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Abstract—Whole genome duplication (WGD) increased the 

number of yeast Saccharomyces cerevisiae chromosomes from 8 to 
16. In spite of retention the number of chromosomes in the genome 
of this organism after WGD to date, chromosomal rearrangement 
events have caused an evolutionary distance between current genome 
and its ancestor. Studies under evolutionary-based approaches on 
eukaryotic genomes have shown that the rearrangement distance is an 
approximable problem. In the case of S. cerevisiae, we describe that 
rearrangement distance is accessible by using dedoubled adjacency 
graph drawn for 55 large paired chromosomal regions originated 
from WGD. Then, we provide a program extracted from a C program 
database to draw a dedoubled genome adjacency graph for S. 
cerevisiae. From a bioinformatical perspective, using the duplicated 
blocks of current genome in S. cerevisiae, we infer that genomic 
organization of eukaryotes has the potential to provide valuable 
detailed information about their ancestrygenome.  
 

Keywords—Whole-genome duplication, Evolution, Double-cut-
and-join operation, Yeast. 

I. INTRODUCTION 
ENOME duplication is a fundamental process in the 
evolution of species. Within the yeast Saccharomyces 

cerevisiae (S. cerevisiae), whole-genome duplication (WGD), 
is thought to have occurred approximately 100 Ma, in which 
two identical copies of each chromosome with identical gene 
content and gene order created [1-5]. Since the WGD to date, 
organization of the genome of S. cerevisiae has been 
modifying under large chromosomal rearrangements which is 
critical for the evolution [6]. In other words, during the course 
of evolution, the genes in the genome can be shuffled around 
by genome rearrangements that move genes within a 
chromosome or among chromosomes. For multi-chromosomal 
genomes, the most common operations of rearrangement are 
intra-chromosomal translocations, inversions, non-reciprocal 
telomeric translocations, fusions, fissions [7] and block-
interchanges [8] that all were initially introduced by 
Yancopoulos and colleagues in unique operation to sort two 
signed genomes which called double-cut-and-join (DCJ) [9]. 
It basically cuts a genome in two places and then joins the 
resulting four ends in a new way. Recently, Kahn and 
colleagues constructed an algorithm to compute duplication 
distance between two signed strings with segmental 
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duplication. They also extended the computation for the 
genome with duplication-deletion and duplication-inversion-
deletion in the human genome [10]. In [11], genome 
dedoubling problem was solved with introducing algorithm in 
the DCJ and reversal models for reconstruction of non-
duplicated ancestor of Drosophila yakuba.  In [12], Chen X 
and colleagues found how to sort unsigned genome composed 
of linear and circular chromosome by double-cut-and-join 
operations. In this paper we calculate the minimum number of 
rearrangement needed to transform present-day genome of S. 
cerevisiae to its ancestor (DCJ distance) by using theorem 1 
mentioned in [11]. To approximate the evolutionary distance 
between two genomes, we first use updated map of duplicated 
regions in the yeast genome [2] to draw dedoubled genome 
adjacency graph.  It is well known that the genome of S. 
cerevisiae contains 55 different pairs of syntenic chromosomal 
regions originated from WGD, consisting of duplicated gene 
pairs arranged in the same order on two different 
chromosomes or rarely on a single chromosome [1, 13]. Then, 
we present a program which is applicable to draw dedoubled 
genome adjacency graph of S. cerevisiae and also any uni- or 
multi- chromosomal signed genome.  

II. MATERIAL AND METHODS  

A. Whole Duplicated Genome 
Each linear chromosome of the genome is composed of 

duplicated segments and their paralogs which are represented 
by signed genomic markers. Two copies of a same marker in a 
genome are called paralogs. Markers are indicated by sign in 
which the sign shows orientations of markers in chromosomes. 
Two ends of each linear chromosome indicate telomeres 
which are represented by the unsigned marker ○. If a marker x 
is present twice, one of the paralogs is represented by x. A 
duplicated genome is a genome in which subset of markers are 
duplicated. For example, (○  2  1  -5  6  ○) (○  2  -4  ○) (○  -1  
6  3  5  ○) is a multi-chromosomal genome composed of four 
duplicated markers and their paralogs.  Whole duplicated 
genome is a duplicated genome in which all segments are 
duplicated e.g., (○  4  -5  -5  ○) (○  2  4-2  ○).  Whole 
duplicated genome in ancestor is a genome such that marker x 
and its paralog are in form of pairs (x  x) or (x  x). For 
example, (○  11   2   2   3   34   4   5   5  ○). 

 
B. Whole Duplicated Genome in the S. cerevisiae 
A perfectly doubled genome of S. cerevisiae included in 16 

linear chromosomes rearranged over evolutionary time to 
construct current genome with cluttered gene order.  Present-
day rearranged genome of S. cerevisiae carrying 55 duplicated 
pair regions which are surrounded by single-copy genes within 
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#include <conio.h> 

#include<iostream.h> 

struct numbers 

{ 

 int n; 

intloc; 

intloc_b; 

}; 

int main() 

{ 

clrscr(); 

intnum[] = {0,  2, -1 ,0 
,0 , 4, -3, -7,  8, -5,  6 
,0 ,0 , 9, -10, -11 , 0 , 0 
, 20, 12, 12, 54, 15, 21, 
-3, -13, -16, 17, -24, -
22, -14, -23, -19, 18, -
9 ,0 , 0 ,28, -25, -27, -
4, -26, -13 , 0, 0 , 55, -
36 ,0 , 0 , 36, 25, 26, 
32,  6, -33, 5, -30, -34, 
-31, -29, 0 ,0 , 35, -14, 
-37, -29, -1, 0, 0, 38, 
39,  27,0 ,0 ,10, 40, 41, 
-28, -42 ,0 ,0 , 42, 40, 
43, 35, -41, -52, -38, 0 
,0 , 53, -53, -31, -55, -
16, -18, -17, -45, -30, -
15, -44, 0 , 0, 46, 44, 
19, -43, -54, -48, -47, -
46, 0, 0, 49, 20,  37,  
50,  39, -11, 0, 0, 49, 
21, -22, -52, -50, -23, -
45, -51, -47, -2, 0, 0, 
48, 32, 33, 51, 8, 24, -
7, -34 , 0}; 

int 
size=sizeof(num)/sizeo
f(int),i,j,k,n=0,num1[1
00],nu[100],location,lo
cation_b,k1; 

numbers x[150]; 

 /*for(i=0;i<size;i++) 

 { 

 if(num[i]!=0) 

   { 

  x[n].n= num[i] 

  x[n].loc=i*2; 

n++; 

   } 

 } */ 

  k=0; 

for(i=0;i<size;i++) 

 for(j=0;j<size;j++) 

  if(num[i]+ 
num[j]==0 
&&num[i]>0) 

 { 

 
 //cout<<num1[i]<<
"       "<<num1[j]; 

nu[k]=num[i]; 

x[k].n=num[i]; 

x[k].loc=i*2; 

x[k].loc_b=j*2; 

k++; 

        // cout<<"\n"; 

 

break; 

 } 

int ii=0,temp; 

for(i=0;i<size;i++) 

 { 

 if(num[i]<-9) 

  cout<<num[i]; 

if((num[i]>-9 
&&num[i]<0) || 
(num[i]>9)) 

   { 

 
 cout<<num[i]<<" 
"; 

   } 

if(num[i]>=0 
&&num[i]<10) 

cout<<num[i]<<"  "; 

 } 

 
/*for(i=0;i<k;i++,ii+=
2) 

 { 

 for(j=0;j<k;j++) 

   { 

 if(nu[i]==x[j].n) 

      { 

 //cout<<"\n"; 

location = x[j].loc; 

location_b = 
x[j].loc_b; 

if(location>location_b) 

         { 

temp=x[j].loc; 

x[j].loc=location_b; 

location_b=temp; 

 

temp=location; 

location=x[j].loc_b; 

x[j].loc_b=temp; 

         } 

if(location>80) 

 location %= 80; 

location++; 

gotoxy(location,i+8); 

 cout<<"*"; 

 

while(location+1<loca
tion_b-1) 

         { 

 gotoxy(location+1,i
+8); 

  cout<<"_"; 

location++; 

         } 

gotoxy(location_b-
1,i+8); 

 cout<<"*"; 

 

location= x[j].loc; 

location_b= x[j].loc_b; 

gotoxy(location-
1,i+9); 

cout<<"*"; 

while(location<=locati
on_b) 

         { 

 gotoxy(location,i+9
); 

  cout<<"_"; 

location++; 

         } 

gotoxy(location,i+9); 

cout<<"*"; 

break; 

      } 

   } 

 }*/ 

 

for(i=0;i<k;i++) 

 { 

 for(j=0;j<k;j++) 

   { 

 if(nu[i]==x[j].n) 

      { 

location = x[j].loc; 

location_b = 
x[j].loc_b; 

if(location>location_b) 

        { 

temp=x[j].loc; 

x[j].loc=location_b; 

location_b=temp; 

 

temp=location; 

location=x[j].loc_b; 

x[j].loc_b=temp; 

        } 

cout<<"\n"; 

        k1=0; 

while(k1<location%80
) 

        { 

  cout<<" "; 

k1++; 

        } 

cout<<"*"; 

while(location<locatio
n_b-2) 

        { 

  cout<<"___"; 

location++; 

        } 

cout<<"*"<<endl; 

location = x[j].loc; 

        k1=0; 

while(k1<(location%8
0)-2) 

        { 

  cout<<" "; 

k1++; 

        } 

cout<<"*"; 

while(location<=locati
on_b) 

        { 

  cout<<"___"; 

location++; 

        } 

cout<<"*"; 

break; 

      } 

   } 

 } 

getch(); 

return 0; 

} 

 

Fig. 4 Program for drawing dedoubledadjacency graph of Saccharomyces cerevisiae genome 

 
 

indicating adjacency graph, n = 55 and Ci = 3. Eventually, the 
DCJ dedoubling distance of S. cerevisiae would be ddcj(Sc) = 
55 - 3 = 52. 
 
Program to draw dedoubled adjacency graph of S. cerevisiae: 
In this section, we introduce a program (Fig. 4) extracted from 
a C program database to draw dedoubled adjacency graph of 
signed genome of S. cerevisiae. It draws this graph by 
constructing one edge between the vertices (x  u) (v  x) and 
one edge between the vertices (y  x) and (x  z) for any marker 
x.  The program is also applicable to draw the graph for any 
signed genome.  

IV. CONCLUSION 
From a bioinformatical perspective, using the duplicated 

blocks in the current genome of S. cerevisiae, we have 
inferred that how to generalize the dedoubled adjacency graph 
for whole genome of this organism which is valuable for deep 
understanding of rearrangement events since WGD to date. In 
this work, we have shown that the number of non-duplicated 
pairwise independent cycle of current genome negatively 
effects on its distance with ancestor genome. 
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