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Abstract—Within the domain of Systems Engineering the need 

to perform property aggregation to understand, analyze and manage 

complex systems is unequivocal.  This can be seen in numerous 

domains such as capability analysis, Mission Essential Competencies 

(MEC) and Critical Design Features (CDF).  Furthermore, the need 

to consider uncertainty propagation as well as the sensitivity of 

related properties within such analysis is equally as important when 

determining a set of critical properties within such a system. 

This paper describes this property breakdown in a number of 

domains within Systems Engineering and, within the area of CDFs, 

emphasizes the importance of uncertainty analysis.  As part of this, a 

section of the paper describes possible techniques which may be used 

within uncertainty propagation and in conclusion an example is 

described utilizing one of the techniques for property and uncertainty 

aggregation within an aircraft system to aid the determination of 

Critical Design Features.

Keywords—Complex Systems, Critical Design Features, 

Property Aggregation, Uncertainty.  

I. INTRODUCTION

NGINEERS at various stages, levels and domains of the 

design of complex systems, such as a modern fighter 

aircraft, make use of aggregated properties to obtain a wide 

ranging picture of the design (or requirements of the design) 

of a system, while lower level properties are used to describe 

the detailed design in a specific domain and sub-system. For 

example, in theory, the aerodynamicist has little concern 

initially for the material used to build the wing, the structural 

analyst is not interested in the drag coefficient of the wing, 

and the E-M engineer is happy to produce an aircraft 

geometry that is covered in Radar Absorbent Material (RAM) 

without concern for its ability to fly effectively.  The e-m 

engineer is concerned only with reducing the Radar Cross 

Section of the aircraft (together with Electromagnetic 

Compatibility issues) not with the aerodynamic consequences 

of panel detachment nor the effect on the engines of such 
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panels being ingested.  It is not until the higher level property 

of say survivability is considered that the need for efficient 

wings (to enable high speed due to reduced drag), low RCS 

(to reduce the probability of detection) and structural 

efficiency (to enable the aircraft to pull higher g turns), 

amongst other considerations, is recognized. At this stage the 

design is compromised (traded-off) in each of the different 

domains to enable the production of a robust, optimum aircraft 

system. 

Unfortunately, this aggregation of properties results in 

somewhat fuzzy, ill-defined and immeasurable higher level 

attributes such as flexibility, lethality and “fitness for 

purpose”. These should be compared with the well-defined 

measurable base level properties of, say, length, density and 

electric current. To ease the understanding of these high level 

attributes, often called “ilities” , it is the authors view that one 

needs to provide a hierarchical structure linking the system 

properties, together with the influence lower level properties 

have on the linked higher level ones.  As an example related 

to Military aircraft design see Fig. 4. In its most rigorous form 

these relationships would be provided by an explicit complex 

mathematical model, but in practice, as one progresses up this 

property hierarchy, subjective views dominate. As a minimum 

the sensitivity between directly linked properties should be 

agreed with the relevant experts. 

This breakdown / aggregation is now discussed in three 

different domains. 

II. EXAMPLES OF PROPERTY AGGREGATION

A. Capability 

The clear specification of system of systems performance or 

effectiveness is a pressing and difficult task given many 

customers transition from equipment to capability acquisition, 

and the current drive towards Networked Enabled Capability.  

Understanding the properties of ‘complex systems’ with a 

large number of highly interconnected heterogeneous 

elements and how this relates to the provision of capability 

poses today a grand challenge for system research.  Education 

and heath care systems, and complex transport systems –civil 

aircraft and rail networks – illustrate current limitations on 

predicting high-level system properties. It is not unusual for 

good-intentioned changes to organization, process or 

technology to lead to unpredicted detrimental effects, either on 
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other parts of the system, or the system as a whole. It is not 

difficult to find examples in the press of where existing 

‘systems’ exhibit undesirable and/or unexpected 

characteristics. It is also common to see accounts of how 

attempts to improve and/or extend systems can fail 

spectacularly, for technical, operational or managerial reasons. 

This can be simply because of a lack of holistic (or systems) 

perspective and/or a lack of appropriate model-based analysis. 

To obtain a solution too many of the above questions one 

needs to develop a framework of properties, functionality and 

architecture linked by existing, meta- or pseudo- models.  This 

will enable a common understanding of requirements / 

capability and aid trade off. 

The need to trade-off across all Lines of Development, 

through the lifecycle and at different abstractions from the 

geo-political and national level to equipment and onwards to 

system, sub-system and even component level, will require a 

functional linkage between properties to facilitate 

optimization, and cost models obviously provide an important 

input to this overall optimization problem. 

Uncertainty obviously plays a large role in capability 

provision.  Can we manage risk, to provide a sufficiently 

robust system, without allowing for the determination & 

propagation of uncertainty within, for example, models, data, 

and environmental bounds? 

An example of the breakdown of capability is shown in   

Fig. 1 where the medium weight capability for the rapid 

deployment of troops within, say, a peacekeeping scenario is 

broken down at the high level via a bulls-eye target. The 

colour coding is representing the weighting between the 

different levels. 

Fig. 1 Capability Bull’s-eyeTM 

B. Mission Essential Competencies Related to Pilot 

Training 

Mission Essential Competencies (MECs) [1], [2], [3], [4] 

have been pioneered in the U.S., although wider application 

has also occurred such as in the UK Composite Air Operations 

(COMAO) experiments for training using distributed 

networks [5]. These MECs have been developed with the aim 

of capturing the dynamics of combat and according to 

Schreiber et al. [6] the MECs for an air-to-air mission process 

define which skills constitute a proficient fighter pilot in 

combat, that are readily applicable to a realistic environment. 

MECs are defined as “the higher order individual, team, and 

inter-team competencies that a fully prepared pilot, crew, or 

flight require for successful mission completion under adverse 

conditions in a non-permissive environment” [4]. The 

hierarchical structure of the MEC model consists of the MECs 

at the top level, the Supporting Competencies (SCs) at the 

next level and Knowledge and Skills (SKs) at the lowest level. 

MECs are broad in nature and difficult to measure. Supporting 

Competencies are more general than MECs, and reflect areas 

of competence needed in carrying out the MECs. Some 

supporting competencies are applicable across all MECs, and 

others are applicable for only a few MECs. A supporting 

competency can then be attained through a variety of SK 

requirements, which have a more suitable granularity for 

measurement. In addition to Skills & Knowledge, the MECs 

can also include critical experiences that have direct impact on 

a particular SK under operational-like conditions [2].  

Intra-relationships of the MEC model depend on the 

scenario, although binary relationships can be generalised. 

The model in Fig. 2 shows the three levels of competencies, 

MECs, SCs and SKs, with unclear links between these levels 

as well as the complex interactions between the components 

of the same level, as is the case in the real world.  

Given such conceptual linking, training needs can be easily 

determined by working backwards from the highest level 

(MECs) to the lowest level (SK) and then to specific training 

tasks (Experiences). 

MECs for an air-to-air mission quoted by Symons et al.  

[2] are as follows: 

Organize Forces to Enable Combat Employment 

Detects Factor Groups in Area of Responsibility 

Intercept and Target Factor Groups 

Engage-Employ Ordnance & Deny Enemy 

Ordnance 

Assessment/Reconstitute-Initiate Follow on 

Actions 

Remain Oriented to Force Requirements 

Recognize Trigger Events that Require Shift in 

Phase 

Fig. 2 shows the top level breakdown of these MECs into 

supporting competencies and further into required skills and 

knowledge [2]. 
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MECs breakdown to 

SCs
SCs Knowledge SCs Skills
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Communication
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Flight Battle 

Managing flight 
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Information
Management
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Zone
Management
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Management

in chronological order

MECs breakdown to 

SCs
SCs Knowledge SCs Skills

Adapts to threat changes

Anticipates problems

Builds picture

Controls Intercept Geometry

Develops new options

Executes merge game plan

Executes short range game plan

Interprets sensor output

Listens

Maintains formation
Makes assessment

Manages mission timing

Manages stress

Multi -tasks

Prioritizes communications

Sorts information

Speaks clearly

Switchology
Sorts targets

Selects tactic

Radar mechanization

Rebuilds picture

Reforms

Time Restrictions 

Comm Standards

Commit Criteria

Engage Criteria

Follow-on Options

Formation

Friendly Capabilities

Mission Objectives

Package Composition

Phase of Mission

ROE

Threat Capabilities

Communication
For example,
oral / written

Flight Battle 

Managing flight 
formation & resources

Identification

Information
Management

Situational
Awareness

Timeline
Events arranged 

Weapons 
Engagement

Zone
Management

Adaptability
For example, game plan, 

reactions, intercepts
Decision Making

Management

in chronological order

Fig. 2 Pilot MEC Breakdown

C. Critical Design Features 

CDFs form a sub-set of the customer’s key requirements for 

the system at the highest level of the product breakdown 

structure where criticality is ranked against the risk of hitting a 

particular key requirement. In this sense such attributes and 

measures of the system are dependant on the uncertainty of 

sub-system property values and the sensitivity between 

different levels of properties. Once again a breakdown of high 

level properties is required, generically shown in Fig. 3, a 

specific example of which is shown in Fig. 4. This domain is 

discussed in greater detail in section IV. 

Model

ModelModel 

Model 

Model 

CDF Reporting Level

Lower level

characteristics

influence higher

levels through layers

of systems

architecture

modelling.

Thread of CDF

influence.

Fig. 3 Generic Breakdown 

Fig. 4 CDF Property Breakdown 

III. UNCERTAINTY ANALYSIS

The need to perform uncertainty analysis across a property 

hierarchy has been described in the previous section.  Various 

approaches exist to aggregate uncertainty, the choice made 

often being dependent on the type of hierarchical breakdown. 

For example, a more subjective breakdown could utilize 

Dempster-Shafer belief functions [7] or fuzzy analysis [8], 

while a more quantitative breakdown could better make use of 

a probabilistic Taylor series expansion or Monte Carlo 

approach. The remaining part of this section documents some 

possible techniques. 

A. Monte Carlo Simulation 

Monte Carlo Simulation can be regarded as the observation 

of random numbers chosen in such a way that they directly 

simulate the physical random process of the original problem. 

In this respect samples of the uncertain parameters x are 

generated from the PDF p(x) and then these samples are used 

to determine the response y(x). This approach tends to be 

computationally intensive and occasionally unfeasible for 

large complex systems. 

B. Taylor Series Expansion 

If z = f(x1,...xn) then it can be shown using a Taylor series 

expansion [9] that  

Expected value of z =  
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where i is the standard deviation of xi and ij is the co-

variance of xi & xj = E[(xi- i)(xj- j)].

If the sxi '  are independent and z is approximately linear 

in terms of the sxi '  over a high percentage of the distribution 

(say 2 ) then we may also neglect the higher order terms, 

so 
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In the important special case Z=XY a more accurate 

solution is available if X & Y are independent, namely 

)( yxzzE                         (5) 

and 

2222222

yxyxxyz                    (6) 

C. Quantifying Subjective Views 

Uncertainty may be represented by a mean and standard 

deviation for the properties under consideration. If the 

distribution of these values is shown or assumed to be of a 

specific kind, for example, a normal distribution, the mean 

and standard deviation can be related to the confidence one 

has in specific values lying in a given range. For example if a 

property’s distribution is assumed normal and one is 68% 

confident that its value lies in the range (a,b) then  should be 

taken as (a+b)/2 and  = (b-a)/2.   Subjective views can then 

be ascertained by the expert providing data relating to how 

confident he/she is that the value will lie between certain 

limits. 

D. Interval Analysis 

With this approach the input properties x are not described 

by means and standard deviations together with specific 

distributions but by simple bounds iii xxx  for i = 1,,,m

where ix  and ix  represent the lower and upper bounds on xi.

The approach is to determine the bounds on the outputs y(x)

using interval analysis. Two approaches are commonly used 

when using simple interval arithmetic to compute the ranges 

of the output and the second is to use optimization (or more 

correctly anti-optimization) to determine the least favourable 

output response using the bounds on the input properties.  The 

optimization approach can be further expanded by 

consideration of convex modelling in which the hyper-cube 

representation of the bounds on the input properties are more 

accurately modelled by a convex surface inscribed within the 

hyper-cube, hence removing its vertices from the input space. 

1) Interval Arithmetic 

The first approach uses the following relationships 

involving simple arithmetic operations applied to intervals 

[a,b]+[c,d]=[a+c,b+d] 

[a,b]-[c,d]=[a-d,b-c] 

[a,b]x[c,d]=[min(ac,ad,bc,bd),max(ac,ad,bc,bd)]=[ac,bd] if 

a,b,c,d 0

[a,b]/[c,d]=[a,b]x[1/d,1/c]=[min(a/d,a/c,b/d,b/c),max(a/d,a/c,b/

d,b/c)]=[a/d,b/c] if a,b,c,d 0,   provided 0  [c,d] 

[c,d]=[ c, d] if 0 or [ d, c] if <0. 

2) Interval Analysis - Optimization 

If the output y is scalar then its bounds may be determined 

by an optimization routine with the function y (or its inverse if 

employing a minimization routine) as the objective/cost 

function and the bounds iii xxx  for i = 1,,,m acting as 

constraints. This approach [10] will allow one to obtain the 

worst case response/functional evaluation given the 

uncertainty of the input properties.  The approach could be 

obviously extended to the case of multiple outputs y at the 

expense of possible prohibitive processing time. Obviously, if 

the functions and bounds are linear then linear programming 

techniques may be used to solve the resulting optimization 

problem. 

3) Convex Modelling 

The bounds on the input parameter x can be said to lie 

within a hyper-cube whose faces are determined by the lower 

and upper limits of each individual x. For example for a 3 

parameter system, bounds iii xxx  for i = 1,2,3 define a 

cuboid in 3 dimensional space. In practice the upper or lower 

bounds on the parameters are unlikely to occur simultaneously 

and hence an object inscribed within the hyper-cube, 

removing the vertices from the input space, may well provide 

a more suitable bound than the hyper-cube.  Expanding on the 

previous example, results in an ellipsoidal input space as a 

more suitable bound for the input parameters. In general, any 

value in m-space may be used, but in practice the volume is 

assumed to be convex and represented by the equation 

2xAx
T

 where A  is a positive definite matrix and  is a 

real number. Having defined the bounds on the input 

parameters as above, the corresponding bounds on the 

solution y may be found by use of an optimization routine as 

was the case with interval analysis optimization. 

The major problem with these approaches is that the 

predicted bounds on the output y can be very conservative 

since there is no probabilistic information utilized relating to 

specific parts of the range.  

Other approaches such as Dempster-Shafer Theory and 

Fuzzy modelling are discussed within [3] and [4]. In particular 

Fuzzy analysis is presently being used by the authors to model 

Mission Essential Competencies mentioned earlier in this 

paper [11]. 

IV. CRITICAL DESIGN FEATURES

Since the analysis of critical design features requires, by its 

nature, a determination of uncertainty; a means of analyzing, 

combining and propagating this uncertainty is required to help 

perform a trade-off analysis.  This information can then be 

used to show that the performance reaches the required levels 

(i.e. the critical design features are met) with a stated 

confidence, or alternatively to indicate how best to direct 

effort on modifying those lowest level properties which 

influence the CDFs to greatest effect to improve overall 

performance at minimum cost.  
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Failure to represent the uncertainty in the parameters, 

results in immeasurable uncertainty in the values of the CDFs, 

and hence provides limited information on how best to 

improve overall performance and reduce uncertainty in the 

specific architecture. 

Although this uncertainty analysis can be accomplished to 

some extent by the use of possibilisitic / subjective 

approaches, using techniques such as interval analysis, fuzzy 

modelling and belief functions, the remaining part of this 

paper will discuss only the use of probability density functions 

to describe the input uncertainty.  If only subjective data is 

available, e.g. input property values are expected to lie 

between certain values with a given confidence, then one 

could use a uniform, beta or truncated Gaussian distribution or 

another distribution whose PDF is zero outside the bounds 

stated.  Alternatively, expert views can be captured by them 

indicating confidence intervals e.g. 80% confident that input 

data will lie between specific bounds.  This will allow one, if 

the form of the distribution is known, to transform the 

confidence interval data to mean and variance statistics. 

If the input is available as experimental data then “tests of 

fit” and univariate estimation analysis can be used to 

determine the confidence in the PDF’s of the initial properties. 

The mean and variance of the input data can then be 

aggregated stochastically by using the central limit theorem 

(in respect of summation of sufficient distributions with the 

necessary independence) to prove the output is normally 

distributed, and utilization of a Taylor series expansion (Eqs. 

1 & 2) to determine an estimate of the mean and variance of 

that output.  If the central limit theorem cannot be used then 

the utilization of the Bienaymé-Chebyshev inequality [12] 

should be considered. 

It should be noted that “fitness for purpose” of the design 

equates to meeting all the “design for” objectives that define 

purpose e.g. affordability, lethality, availability and that 

product maturity will increase progressively if: 

CDFs are recognized at outset 

CDFs drive the engineering plan 

CDFs are stable 

CDFs are partitioned and flowed down to sub-

systems 

and achieving a CDF will require different, possibly numerous 

enabling sub CDFs, in each sub-system. 

The objectives of the “Critical Design Features 

Management” process are then: 

o To provide techniques to assist in the identification 

of CDFs 

o To point to the area of design which, if appropriately 

modified, would resolve the ‘criticality’ in a CDF 

without raising further problems.  

o To feed into the “Create Candidate Solutions” 

process information to allow modification and 

refinement of design options so as to resolve 

criticality. 

A. Dumb Bomb Drop CDF Case Study 

Although property error data and sensitivities between the 

aggregated properties within this case study are classified and 

hence undisclosed, the approach used to determine CDFs is 

described in this section. 

The reader is referred to Fig. 4 which indicates the linkage 

between overall system fitness for purpose through the 

lethality property to the lowest level properties related to a 

dumb bomb drop (e.g. Inertial Navigation System Inaccuracy, 

Air Data Computer Fidelity). These lowest level properties are 

defined to be those independent properties which are not 

related to any lower level properties within the system of 

interest. 

In general assuming that mpp1  are the lowest level 

properties and nm pp 1  are the aggregated properties 

which are arranged such that 
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Where 
2

A  Matrix A  with each element squared. 

In the dumb bomb drop example the lowest level properties 

(bomb release timing, attitude and velocity, HUD positioning, 

windshear and sideslip etc.) will have errors with mean 

)( pE  and variance )( pVar  which may be determined 

from experimental data or expert opinion. This data together 

with the sensitivity matrices S  and S , which in practice are 

determined by calculation, subjective view of experts or 

perturbation analysis, allow one to determine the mean and 

variance of the aggregated properties (e.g. lethality or even 

overall fitness for purpose).  This analysis will then allow one 

to determine the uncertainty of higher level properties by 

utilizing the central limit theorem (independence of the lowest 

level properties is assumed) to ascertain the normality of error 

in these aggregated properties and hence aid the determination 

and management of CDFs by the following process. 

1. Determine model fidelity 

2. Perform sensitivity analysis 

3. Establish CDFs 

4. Identify trade opportunities and generate solution 

options 

Perform trade-off analysis 

Determine the effect of uncertainties in the 

analysis

Modify critical parameters (properties) 

Consider new architectures 

5. Repeat the above at the next design evolution 

6. Evaluate change option and select preferred option 

7. Initiate re-negotiation of requirements if necessary. 

A suitable process, utilizing a Bayesian Belief Network, for 

determining model fidelity (item 1 above) is described in [13]. 

Items 2 and 3 are completed by the analysis indicated in the 

earlier case study which also indicates suitable trade-off via 

property modifications (item 4). 
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