE

to produce the best clustering performance for the data set X.
(b) Xie-Beni

VXB =
c

∑

i=1

n
∑

j=1

u2
ij ||xj − vi||2/n min

i6=k
||vj − vi||2. (13)

In general, we find an optimalc∗ by solving min
2≤c≤n−1

VXB

to produce the best clustering performance for the data set X.
(c) Kuyama & Sugeno

VFS =
n

∑

j=1

c
∑

i=1

um
ij ||xj − vi||2 −

n
∑

j=1

c
∑

i=1

um
ij ||vj − v̄||2. (14)

In general, we find an optimalc∗ by solving min
2≤c≤n−1

VFS

to produce the best clustering performance for the data set X,
wherev̄ =

∑c

i=1 vi/c.
(d) Kwon

Vk = [
c

∑

i=1

n
∑

j=1

u2
ij ||xj − vi||2 + 1

c
||vj − v̄||2]/ min

i6=k
||vi − vk||2.

(15)
In general, we find an optimalc∗ by solving min

2≤c≤n−1
VK

to produce the best clustering performance for the data set X.
In this article we establish a new cluster validity rule as

below:

VLI =

√

c + 1
c − 1

n
∑

j=1

[max
1≤i≤c

(−uij log(uij))

+

√

√

√

√(c
c

∑

i=1

u2
ij − 1)/c(c − 1)], c > 1. (16)

where c is cluster number,u = (uij)c×n is the final
fuzzy partition matrix (or membership function matrix).
−uij log(uij) is entropic of membership function matrix,
√

(c
c

∑

i=1

u2
ij − 1)/c(c − 1) is variation coefficient of member-

ship function matrix.
We find an optimalc∗ by solving min

2≤c≤n−1
VLI to produce

the best clustering performance for the data set X.
Cluster validity functions are often used to evaluate the

performance of clustering in different indexes and even two
different clustering methods. A lot of cluster validity criteria
were proposed during the last 10 years. Most of them came
from different studies dealing with the number of clusters.

To test validity indices, we conduct the Iris data sets and
Wine data sets. Iris data sets are perhaps the best known
database to be found in the pattern recognition literature.
The data set contains 3 classes of 50 instances each, where
each class refers to a type of Iris plant. One class is linearly
separable from the other 2; the latter is not linearly separable
from each other. Wine data are the results of a chemical
analysis of wines grown in the same region in Italy but derived
from three different cultivars. The analysis determines the
quantity of 13 constituents found in each of the three types of
wines.

The optimal number of cluster is shown in Table 2. From
Table 2, we find that the cluster result ofVLI is the most
excellent.

V. CONCLUSION

The weighted FCM algorithm constructed in this paper has
the following characteristics:

(1) Misjudgment rate is low than other clustering method
for some classical data;

(2) Better stability of our method for different indexm.
The superiority to other clustering methods suggests that we
should adopt the new clustering algorithm.

Fig. 2 Iris data cluster numberc =3

Fig. 1 Original FCM (left) and our method (right) for Iris data
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TABLE II
OPTIONSCLUSTER NUMBERS FORIRIS DATA AND WINE DATA

Criterion Number of Cluster Number of Cluster
function (Iris data) (Wine data) m
VPE 2 2
VXB 2 2
VFS 5 7 1.5
VK 2 2
VLI 3 2
VPE 2 2
VXB 2 2
VFS 5 11 2
VK 2 2
VLI 3 3
VPE 2 2
VXB 2 2
VFS 5 6 2.1
VK 2 2
VLI 4 3
VPE 2 2
VXB 2 2
VFS 5 4 2.5
VK 2 2
VLI 5 3
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Fig. 3 Wine data cluster numberc =3

Fig. 4 Cluster validity index of Iris data(m =2)

Fig. 5 Cluster validity index of Wine data(m =2)


