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Abstract—this paper presents a multi-context recurrent network 

for time series analysis. While simple recurrent  network (SRN)  are 
very popular  among recurrent neural  networks, they still have  some 
shortcomings  in terms  of learning speed  and accuracy  that need to 
be addressed.  To solve these problems, we proposed a multi-context 
recurrent network (MCRN) with three different learning algorithms. 
The performance of this network is evaluated on some real-world 
application   such   as handwriting recognition and energy   load 
forecasting. We study the performance of this network and we 
compared it to a very well established SRN. The experimental results 
showed that MCRN is very efficient and very well suited to time 
series analysis and its applications. 
 

Keywords—Gradient Descent Method, Recurrent Neural 
Network, Learning Algorithms, Time Series, BP 

I. INTRODUCTION 

SUALLY a time series analysis considers the observed 
temporal series of data values and predicts the future data 

values. The time series analysis is needed in any applications 
in which the time is very relevant and crucial such as energy 
load, stocks, indices, weather, speech recognition, handwriting 
recognition, etc. Artificial neural networks (ANN) are among 
the most successful approaches for such time series 
applications [6, 12, 25, 33]. Among ANNs, Time Delay 
Neural Network (TDNN) and Recurrent Neural Network 
(RNN) are the most widely used for time series applications. 
However, both of them have some limitations. 

Generally, some conventional neural networks (see Figure 
1a) [17] can not handle time series patterns successfully. In 
order to overcome this problem, an alternative method that 
uses the context as part of the next inputs can model the 
temporal series data by considering the context, which stores 
the previous inputs, as part of the next inputs. In addition, the 
time series patterns are characterised by their variable length 
and most conventional networks accept as input only patterns 
with equal length [7, 34]. For instance, such context can be 
represented as a time series of buffer-inputs. Each buffer 
represents a time step. The input information is then shifted 
from one buffer to another every time step. The first buffer is 
always fed with a new input. This type of network is called 
TDNN [7], (see Figure 1b). TDNN has been successfully 
applied on many practical applications, such as speech 
recognition [6, 7], handwriting recognition [25] and  
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forecasting [12]. 
However, TDNN has a difficulty of dealing with sequences of 
variable length, due to its fixed input window [1]. 

Recurrent neural networks [35] provide an alternative to 
TDNN. They are developed to deal with temporal or time-
tagged patterns and are able to model systems having complex 
dynamics and/or the ob-served (collected) data is noisy. 
Recurrent networks are characterised from the others by their 
feed back loops, which allows them to handle temporal 
sequences. Generally, RNNs can be categorised into fully 
recurrent networks and partially recurrent network. For a fully 
recurrent network, every two neurons are connected from both 
directions. 

However, they suffer from heavy computing overheads 
[18]. A partially recurrent network is a multi-layered 
perceptron network which augmented with one or more 
additional context layers storing output values of one of the 
layers delayed by one step and used for activating other layer 
in the next time step. Unlike fully recurrent networks, a 
partially recurrent network has much less computing 
overhead. Examples of these networks can vary in the type of 
the feed-back used. 

 

 
 

Fig. 1 (a) is the conventional neural network, (b) is the tapped delay time 
network, (c) is the Jordan network and (d) is the Elman network 

 
The Jordan Network [20] (see Figure 1c) and the Elman 
network [10] are tow partially recurrent networks that are 
widely used. For the Jordan Network, the output of the 
previous step becomes the input to the current step. This 
network is able to produce a series of outputs given a fixed set 
of inputs as used for speech recognition [28]. The Jordan 
Network can only map the output memory but it can not map 
inputs that are not reflected in the outputs [5, 10, 36]. 
Therefore, the Elman network, called a simple recurrent 
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network (SRN) [5, 10], is developed (see Figure 1d) to 
overcome the limitations of Jordan Network. It uses the 
activation of context layer from the hidden neurons as the 
basic recurrent relation. The context layer is completely 
internal to the SRN because it references only the hidden 
neurons, and does not associate them with the network 
outputs.  

However, the architecture of the SRN includes small 
memory, which is only one context layer and also its 
performance in terms of accuracy possibly depends more 
information on the hidden layer [8, 38]. Therefore, we 
propose a new neural network with three learning algorithms 
to improve the performance of SRN. We will show that this 
new architecture is well suited to time series applications such 
as handwriting recognition and energy load forecasting. 

This paper is organised as follows: Section II introduces the 
architecture and principle of MCRN. Section III describes the 
three learning algorithms for MCRN. The complexity of 
MCRN and the problems of time serial applications are simply 
discussed in section IV and V respectively. Section VI 
provides experimental results. Conclusion and future work are 
given in section VII.   

II.  THE MULTI-CONTEXT RECURRENT NEURAL NETWORK 
 
The MCRN architecture is shown in Figure 2b and it consists 
of four layers: input, hidden, output, and multi-context layers. 
This architecture is similar to Elman tower network in terms 
of the number of layers. However, MCRN is characterised by 
the fact that the multi-context layers are directly linked to the 
output layer. Basically, MCRN combines the features of both 
Elman and Jordan networks, leading to a more complex 
connectivity between the layers but reducing the dependency 
of the network output on the hidden layer and speeding up the 
learning as we will show in the following sections. 

 
Fig. 2 displays two network architectures, (a) is the Elman Tower Network 

and (b) is the Multi Context Recurrent Network 

In order to analyse this architecture and understand its 
dynamics and, therefore, validate the learning process on the 
MCRN network, some definitions and notations are 
introduced in the following section. Part of the notations are 
already included in Figure 2. 

A. Notation 
 • Neurons and layers: The sets of indices { ''' ,, iii }, 

{ '''''' ,,, jjjj }, { ', ll } and { '''''' ,,, kkkk } represent the input, 

hidden, context, and output neurons respectively.  inn , 

hn and  outn  are the number of neurons in the input, 
hidden/context, and output layers respectively. 

• Net inputs and outputs: we denote by t  the current time 
step. The input of neuron  i  in the input later is denoted by 

iI  at time t .  jh~ Is the input of neuron j in the hidden layer, 
ko~

 is the input to neuron k in the output layer. jH is the 

output of neuron j in the hidden layer, )( ptCl −  is the 

output of neuron l  in the thp  context layer kO is the output 

of neuron k  in the output layer, and kd  is the target of 

neuron k in the output layer. 
 

• Connection weights: the weight connection from the input 
layer to the hidden layer is denoted by jiv . p

klu  is the weight 

connection from the thp  context layer to the hidden layer, 
p
klwoc  is the weight connection from the thp  context layer 

to the output layer and kjw  is the weight connection from 
the hidden layer to the output layer. 
 

B.  Network Dynamics 
 
Assume Q  be the total number of the context layers and q  
be the number of the active context layers. An “active layer” 
is a layer that is involved in storing previous time step data. It 
can be obtained by 

⎩
⎨
⎧ <

= )1....(..............................
elseQ

qtwhent
q  

Every time step the content of a context layer )( itC −  is 
copied to the next context layer )1( −− itC . At the same 
time the content is used as input to both hidden and output 
layers. MCRN is a feedforward network, and the information 
is propagated from the input to the output layers. Therefore, 
we first calculate the output of the hidden and context layers 
and then the output of the network. These are calculated as 
follows: 
 
1. Outputs of the hidden layer: The output )(tH j  of a 

neuron j  at time t  in the hidden layer is straightforward 
and given by the following: 
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The update of the context layer outputs is done by 
propagating the output of a context layer to the input of the 
next layer, assuming that the weights for these links are all 
equal to unity. Equation (4) is used for propagating the 
information from one context layer to its successor and the 
equation (5) is used to copy the output of the hidden layer 
to the first context layer. 

     )4(..............................).........1()( +−=− ptCptC jj  

      )5.(........................................).........()1( tHtC jj =−  

2. Network outputs: The output )(tOk of the thk neuron 
in output layer at time t can be obtained by: 

   )6)..(()()()()(~
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where f  in the second equation is the activation function. 
 

III. LEARNING ALGORITHMS 
 
In this section we examine some learning algorithms and their 
suitability for the MCRN architecture. In addition, this will 
allow us to customise the MCRN parameters, such the 
learning rate, the number of hidden neurons and the number of 
context layers. The learning algorithms should also be suitable 
for time series applications, which represent the main reason 
for designing this network. We propose to explore three 
algorithms: Back-Propagation (BP) [1, 16, 23, 33, 37], Back-
Propagation Through Time (BPTT) [1, 19, 23, 30, 39] and 
Dynamic Online Learning (DOL) [2, 25, 31]. These are 
described below. 
 

A. Back Propagation (BP) 
 
BBP is based on gradient descent method and tries to 
minimise the error of the network, which is the difference 
between the output and the target. However, usually due to the 
gradient descent process the BP technique tends to converge 
into local minima. This network has the ability to provide 
more information in order to allow the system to converge to 
better solutions. This information is stored in the context 
layers and at any given time this information is provided to the 
output layer to adjust the final solution. This facilitates good 
mapping and speeds up its convergence. Here we introduce 
the BP algorithm using an example of supervised learning. 
Given an input pattern s , the mean square error is expressed 
by 

     ( ) ( ) )8..(....................
2
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where kse  is the difference between the target and the 
network output:  
               ksksks Ode −=  

The objective is to minimize the total error totalE , which can 
be obtained by 
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The gradient descent method is used to calculate the derivative 
of the error with respect to the variable weights of the 
system
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the chain rule, the defined partial gradient (local gradient) 
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formulae. Therefore, 
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total

w
E
∂
∂

 can be written as  

  )10.....(..........
~

~
1 kj

ks

ks

ks

ks

ks
S

s ks

s

kj

total

w
o

o
O

O
e

e
E

w
E

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂ ∑

=

 

Assume  ksLG  be the local gradient of the thk neuron in the 
output layer for input pattern s . It can be expressed as 
follows: 
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The partial gradient jsLG  of the thj  neuron in the hidden 
layer for an input pattern s, is given by 
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From equations (10), (11) and (12), the weight-changes for 
each category are as follows   
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The adjustments or updates of the weights are obtained by 
adding the corresponding weight-changes to the previous 
values:    

 )17.....(..............................'
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abab

w
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where abw '  is the new weight between the two lays a and b . 
 

B. Back propagation through time (BPTT) 
 
The BP algorithm, which is a static learning algorithm, can be 
extended to explicitly consider the time, by using what is 
called “Unfolding” [1]. The extended algorithm is called 
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Back-propagation through the time (BPTT). When a very long 
sequence is used for training with BPTT, the unfolded partial 
gradients will vanish [23, 30]. BPTT is more preferred for 
training recurrent networks than BP, because the process of 
BPTT is a replication of the input and hidden neuron outputs 
for a number of previous time steps, including computing 
partial gradients. In this process, )(~ pth js −  was used as a 

supplementary input. Partial gradient )(tLG js at time t  is 
used to modify the weights from the additional input. 
Incorporating this with equation (12) the unfolding of the 
partial gradient can be expressed as: 
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The MCRN trained with BPTT may not be more effective 
than the Elman network or even the Elman tower network. 
The reason for this is that the MCRN keeps a larger amount of 
historical information than the Elman network [1]. 
 

C. Dynamic Online Learning (DOL)  
 
The DOL is basically a measure of the sensitivity of the value 
of the output of neuron k at time t  to a small change in the 
value of abw , taking into account the effect of such a change 

in the weight over the entire network trajectory 0t toT . It is 
also considered to be an on-line learning algorithm. It updates 
the weights at every time step, and can deal with sequences of 
arbitrary length and it needs less memory than BPTT.  
 
The cost function is defined by the sum of the mean square 
errors from output neurons at time t. 
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where )(tek  is the difference )()( tOtd kk −  between the 

target and its actual output of the thk  output neuron. Given a 
sequence input data s, the network error for this sequence is   
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and the total error for all the past input data can be written as      
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totalE  is used to evaluate a trained network. BP and BPTT are 
used to minimise the error sE  as mentioned above. Unlike 

BP and BPTT, DOL is used to minimise the error )(tE  for 

this recurrent network. According to the chain rule, the 
estimation of a change weight is 
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where abw is a valid weight in the network. In order to 
simplify the expressions, the local gradients (also called 
partial gradients) are introduced in each layer, except the input 
layer. At the thk  neuron of the output layer, its local gradient 
is following:  
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The local gradient at the thj  neuron in the hidden layer is  
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For a neuron l  in the context layer p , the local gradient is 
calculated as follows:  
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estimated. The above gradients will be used to simplify the 
equations. The detail of the processing 
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According to formulae )22( and )23( ,  
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calculated as following: 
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where 
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According to the chain rule and formula )22( , 
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From equation )6( , we can write  
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where )( 'ptCr −  can be converted to )( 'ptH r −  by time 
steps. According to equations (23), (24), (25), (28), (29), ( 
28), (32) and (30), equation (32) can be written as  
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where abδ  is Kronecker delta. 
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For the initial condition ( time t=0), 
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these initial values, we can obtain all the values for  0≠t  
recursively. 
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Using the same procedure, 
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 can be obtained as 

follows: 
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For the initial condition (time t = 0), 
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recursively, we can obtain all the other values.  
 
Once the weight-changes are estimated, all the weights can be 
updated according to following equations:  
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The summary of the DOL algorithm is outlined as follows: 

1) Starting from a time step t = 0, calculate the outputs 
of neurons for the hidden and output layers via 
equations (3) and (7) respectively; and compute the 
instantaneous error given by the equation (19). 

2) Calculate the local gradients (partial gradients) 
according to the equations (26), (28), (30), (35), 30) 
and (35). 

 
3) Update the weights using equations (37), (38), (39) 

and (40). Copy and update the activations of the 
context layers by using equations (4) and (5). 

 
4) If t = T, (the maximum number of time steps) 

evaluate the network learning performance through 
equation (21). If the total error is less than or equal to 
the error threshold, then stop training, otherwise 
(continue to train the network) go to step1. 

 
 

D.  Activation Functions 
 
Neural networks support a wide range of activation functions 
depending on the goal to be achieved. For instance the cost 
and error functions are directly dependent on the activation 
function and the network and learning algorithm parameter 
optimisation depends heavily on these functions. Furthermore, 
the selection of the activation function and cost functions 
depend on the application and also on the way the network 
inputs and outputs are coded. So far, only few function types 
are used by default as shown below, the others are available 
for customization [9]. The common assumptions of cost and 
activation functions for the BP and BPTT algorithms were 
described in [1]. The selection of activation and cost functions 
for MCRN, depends on the type of the problem to be solved. 
For example if the task output such as classification follows a 
probability distribution, then the logistic sigmoid function is 
more suitable and in accordance with equation (7). 
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 The cost function can be written as  
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Therefore the local gradient can be written as equation (23). 
   If the problem is that of “1-of-n” classification, a 
multinomial distribution is appropriate. Therefore, the 
Softmax function is selected  
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and cost function can be written as 

)44......(....................).........(ln)()( tOtdtE kk
k
∑−=    

Therefore the local gradient in equation (23) has to be 
replaced by 
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E. Momentum technique 
 
The gradient descent approach used to update the weight does 
not always converge to reasonably good solutions as it gets 
trapped into local minima [13]. To solve this problem a 
momentum factor was introduced. This will allow the network 
to ignore small features in the error surface of the cost 
function, and therefore, will improve the performance of the 
network. In addition, the momentum technique works well 
with the adaptive learning rate and speeds up the training 
phase. The generic equations for adding the momentum 
is

)47.....(........................................w
w
Ew ∆+
∂
∂
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and the weights can be updated as  
)48.......(........................................''
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α and β are the learning rate and momentum respectively.  

IV. COMPLEXITY STRUCTURE OF THE MCRN 
 
It is clear that a context layer in a recurrent network provides 
the potential for the network to store information about 
previous inputs. Usually, having more than one context layer 
improves the network accuracy, mainly on sequential tasks, 
due to more accurate information about the previous inputs. 
However, this will increase the network complexity in terms 
of the number connection-weights that should be calculated 
and updated per epoch. The goal of this section is, then to 
calculate the MCRN complexity and compare it to similar 
networks.  
   Let n be the number of input neurons, h the number of 
hidden neurons, and o the number of output neurons. Let c be 
the number of context layers. The number of weights and 
biases for the Elman tower network is given below. Note that 
the biases are used in the hidden and input layers only.  
 
 
 Similarly, the number of weights and biases for MCRN is 
 
 
The relationship between h and c for Elman network is given 
by the equations: 
 
 
 
The relationship between h and c for MCRN is: 
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For the same number of neurons in the input, hidden, and 
output layers and the same number of context layers, MCRN 
is more complex than the Elman network. However, for the 
same data set (application) MCRN can get better results with 
the same complexity as Elman Tower network. Therefore, to 
evaluate these networks, different numbers of context layers 
and hidden neurons were tested with the same or approximate 
number of connection-weights for both networks. This will 
allow us to optimise the MCRN network architecture and 
compare it to Elman network. In the following we will 
introduce the two applications used for testing and comparing 
these two networks. 

V. TIME SERIES APPLICATIONS 
 
A time series [23] is considered to be a progression of 
sequences of records, and each sequence of records represents 
a value of a particular feature. These features are observed at 
different times. Examples include stock market prices, 
currency exchange rates, the volume of product sales, 
biomedical measurements, weather data, etc. The time series 
problems can behave in four different ways; linearity, 
stationary, periodically, or randomly. A time series application 
can be represented as a linear problem when the future 
observation can be a linear function of the past observations, 
else it is represented as a nonlinear problem. A time series can 
be stationary when it has a constant mean and variance, else it 
is considered to be non-stationary, which means that the future 
observations cannot be foreseen and this is a very difficult 
problem and is hard to model. Time series can be periodic, 
which means that a time series with dominant periodic 
components will display regular periodic variations. Finally, 
time series can be a random noise problem, which means that 
there can be a random noise included in some parts or the 
entire frequency spectrum of the time series. There are several 
techniques implemented to handle time series applications. 
For instance, the simple moving average and exponential 
moving average techniques are used to deal with linear and 
stationary time series problems, the simple regression 
methods, auto regressive and auto regressive average deal 
with non-stationary time series problems, and decomposition 
methods deal with seasonal time series problems.  

     A difficulty with regression techniques is that the 
correlation between the component variables which affects the 
observation demand is not stationary but depends on spatial-
temporal components. However, the regression techniques are 
not capable of tackling this chronological disparity. The time 
series techniques are a type of regression and therefore they 
have the same problem. The future observations are only a 
function of previous observations. This means that the 
absence of variables that are affecting future observations will 
result in the predictions being inaccurate and unstable [14, 26, 
27, 31]. In this paper the MCRN is used to handle time series 
applications by employing non-linear modeling and 
adaptation. Suitable learning algorithms are chosen depending 
on the application. DOL is very powerful and uses less 

parameters and still can successfully carry out the task. 
However, BP is the fastest among the three learning 
algorithms that have been studied, but the results are not 
always as accurate as the others.  

VI. EXPERIMENTAL RESULTS 
 
Three sets of experiments were carried out for the three time 
serial applications, which are shaping digit 8, electrical energy 
load forecasting and online handwriting symbol recognition. 
The MCRN and the Elman networks are both applied on these 
applications. Results of these two networks are given for each 
set of experiments. 
 

A. The shaping of the digit 8 
 
The shaping of the digit 8 is one of simplest time series 
application. However, it is very useful and common for testing 
a network’s performance. 16 points in Cartesian coordinates 
(x, y) in the range [0 : 1] are selected to represent the shape of 
digit 8. The patterns are designed as follows: the target of an 
input pattern is the next input pattern, and the target of the last 
input pattern is the first input pattern. The central crossing 
point (0:5, 0:5) appears twice, depending on which direction 
the stroke takes. This crossing point creates an extra difficulty 
for the network as it has two different successors depending 
on the previous input pattern. Various network structures with 
different parameters are tested according to the computational 
complexity involved. After performing training sessions for a 
network, an arbitrary point in the data set including the 
crossing center point is selected and fed to the network. The 
output produced by the network is fed back again to the 
network. This process continues until the network draws the 
shape of the digit 8. Table 1 shows the three selected 
network’s structures (Elman, Elman tower, and the MCRN 
networks). These structures are selected taking into account 
the complexity of computation. Note that all the networks are 
trained with DOL. We ran the three networks simultaneously 
on the same datasets. From Figure 3(a), we can notice that the 
MCRN outperformed the other two networks in terms of 
accuracy and learning time. It was also observed that the 
MCRN network training is stable (the error is decreasing 
steadily and smoothly). The Elman tower version was faster 
than the simple Elman network. This is due to enormous 
internal computations on a large number of hidden neurons. 
 

TABLE I  
SHOWS THE DIFFERENT NETWORK STRUCTURES IN 
ACCORDANCE WITH COMPLEXITY COMPUTATIONS 

 
Elman Net Elman Tower Net MCRN 
1cont. layer 6 cont. layers 6 cont. layers 
20 hidden. 

units 9 hidden. Units 
8 hidden. 

units 
2 input units 2 input units 2 input units 

2 output units 2 output units 2 output units 
456 weights 533 weights 522 weights 
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Figure 4 (c), displays the shaping of digit 8 shaped by the 
MCRN. The MCRN shaping is more accurate than in (a) or 
(b), which are obtained shaped by the Elman tower and Elman 
Networks respectively.  
 

 
 
Fig. 3 (a) displays the learning speeds for the three networks, (b) displays 

the error performances of the three networks 
 

 
 
Fig. 4 (a) was shaped by the Elman tower with only one context layer (Elman 
network), (b) was shaped by the Elman tower network. (c) was shaped by the 

MCRN 

B. Electrical Energy load Forecasting 
 
The MCRN is used to handle the daily peak load forecasting 
for two different electrical power plants. Two different data 
sets (A and B) [4, 11, 21, 22, 31] were collected from two 
different countries. The inputs to the network are exogenous 
variables such as the previous and current change in the 
weather components, the previous and current status of the 
day and endogenous variables such as the past change in the 
loads. For data set (A) the future load is a function of the 
calendar, the status of the day (social events), the past and 
current change in the temperature T, and past change in the 
load L. The future load in the data set (B) is a function of the 
calendar, the status of the day, the past and current change in 
the weather components (such as temperate T, cloud rate C, 
wind speed W and humidity H), and past change in load L. 
     While the dynamic online learning is the most accurate, it 
is very time consuming due to the complexity of the 
computations. Nevertheless in this application and as long as 
the data sequence length is specified; the modified back 
propagation is driven to include the recurrent memory [27]. In 
this case the modified back propagation is efficient in terms of 
both response time and accuracy. Thus, by using the modified 

back propagation we are able to improve the performance of 
the dynamic learning process. 
   Both the MCRN and the Elman tower networks were trained 
with BP on data sets (A) and (B), both networks had an almost 
identical weight matrices. For data set (A) the structure of the 
Elman tower network was 12-5-3*5-1 (12 input neurons, 5 
hidden neurons, 3 context layers each of which has 5 neurons, 
and 1 neuron output), whereas the structure for the MCRN 
was 12-4-3*4-1. For data set (B) the structure of the Elman 
tower network and MCRN were 18-8-3*8-1 and 18-7-3*7-1 
respectively. We ran both networks on each data set 
simultaneously, and found that on each data set, the MCRN is 
faster. It performed more training cycles and had a smaller 
mean square error, as can be seen in Figure 5(a) and 5(b), for 
data set (A) and (B) respectively. The learning speed is 
defined as the number of cycles per minute that each network 
can complete. Experiments show that using both endogenous 
and exogenous variables as inputs to the MCRN rather than 
only using exogenous or endogenous variables as inputs to the 
network produces better results. Experiments also show that 
using the change in variables such as weather components and 
the change in the past load as inputs to the MCRN rather than 
the absolute values for the weather components and past load 
as inputs to the network has a dramatic impact on the 
prediction process and produces better accuracy [3, 31]. 
 

 
Fig. 5 (a) represents the learning speed when both networks run 

simultaneously on data set (A). (b) represents the learning speed when both 
networks run simultaneously on data set (A) 

 
Table 2 represents the performance in terms of the maximum 
difference between the actual daily peak load and the 
forecasted daily peak load (MAP and MAX) and the training 
and testing mean square errors for both networks on each data 
set. Figures 6(a) and 6(b) represent the forecasting values 
predicted by both networks on data sets (A) and (B) 
respectively. One can notice that both networks performed 
reasonably well. Moreover, MCRN is 19:5% more efficient 
(in terms of prediction accuracy) than Elman tower network. 
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Fig.  6 (a) displays the forecasted results for both networks on the data set (A) 
(b) Displays the forecasted results for both networks on data set (B) 

 

C. Recognition of online handwritten symbols  
 
The MCRN is also evaluated using another real-world 
application in the area of handwriting recognition. Its 
performance is compared to the Elman tower network in 
recognizing digits from 0 to 9. The symbols are represented as 
sets of fuzzy feature shapes (c-shape, o-shape and line), 
orientation, length, x-Centre and y-Centre. These features 
were fed into the networks [18]. The same training and testing 
samples from section 1a in Unipen Train-R01/V07 [15] were 
used in both networks. 500 isolated digits from the Unipen 
dataset were used as the training data, and 1000 isolated digits 
were used for the testing. Approximately 750 weights were 
processed by each network, according to the theoretical model 
given in section 4. Therefore, the MCRN consists of 10 output 
neurons, 5 input neurons and 3 context layers, 10 hidden 
neurons. The Elman tower network consists of 10 output 
neurons, 5 input neurons, 3 context layers, and 13 hidden 
neurons. The learning rates and momentum for both networks 
are LR = 0.1 and MR = 0.02 respectively. Figure 7 shows that 
the error generated by the MCRN network decreases faster 
than the error generated by the Elman network. This means 
that MCRN is training faster. The recognition rates produced 
on the same dataset is of 79:4% for the Elman network and 
89:5% for the MCRN network for the same amount of CPU 
time, which is about 30mn on a 2Ghz Pentium IV processor. 
This represented an efficiency improvement of 12.7%. As it 
was shown in [18], when MCRN is trained with larger 
datasets for longer periods the recognition rate will increase 
and the efficiency improvement can be around 20% compared 
to SRN tower networks. More details about using MCRN for 

handwriting recognition can be found in [18]. 
 
 

 
 

Fig. 7 displays the error performance of both networks: The Elman tower 
network and the multi context recurrent network 

VII. CONCLUSION 
 
SRN has been successfully used for time series applications 
analysis. They use a very simple architecture. However, it is 
strongly dependent on the hidden layer. Mainly, this affects 
these networks behavior in falling into local minima and their 
learning speed is very slow. Therefore, we proposed a new 
multi-context recurrent network (MCRN) to overcome these 
limitations. MCRN is constructed in such away as to inherit 
the advantages of SRN while overcoming their limitations. 
We have shown that this network trains much quicker. For the 
same network complexity, MCRN is about 20% more 
efficient than the Elman tower network. We have shown also 
that the MCRN network can be used with different learning 
algorithms depending on the given problem. We evaluated its 
performance on three completely different time series 
applications. Experimental results showed that MCRN 
performed better in every situation compared to other SRNs. 
      In this study, we showed also that some learning 
algorithms perform better than some others for some time 
series applications. In fact, the BPTT algorithm, which is 
theoretically more suitable for time series applications, is not 
delivering the expected results while used to train MCRN. 
This is due to the fact that the BPTT requires a very large 
memory that the context layers cannot satisfy. In the near 
future we will look at this problem in more details. We 
believe that the combination of the BPTT algorithm with 
Estimation-Maximization (EM) algorithm will solve this 
problem and speeds up the convergence of the MCRN 
network during the training phase. 
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