
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3030

Abstract—this paper presents a multi-context recurrent network

for time series analysis. While simple recurrent network (SRN) are
very popular among recurrent neural networks, they still have some
shortcomings in terms of learning speed and accuracy that need to
be addressed. To solve these problems, we proposed a multi-context
recurrent network (MCRN) with three different learning algorithms.
The performance of this network is evaluated on some real-world
application such as handwriting recognition and energy load
forecasting. We study the performance of this network and we
compared it to a very well established SRN. The experimental results
showed that MCRN is very efficient and very well suited to time
series analysis and its applications.

Keywords—Gradient Descent Method, Recurrent Neural
Network, Learning Algorithms, Time Series, BP

I. INTRODUCTION

SUALLY a time series analysis considers the observed
temporal series of data values and predicts the future data

values. The time series analysis is needed in any applications
in which the time is very relevant and crucial such as energy
load, stocks, indices, weather, speech recognition, handwriting
recognition, etc. Artificial neural networks (ANN) are among
the most successful approaches for such time series
applications [6, 12, 25, 33]. Among ANNs, Time Delay
Neural Network (TDNN) and Recurrent Neural Network
(RNN) are the most widely used for time series applications.
However, both of them have some limitations.

Generally, some conventional neural networks (see Figure
1a) [17] can not handle time series patterns successfully. In
order to overcome this problem, an alternative method that
uses the context as part of the next inputs can model the
temporal series data by considering the context, which stores
the previous inputs, as part of the next inputs. In addition, the
time series patterns are characterised by their variable length
and most conventional networks accept as input only patterns
with equal length [7, 34]. For instance, such context can be
represented as a time series of buffer-inputs. Each buffer
represents a time step. The input information is then shifted
from one buffer to another every time step. The first buffer is
always fed with a new input. This type of network is called
TDNN [7], (see Figure 1b). TDNN has been successfully
applied on many practical applications, such as speech
recognition [6, 7], handwriting recognition [25] and

The authors are in School of Computer Science & Informatics of University College
Dublin, Belfield, Dublin 4, Ireland. Email: bingquan..huang@ucd.ie

forecasting [12].
However, TDNN has a difficulty of dealing with sequences of
variable length, due to its fixed input window [1].

Recurrent neural networks [35] provide an alternative to
TDNN. They are developed to deal with temporal or time-
tagged patterns and are able to model systems having complex
dynamics and/or the ob-served (collected) data is noisy.
Recurrent networks are characterised from the others by their
feed back loops, which allows them to handle temporal
sequences. Generally, RNNs can be categorised into fully
recurrent networks and partially recurrent network. For a fully
recurrent network, every two neurons are connected from both
directions.

However, they suffer from heavy computing overheads
[18]. A partially recurrent network is a multi-layered
perceptron network which augmented with one or more
additional context layers storing output values of one of the
layers delayed by one step and used for activating other layer
in the next time step. Unlike fully recurrent networks, a
partially recurrent network has much less computing
overhead. Examples of these networks can vary in the type of
the feed-back used.

Fig. 1 (a) is the conventional neural network, (b) is the tapped delay time
network, (c) is the Jordan network and (d) is the Elman network

The Jordan Network [20] (see Figure 1c) and the Elman
network [10] are tow partially recurrent networks that are
widely used. For the Jordan Network, the output of the
previous step becomes the input to the current step. This
network is able to produce a series of outputs given a fixed set
of inputs as used for speech recognition [28]. The Jordan
Network can only map the output memory but it can not map
inputs that are not reflected in the outputs [5, 10, 36].
Therefore, the Elman network, called a simple recurrent

Multi-Context Recurrent Neural Network for
Time Series Applications

B. Q. Huang, Tarik Rashid and M-T. Kechadi

U

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3031

network (SRN) [5, 10], is developed (see Figure 1d) to
overcome the limitations of Jordan Network. It uses the
activation of context layer from the hidden neurons as the
basic recurrent relation. The context layer is completely
internal to the SRN because it references only the hidden
neurons, and does not associate them with the network
outputs.

However, the architecture of the SRN includes small
memory, which is only one context layer and also its
performance in terms of accuracy possibly depends more
information on the hidden layer [8, 38]. Therefore, we
propose a new neural network with three learning algorithms
to improve the performance of SRN. We will show that this
new architecture is well suited to time series applications such
as handwriting recognition and energy load forecasting.

This paper is organised as follows: Section II introduces the
architecture and principle of MCRN. Section III describes the
three learning algorithms for MCRN. The complexity of
MCRN and the problems of time serial applications are simply
discussed in section IV and V respectively. Section VI
provides experimental results. Conclusion and future work are
given in section VII.

II. THE MULTI-CONTEXT RECURRENT NEURAL NETWORK

The MCRN architecture is shown in Figure 2b and it consists
of four layers: input, hidden, output, and multi-context layers.
This architecture is similar to Elman tower network in terms
of the number of layers. However, MCRN is characterised by
the fact that the multi-context layers are directly linked to the
output layer. Basically, MCRN combines the features of both
Elman and Jordan networks, leading to a more complex
connectivity between the layers but reducing the dependency
of the network output on the hidden layer and speeding up the
learning as we will show in the following sections.

Fig. 2 displays two network architectures, (a) is the Elman Tower Network

and (b) is the Multi Context Recurrent Network

In order to analyse this architecture and understand its
dynamics and, therefore, validate the learning process on the
MCRN network, some definitions and notations are
introduced in the following section. Part of the notations are
already included in Figure 2.

A. Notation
 • Neurons and layers: The sets of indices { ''' ,, iii },

{ '''''' ,,, jjjj }, { ', ll } and { '''''' ,,, kkkk } represent the input,

hidden, context, and output neurons respectively. inn ,

hn and outn are the number of neurons in the input,
hidden/context, and output layers respectively.

• Net inputs and outputs: we denote by t the current time
step. The input of neuron i in the input later is denoted by

iI at time t . jh~ Is the input of neuron j in the hidden layer,
ko~

 is the input to neuron k in the output layer. jH is the

output of neuron j in the hidden layer,)(ptCl − is the

output of neuron l in the thp context layer kO is the output

of neuron k in the output layer, and kd is the target of

neuron k in the output layer.

• Connection weights: the weight connection from the input
layer to the hidden layer is denoted by jiv . p

klu is the weight

connection from the thp context layer to the hidden layer,
p
klwoc is the weight connection from the thp context layer

to the output layer and kjw is the weight connection from
the hidden layer to the output layer.

B. Network Dynamics

Assume Q be the total number of the context layers and q
be the number of the active context layers. An “active layer”
is a layer that is involved in storing previous time step data. It
can be obtained by

⎩
⎨
⎧ <

=)1....(..............................
elseQ

qtwhent
q

Every time step the content of a context layer)(itC − is
copied to the next context layer)1(−− itC . At the same
time the content is used as input to both hidden and output
layers. MCRN is a feedforward network, and the information
is propagated from the input to the output layers. Therefore,
we first calculate the output of the hidden and context layers
and then the output of the network. These are calculated as
follows:

1. Outputs of the hidden layer: The output)(tH j of a

neuron j at time t in the hidden layer is straightforward
and given by the following:

)2)........(()()()()(~
1 11

tuptCtvtIth
q

p

p
jln

l
lji

n

i
ij

hin

∑∑∑
= ==

−+=

())3(..)(~)(thftH jj =

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3032

The update of the context layer outputs is done by
propagating the output of a context layer to the input of the
next layer, assuming that the weights for these links are all
equal to unity. Equation (4) is used for propagating the
information from one context layer to its successor and the
equation (5) is used to copy the output of the hidden layer
to the first context layer.

)4(..............................).........1()(+−=− ptCptC jj

)5.(..).........()1(tHtC jj =−

2. Network outputs: The output)(tOk of the thk neuron
in output layer at time t can be obtained by:

)6)..(()()()()(~
1 11

twocptCtwtHto
q

p

p
kl

n

l
lkj

q

j
jk

h

∑∑∑
= ==

−+=

 ())7.......(..)(~)(toftO kk =

where f in the second equation is the activation function.

III. LEARNING ALGORITHMS

In this section we examine some learning algorithms and their
suitability for the MCRN architecture. In addition, this will
allow us to customise the MCRN parameters, such the
learning rate, the number of hidden neurons and the number of
context layers. The learning algorithms should also be suitable
for time series applications, which represent the main reason
for designing this network. We propose to explore three
algorithms: Back-Propagation (BP) [1, 16, 23, 33, 37], Back-
Propagation Through Time (BPTT) [1, 19, 23, 30, 39] and
Dynamic Online Learning (DOL) [2, 25, 31]. These are
described below.

A. Back Propagation (BP)

BBP is based on gradient descent method and tries to
minimise the error of the network, which is the difference
between the output and the target. However, usually due to the
gradient descent process the BP technique tends to converge
into local minima. This network has the ability to provide
more information in order to allow the system to converge to
better solutions. This information is stored in the context
layers and at any given time this information is provided to the
output layer to adjust the final solution. This facilitates good
mapping and speeds up its convergence. Here we introduce
the BP algorithm using an example of supervised learning.
Given an input pattern s , the mean square error is expressed
by

 () ())8..(....................
2
1

2
1

1

2

1

2 ∑∑
==

=−=
outout n

k
ks

n

k
kskss eOdE

where kse is the difference between the target and the
network output:
 ksksks Ode −=

The objective is to minimize the total error totalE , which can
be obtained by

)9.(..)(
1
∑
=

=
s

s
total sEE

The gradient descent method is used to calculate the derivative
of the error with respect to the variable weights of the
system

kj

total

w
E
∂
∂ ,

p
total

kl
woc
E

∂
∂

p
total

jl
u

E
∂
∂ and

ji

total

v
E
∂

∂ . According to

the chain rule, the defined partial gradient (local gradient)
terms in output and hidden layers are used to simplify the

formulae. Therefore,
kj

total

w
E
∂
∂

 can be written as

)10.....(..........
~

~
1 kj

ks

ks

ks

ks

ks
S

s ks

s

kj

total

w
o

o
O

O
e

e
E

w
E

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂ ∑

=

Assume ksLG be the local gradient of the thk neuron in the
output layer for input pattern s . It can be expressed as
follows:

)11......().........~(~
'

ksks
ks

ks

ks

ks

ks

s
ks ofe

o
O

O
e

e
ELG −=

∂
∂

∂
∂

∂
∂

=

The partial gradient jsLG of the thj neuron in the hidden
layer for an input pattern s, is given by

)12..(..........).........~(~
'

1
jskj

n

k
ks

js

s
js hfwLG

h
E

LG
out

∑
=

=
∂

=

From equations (10), (11) and (12), the weight-changes for
each category are as follows

)13(..
1
∑
=

=
∂
∂ S

s
jsks

kj

total HLG
w

E

)14......(....................)(
1
∑
=

−=
∂
∂ S

s
jsksp

kj

total ptCLG
woc
E

)15...(..
1
∑
=

=
∂
∂ S

s
isjs

ji

total ILG
v

E

)16(..............................)(
1
∑
=

−=
∂
∂ S

s
jsjsp

kl

total ptHLG
u

E

The adjustments or updates of the weights are obtained by
adding the corresponding weight-changes to the previous
values:

)17.....(..............................'

ab

total
abab

w
Eww
∂
∂

+=

where abw ' is the new weight between the two lays a and b .

B. Back propagation through time (BPTT)

The BP algorithm, which is a static learning algorithm, can be
extended to explicitly consider the time, by using what is
called “Unfolding” [1]. The extended algorithm is called

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3033

Back-propagation through the time (BPTT). When a very long
sequence is used for training with BPTT, the unfolded partial
gradients will vanish [23, 30]. BPTT is more preferred for
training recurrent networks than BP, because the process of
BPTT is a replication of the input and hidden neuron outputs
for a number of previous time steps, including computing
partial gradients. In this process,)(~ pth js − was used as a

supplementary input. Partial gradient)(tLG js at time t is
used to modify the weights from the additional input.
Incorporating this with equation (12) the unfolding of the
partial gradient can be expressed as:

)18..(
2

),(~()1() '

1
qp

pthfuptLGptLG js
p
klls

n

l
js

h

≤≤

−+−=− ∑
=

The MCRN trained with BPTT may not be more effective
than the Elman network or even the Elman tower network.
The reason for this is that the MCRN keeps a larger amount of
historical information than the Elman network [1].

C. Dynamic Online Learning (DOL)

The DOL is basically a measure of the sensitivity of the value
of the output of neuron k at time t to a small change in the
value of abw , taking into account the effect of such a change

in the weight over the entire network trajectory 0t toT . It is
also considered to be an on-line learning algorithm. It updates
the weights at every time step, and can deal with sequences of
arbitrary length and it needs less memory than BPTT.

The cost function is defined by the sum of the mean square
errors from output neurons at time t.

() ())19.....()(
2
1)()(

2
1)(

1

2

1

2 ∑∑
==

=−=
outout n

k
k

n

k
kk tetOtdtE

where)(tek is the difference)()(tOtd kk − between the

target and its actual output of the thk output neuron. Given a
sequence input data s, the network error for this sequence is

)20.(..)(
1
∑
=

=
T

t
s tEE

and the total error for all the past input data can be written as

)21.(..
1
∑
=

=
S

s
stotal EE

totalE is used to evaluate a trained network. BP and BPTT are
used to minimise the error sE as mentioned above. Unlike

BP and BPTT, DOL is used to minimise the error)(tE for

this recurrent network. According to the chain rule, the
estimation of a change weight is

)22.......(
)(
)(~

)(~
)(

)(
)(

)(
)(

)(
)(

tw
to

to
tO

tO
te

te
tE

tw
tE

ab

k

k

k

k

k

kab ∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

where abw is a valid weight in the network. In order to
simplify the expressions, the local gradients (also called
partial gradients) are introduced in each layer, except the input
layer. At the thk neuron of the output layer, its local gradient
is following:

()() ())23..(....................)(~)(~1)(
)(~
)(

)(
)(

)(
)()(

toftofte
to
tO

tO
te

te
tEtLG

kkk

k

k

k

k

k
k

−−=
∂
∂

∂
∂

∂
∂

=

The local gradient at the thj neuron in the hidden layer is

)24(....................).........()()(
1

twtLGtLG kj

n

k
kj

out

∑
=

=

For a neuron l in the context layer p , the local gradient is
calculated as follows:

)25.........(....................)()(
1

p
kl

n

k
k

p
l woctLGtLG

out

∑
=

=

According to gradient descent method, the changed

weights
)(

)(
tw

tE

kj∂
∂

,
)(

)(
twoc

tE
p
kl∂

∂

)(
)(
tu

tE
p
jl∂

∂
 and

)(
)(
tv
tE

ji∂
∂

can be

estimated. The above gradients will be used to simplify the
equations. The detail of the processing

 Estimating of
)(

)(
tw

tE

kj∂
∂

According to formulae)22(and)23(,
)(

)(
tw

tE

kj∂
∂

 can be

calculated as following:

)26........(....................
)(
)(~

)(
)(

)(
tw
to

tLG
tw

tE

kj

k
k

kj ∂
∂

=
∂
∂

where

)27.(..............................).........(
)(
)(~

tH
tw
to

j
kj

k =
∂
∂

 Estimating of
)(

)(
twoc

tE
p
kl∂

∂

According to formulae)22(and)23(,
)(

)(
twoc

tE
p
kl∂

∂
can be

obtained by

)28......(....................
)(

)(~
)(

)(
)(

twoc
to

tLG
twoc

tE
p
kl

k
kp

kl ∂
∂

=
∂
∂

where

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3034

)29.......(..........).........(
)(

)(~
ptC

twoc
to

lp
kl

k −=
∂
∂

 Estimating of
)(

)(
tu

tE
p
jl∂

∂

According to the chain rule and formula)22(,
)(

)(
tu

tE
p
jl∂

∂ can

be expressed by

)30.......(....................
)(

)()(
)(

)(
1 tu

tEte
tu

tE
p
jl

n

k
kp

jl

out

∂
∂

=
∂
∂ ∑

=

).31.......(
)(
)(~

)(~
)(

)(
)()(

)(
)(

1 tu
to

to
tO

tO
tete

tu
tE

p
jl

k

k

k

k

k
n

k
kp

jl

out

∂
∂

∂
∂

∂
∂

=
∂
∂ ∑

=

From equation)6(, we can write

+
∂

∂
=

∂
∂ ∑

=

)(
)(

)(

)(
)(~

'
'

'

1

tw
tu

tH

tu
to

kj

n

j
p
jl

j
p
jl

k
h

)32.........()(
)(

)(

1 1

'

'

'

'∑∑
= = ∂

−∂q

p

n

r

p
krp

jl

r
h

twoc
tu

ptH

where)('ptCr − can be converted to)('ptH r − by time
steps. According to equations (23), (24), (25), (28), (29), (
28), (32) and (30), equation (32) can be written as

()() ()

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
−∂

+
∂

∂

×−−=
∂
∂

∑∑∑

∑

= ==

=

q

p

n

r

p
krp

jl

r
kj

n

j
p
jl

j

k

n

k
kkp

jl

hh

out

twoc
tu

ptHtw
tu

tH

toftofte
tu
tE

1 1

'

1

1

'
''

'

'

)(
)(

)()(
)(

)(

)(~)(~1)(
)(
)(

)33....(

)(

)(
)()(

)(

)(
)(

1

1 1

'
'

'

'

'

'

'

'

∑
∑∑

=

= =
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂

−∂

+
∂

∂

=
h

h

n

j q

p

n

r
p
jl

j
rj

p
r

p
jl

j
j

tu

ptH
ttLG

tu

tH
tLG

δ

where abδ is Kronecker delta.
)(

)('

tu

tH
p
jl

j

∂

∂ is clarified as

)(

)(~

)(~
)(

)(

)('

'

''

tu

th

th

tH

tu

tH
p
jl

j

j

j
p
jl

j

∂

∂

∂

∂
=

∂

∂

()

)(

)()()()(

)(~

1

'

11

'

'

'

''
'

''

'

tu

tuptCtvtI

thf

p
jl

q

p

p
lj

n

l
jij

n

i
i

j

hin

∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+∂

×=

∑ ∑∑
= ==

()

)34..()(
)(

)()(

)(~

1 1'' 1'

''''

1

''

'

'

'

''
''

'''

'

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
−∂

+−

×=

∑∑∑∑
= = ==

q

p

n

j

n

l

p
ljp

jl

q

p
lppjj

j

h h

tu
tu
ptHptH

thf

δδ

For the initial condition (time t=0),
)0(

)0('

p
jl

j

u

H

∂

∂
=0. By having

these initial values, we can obtain all the values for 0≠t
recursively.

 Estimating of
)(
)(
tv
tE

ji∂
∂

Using the same procedure,
)(
)(
tv
tE

ji∂
∂

 can be obtained as

follows:

∑

∑∑
=

= =
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂

−∂
+

∂

∂

−=
∂
∂ m

j q

p

n

r
p
ji

j
lj

p
r

ji

j
j

ji
h

tu

ptH
tLG

tv

tH
tLG

tv
tE

1

1 1

''

'

'

'

'

'

'

)(

)(
)(

)(

)(
)(

)(
)(

δ

 (35)

where

())36...(

)(
)()(

)(

)(~

)(

)(

1 1'' 1'

'''''

'

'

''

'

'

'

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

∂
−∂

∂

+

=
∂

∂

∑∑∑
= = =

q

p

n

j

n

l ji

p
ljjj

ijj

j

ji

j

h h

tv
ptHtu

tI

thf

tv

tH

δ

δ

For the initial condition (time t = 0),
)0(

)0('

ji

j

v

H

∂

∂
=0. Again,

recursively, we can obtain all the other values.

Once the weight-changes are estimated, all the weights can be
updated according to following equations:

)37.........(..........).........(
)(

)()1(tw
tw

tEtw kj
kj

kj +
∂
∂

=+

)38.......().........(
)(

)()1(twoc
twoc

tEtwoc p
klp

kl

p
kl +

∂
∂

=+

)39.(....................).........(
)(

)()1(tu
tu

tEtu p
jlp

jl

p
jl +

∂
∂

=+

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3035

)40......(..........).........(
)(
)()1(tv
tv
tEtv ji

ji
ji +

∂
∂

=+

The summary of the DOL algorithm is outlined as follows:

1) Starting from a time step t = 0, calculate the outputs
of neurons for the hidden and output layers via
equations (3) and (7) respectively; and compute the
instantaneous error given by the equation (19).

2) Calculate the local gradients (partial gradients)
according to the equations (26), (28), (30), (35), 30)
and (35).

3) Update the weights using equations (37), (38), (39)

and (40). Copy and update the activations of the
context layers by using equations (4) and (5).

4) If t = T, (the maximum number of time steps)

evaluate the network learning performance through
equation (21). If the total error is less than or equal to
the error threshold, then stop training, otherwise
(continue to train the network) go to step1.

D. Activation Functions

Neural networks support a wide range of activation functions
depending on the goal to be achieved. For instance the cost
and error functions are directly dependent on the activation
function and the network and learning algorithm parameter
optimisation depends heavily on these functions. Furthermore,
the selection of the activation function and cost functions
depend on the application and also on the way the network
inputs and outputs are coded. So far, only few function types
are used by default as shown below, the others are available
for customization [9]. The common assumptions of cost and
activation functions for the BP and BPTT algorithms were
described in [1]. The selection of activation and cost functions
for MCRN, depends on the type of the problem to be solved.
For example if the task output such as classification follows a
probability distribution, then the logistic sigmoid function is
more suitable and in accordance with equation (7).

())(~)(toftO kk =)41(..............................
1

1
)(~ toke−+

=

 The cost function can be written as

() ()())42.(...)(1ln)(1)(ln)(
2
1)(

1
∑
=

−−+=
outn

k
kkkk tOtdtOtdtE

Therefore the local gradient can be written as equation (23).
 If the problem is that of “1-of-n” classification, a
multinomial distribution is appropriate. Therefore, the
Softmax function is selected

 ())43....(..)(~
)(~

)(~

∑
=

l

to

to

k
l

k

e

etof

and cost function can be written as

)44......(....................).........(ln)()(tOtdtE kk
k
∑−=

Therefore the local gradient in equation (23) has to be
replaced by

)45.(..............................).........()()(tOtdtLG kkk −=

E. Momentum technique

The gradient descent approach used to update the weight does
not always converge to reasonably good solutions as it gets
trapped into local minima [13]. To solve this problem a
momentum factor was introduced. This will allow the network
to ignore small features in the error surface of the cost
function, and therefore, will improve the performance of the
network. In addition, the momentum technique works well
with the adaptive learning rate and speeds up the training
phase. The generic equations for adding the momentum
is

)47.....(..w
w
Ew ∆+
∂
∂

=′∆ βα

and the weights can be updated as
)48.......(..''

ababab www ∆+=

α and β are the learning rate and momentum respectively.

IV. COMPLEXITY STRUCTURE OF THE MCRN

It is clear that a context layer in a recurrent network provides
the potential for the network to store information about
previous inputs. Usually, having more than one context layer
improves the network accuracy, mainly on sequential tasks,
due to more accurate information about the previous inputs.
However, this will increase the network complexity in terms
of the number connection-weights that should be calculated
and updated per epoch. The goal of this section is, then to
calculate the MCRN complexity and compare it to similar
networks.
 Let n be the number of input neurons, h the number of
hidden neurons, and o the number of output neurons. Let c be
the number of context layers. The number of weights and
biases for the Elman tower network is given below. Note that
the biases are used in the hidden and input layers only.

 Similarly, the number of weights and biases for MCRN is

The relationship between h and c for Elman network is given
by the equations:

The relationship between h and c for MCRN is:

)49....()(),,,(2 nhonhchcnhow ET ++++=

)50..()1(),,,(2 nhhnhocchcnhowMCRNN +++++=

)52.......()1(
2 hoh

nohnwc MCRNN

+
++−−

=

)51....(..........)1(
2h

nohnwc ET ++−−
=

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3036

For the same number of neurons in the input, hidden, and
output layers and the same number of context layers, MCRN
is more complex than the Elman network. However, for the
same data set (application) MCRN can get better results with
the same complexity as Elman Tower network. Therefore, to
evaluate these networks, different numbers of context layers
and hidden neurons were tested with the same or approximate
number of connection-weights for both networks. This will
allow us to optimise the MCRN network architecture and
compare it to Elman network. In the following we will
introduce the two applications used for testing and comparing
these two networks.

V. TIME SERIES APPLICATIONS

A time series [23] is considered to be a progression of
sequences of records, and each sequence of records represents
a value of a particular feature. These features are observed at
different times. Examples include stock market prices,
currency exchange rates, the volume of product sales,
biomedical measurements, weather data, etc. The time series
problems can behave in four different ways; linearity,
stationary, periodically, or randomly. A time series application
can be represented as a linear problem when the future
observation can be a linear function of the past observations,
else it is represented as a nonlinear problem. A time series can
be stationary when it has a constant mean and variance, else it
is considered to be non-stationary, which means that the future
observations cannot be foreseen and this is a very difficult
problem and is hard to model. Time series can be periodic,
which means that a time series with dominant periodic
components will display regular periodic variations. Finally,
time series can be a random noise problem, which means that
there can be a random noise included in some parts or the
entire frequency spectrum of the time series. There are several
techniques implemented to handle time series applications.
For instance, the simple moving average and exponential
moving average techniques are used to deal with linear and
stationary time series problems, the simple regression
methods, auto regressive and auto regressive average deal
with non-stationary time series problems, and decomposition
methods deal with seasonal time series problems.

 A difficulty with regression techniques is that the
correlation between the component variables which affects the
observation demand is not stationary but depends on spatial-
temporal components. However, the regression techniques are
not capable of tackling this chronological disparity. The time
series techniques are a type of regression and therefore they
have the same problem. The future observations are only a
function of previous observations. This means that the
absence of variables that are affecting future observations will
result in the predictions being inaccurate and unstable [14, 26,
27, 31]. In this paper the MCRN is used to handle time series
applications by employing non-linear modeling and
adaptation. Suitable learning algorithms are chosen depending
on the application. DOL is very powerful and uses less

parameters and still can successfully carry out the task.
However, BP is the fastest among the three learning
algorithms that have been studied, but the results are not
always as accurate as the others.

VI. EXPERIMENTAL RESULTS

Three sets of experiments were carried out for the three time
serial applications, which are shaping digit 8, electrical energy
load forecasting and online handwriting symbol recognition.
The MCRN and the Elman networks are both applied on these
applications. Results of these two networks are given for each
set of experiments.

A. The shaping of the digit 8

The shaping of the digit 8 is one of simplest time series
application. However, it is very useful and common for testing
a network’s performance. 16 points in Cartesian coordinates
(x, y) in the range [0 : 1] are selected to represent the shape of
digit 8. The patterns are designed as follows: the target of an
input pattern is the next input pattern, and the target of the last
input pattern is the first input pattern. The central crossing
point (0:5, 0:5) appears twice, depending on which direction
the stroke takes. This crossing point creates an extra difficulty
for the network as it has two different successors depending
on the previous input pattern. Various network structures with
different parameters are tested according to the computational
complexity involved. After performing training sessions for a
network, an arbitrary point in the data set including the
crossing center point is selected and fed to the network. The
output produced by the network is fed back again to the
network. This process continues until the network draws the
shape of the digit 8. Table 1 shows the three selected
network’s structures (Elman, Elman tower, and the MCRN
networks). These structures are selected taking into account
the complexity of computation. Note that all the networks are
trained with DOL. We ran the three networks simultaneously
on the same datasets. From Figure 3(a), we can notice that the
MCRN outperformed the other two networks in terms of
accuracy and learning time. It was also observed that the
MCRN network training is stable (the error is decreasing
steadily and smoothly). The Elman tower version was faster
than the simple Elman network. This is due to enormous
internal computations on a large number of hidden neurons.

TABLE I
SHOWS THE DIFFERENT NETWORK STRUCTURES IN
ACCORDANCE WITH COMPLEXITY COMPUTATIONS

Elman Net Elman Tower Net MCRN
1cont. layer 6 cont. layers 6 cont. layers
20 hidden.

units 9 hidden. Units
8 hidden.

units
2 input units 2 input units 2 input units

2 output units 2 output units 2 output units
456 weights 533 weights 522 weights

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3037

Figure 4 (c), displays the shaping of digit 8 shaped by the
MCRN. The MCRN shaping is more accurate than in (a) or
(b), which are obtained shaped by the Elman tower and Elman
Networks respectively.

Fig. 3 (a) displays the learning speeds for the three networks, (b) displays

the error performances of the three networks

Fig. 4 (a) was shaped by the Elman tower with only one context layer (Elman
network), (b) was shaped by the Elman tower network. (c) was shaped by the

MCRN

B. Electrical Energy load Forecasting

The MCRN is used to handle the daily peak load forecasting
for two different electrical power plants. Two different data
sets (A and B) [4, 11, 21, 22, 31] were collected from two
different countries. The inputs to the network are exogenous
variables such as the previous and current change in the
weather components, the previous and current status of the
day and endogenous variables such as the past change in the
loads. For data set (A) the future load is a function of the
calendar, the status of the day (social events), the past and
current change in the temperature T, and past change in the
load L. The future load in the data set (B) is a function of the
calendar, the status of the day, the past and current change in
the weather components (such as temperate T, cloud rate C,
wind speed W and humidity H), and past change in load L.
 While the dynamic online learning is the most accurate, it
is very time consuming due to the complexity of the
computations. Nevertheless in this application and as long as
the data sequence length is specified; the modified back
propagation is driven to include the recurrent memory [27]. In
this case the modified back propagation is efficient in terms of
both response time and accuracy. Thus, by using the modified

back propagation we are able to improve the performance of
the dynamic learning process.
 Both the MCRN and the Elman tower networks were trained
with BP on data sets (A) and (B), both networks had an almost
identical weight matrices. For data set (A) the structure of the
Elman tower network was 12-5-3*5-1 (12 input neurons, 5
hidden neurons, 3 context layers each of which has 5 neurons,
and 1 neuron output), whereas the structure for the MCRN
was 12-4-3*4-1. For data set (B) the structure of the Elman
tower network and MCRN were 18-8-3*8-1 and 18-7-3*7-1
respectively. We ran both networks on each data set
simultaneously, and found that on each data set, the MCRN is
faster. It performed more training cycles and had a smaller
mean square error, as can be seen in Figure 5(a) and 5(b), for
data set (A) and (B) respectively. The learning speed is
defined as the number of cycles per minute that each network
can complete. Experiments show that using both endogenous
and exogenous variables as inputs to the MCRN rather than
only using exogenous or endogenous variables as inputs to the
network produces better results. Experiments also show that
using the change in variables such as weather components and
the change in the past load as inputs to the MCRN rather than
the absolute values for the weather components and past load
as inputs to the network has a dramatic impact on the
prediction process and produces better accuracy [3, 31].

Fig. 5 (a) represents the learning speed when both networks run

simultaneously on data set (A). (b) represents the learning speed when both
networks run simultaneously on data set (A)

Table 2 represents the performance in terms of the maximum
difference between the actual daily peak load and the
forecasted daily peak load (MAP and MAX) and the training
and testing mean square errors for both networks on each data
set. Figures 6(a) and 6(b) represent the forecasting values
predicted by both networks on data sets (A) and (B)
respectively. One can notice that both networks performed
reasonably well. Moreover, MCRN is 19:5% more efficient
(in terms of prediction accuracy) than Elman tower network.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3038

Fig. 6 (a) displays the forecasted results for both networks on the data set (A)
(b) Displays the forecasted results for both networks on data set (B)

C. Recognition of online handwritten symbols

The MCRN is also evaluated using another real-world
application in the area of handwriting recognition. Its
performance is compared to the Elman tower network in
recognizing digits from 0 to 9. The symbols are represented as
sets of fuzzy feature shapes (c-shape, o-shape and line),
orientation, length, x-Centre and y-Centre. These features
were fed into the networks [18]. The same training and testing
samples from section 1a in Unipen Train-R01/V07 [15] were
used in both networks. 500 isolated digits from the Unipen
dataset were used as the training data, and 1000 isolated digits
were used for the testing. Approximately 750 weights were
processed by each network, according to the theoretical model
given in section 4. Therefore, the MCRN consists of 10 output
neurons, 5 input neurons and 3 context layers, 10 hidden
neurons. The Elman tower network consists of 10 output
neurons, 5 input neurons, 3 context layers, and 13 hidden
neurons. The learning rates and momentum for both networks
are LR = 0.1 and MR = 0.02 respectively. Figure 7 shows that
the error generated by the MCRN network decreases faster
than the error generated by the Elman network. This means
that MCRN is training faster. The recognition rates produced
on the same dataset is of 79:4% for the Elman network and
89:5% for the MCRN network for the same amount of CPU
time, which is about 30mn on a 2Ghz Pentium IV processor.
This represented an efficiency improvement of 12.7%. As it
was shown in [18], when MCRN is trained with larger
datasets for longer periods the recognition rate will increase
and the efficiency improvement can be around 20% compared
to SRN tower networks. More details about using MCRN for

handwriting recognition can be found in [18].

Fig. 7 displays the error performance of both networks: The Elman tower
network and the multi context recurrent network

VII. CONCLUSION

SRN has been successfully used for time series applications
analysis. They use a very simple architecture. However, it is
strongly dependent on the hidden layer. Mainly, this affects
these networks behavior in falling into local minima and their
learning speed is very slow. Therefore, we proposed a new
multi-context recurrent network (MCRN) to overcome these
limitations. MCRN is constructed in such away as to inherit
the advantages of SRN while overcoming their limitations.
We have shown that this network trains much quicker. For the
same network complexity, MCRN is about 20% more
efficient than the Elman tower network. We have shown also
that the MCRN network can be used with different learning
algorithms depending on the given problem. We evaluated its
performance on three completely different time series
applications. Experimental results showed that MCRN
performed better in every situation compared to other SRNs.
 In this study, we showed also that some learning
algorithms perform better than some others for some time
series applications. In fact, the BPTT algorithm, which is
theoretically more suitable for time series applications, is not
delivering the expected results while used to train MCRN.
This is due to the fact that the BPTT requires a very large
memory that the context layers cannot satisfy. In the near
future we will look at this problem in more details. We
believe that the combination of the BPTT algorithm with
Estimation-Maximization (EM) algorithm will solve this
problem and speeds up the convergence of the MCRN
network during the training phase.

REFERENCES
[1] M. Boden, `A guide to recurrent neural networks and

backpropagation',The DALLAS project. Report from the NUTEK-
supported project AIS-8, SICS.Holst: Application of Data Analysis with
Learning Systems, (2001).

[2] M.A. Castano, F. Casacuberta, and A. Bonet, Training Simple recurrent
Networks Through Gradient Descent Algorithm, volume 1240 of ISBN
3-540-63047- �3, chapter Biological and Arti cial Computation: From
Neuroscience to Technology, pp. 493--500, Eds. J. Mira and R.
Moreno-Diaz and J. Cabestany, Springer Verlag, 1997.

TABLE II
DISPLAYS THE ERROR PERFORMANCE OF MAP, MAX, MSE ON

TRAINING SETS AND MSE AND TESTING SETS FOR BOTH
NETWORKS RUN SIMULTANEOUSLY FOR EACH DATA SET

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3039

[3] W. Charytoniuk and M-S. Chen, `Very short-term load forecasting
using neural networks', IEEE Tran. On Power Systems, 15(1), 1558---
1572, (2000).

[4] B.J. Chen, M.W. Change, and C.J. Lin, `Eunite network competition:
Electricity load forecasting', Technical report, In EUNITE 2001
symposium, a forecasting competition, (2001).

[5] Y. Cheng, T.W. Karjala, and D.M. Himmelblau, `Closed loop nonliner
�process identi cation using internal recurrent nets', In Neural

Networks, 10(3), pp. 573--586, (1997).
[6] A. Corradini and P. Cohen, `Multimodal speech-gesture interface for

hands-free painting on virtual paper using partial recurrent neural
networks for gesture recognition', in Proc. of the Int'l Joint Conf. on
Neural Networks (IJCNN'02), volume 3, pp. 2293--2298, (2002).

[7] B. de Vries and J.C. Principe, `A theory for neural networks with time
delays', in NIPS-3: Proceedings of the 1990 conference on Advances in
neural information processing systems 3, pp. 162--168, San Francisco,
CA, USA, (1990). Morgan Kaufmann Publishers Inc.

[8] Georg Dorffner, `Neural networks for time series processing', Neural
Network World, 6(4), pp. 447--468, (1996).

[9] W. Duch and N.Jankowski, `Transfer functions: Hidden possibilities
for better neural networks', in ESANN'2001 proceedings European

�Symposium on Arti cial Neural Networks, ISBN 2-930307 01-3, pp.
25-27, Belgium, (2001). D-Facto public.

[10] J.L. Elman, `Finding structure in time', Cognitive Science, 14(2),
pp.179--211, (1999).

[11] D. Esp, `Adaptive logic networks for east slovakian electrical load
forecasting', Technical report, In EUNITE 2001 symposium, a
forecasting competition, (2001).

[12] D.V. Prokhorov E.W. Saad and D.C. Wunsch, `Comparative study of
stock trend prediction using time delay, recurrent and probabilistic
neural networks', IEEE Transactions on Neural Networks, 6(9),
PP.1456--1470, (1998).

[13] L. Fausett, Backpropagation Through Time and Derivative Adaptive
Critics: A Common Framework for Comparison, chapter Englewood
Cliffs, NJ: Prentice Hall, 1994.

[14] G. Gross and F. D. Galianan, `Short-term load forecasting', In
Proceedings of the IEEE., 75(12), 1558--1572, (1987).

[15] I. Guyon, L. Schomaker, R. Plamondon, M. Liberman, and S. janet,
`Unipen project of on-line data exchange and recognizer benchmarks',
in Proceedings of the 12th International Conference on Pattern
Recognition, ICPR'94, pp. 29--33, Jerusalem, Israel, (October 1994).

[16] S. Haykin, Neural Networks, A Comprehensive Foundation,
MacMillan Publishing Company, New York, 1994.

[17] A. Herve and E. Betty, `Neural networks, quantitative applications', in
In the Social Sciences, volume 124, London: Sage Publications, (1999).

[18] B. Q. Huang and M-T. Kechadi, `A recurrent neural network
recogniser for online recognition of handwritten symbols.', in ICEIS
(2), pp. 27--34, (2005).

[19] �B. Q. Huang, T. Rashid, and T. Kechadi, `A new modi ed network
based on the elman network', in Proceedings of IASTED International

�Conference on Arti cial Intelligence and Application, ed., M. H.
Hamza, volume 1 of ISBN: 088986-404-7, pp. 379--384, Innsbruck,
Austria, (2004). ACTA Press.

[20] M.I. Jordan, `Attractor dynamics and parallelism in a connectionist
sequential machine.', in Proceedings of the 8th Annual Conference of
the Cognitive Science Society, Englewood Cliffs, NJ: Erlbaum, pp.
531--546. Reprinted in IEEE Tutorials Series, New York: IEEE
Publishing Services, 1990, (1986).

[21] I. King and J. Tindle, `Storage of half hourly electric metering data and
�forecasting with arti cial neural network technology', Technical

report, In EUNITE 2001 symposium, a forecasting competition, (2001).
[22] W. Kowalczyk, `Averaging and data enrichment: Two approaches to

electricity load forecasting', Technical report, In EUNITE 2001
symposium, a forecasting competition, (2001).

[23] S. Lawrence, C.L. Giles, and S. Fong, `Natural language grammatical
inference with recurrent neural networks', IEEE Trans. on Knowledge
and Data Engineering, 12(1), pp. 126--140, (2000).

[24] A. Lo, H. Mamaysky, and J. Wang, `Foundations of technical analysis:
Computational algorithms, statistical inference, and empirical
implementation', Journal of Finance 55, pp. 1705--1765, (2000).

[25] Yee-Ling LU, Man-Wai MAK, and Wan-Chi SIU, `Application of a
fast real time recurrent learning algorithm to text-to-phone conversion',

in Proceedings of the International Conference of Neural Networks,
volume 5, pp. 2853--2857, (1995).

[26] Simone Marinai, Ma �rco Gori, and Giovanni Soda, `Arti cial neural
networks for document analysis and recognition.', IEEE Trans. Pattern
Anal. Mach. Intell., 27(1), pp. 23--35, (2005).

[27] A. D. Papalxopoulos and T. C. Hiterbeg, `A regression-based approach
to short-term load forecasting', In IEEE Tran. On Power Systems, 4(1),
pp. 1535--1547, (1990).

[28] D. Park, M. El-Sharkawia, R. Marks, A. Atlas, and M. Damborg,
�`Electic load forecasting using arti cial neural networks', IEEE Trans.

on Power Systems, 6(2), 442--449, (1991).
[29] D. C. Plaut, `Semantic and associative priming in a distributed attractor

network', in Proceedings of the 17th Annual Conference of the
Cognitive Science Society, pp. 37--42, Hillsdale, (1995). NJ:Erlbaum.

[30] D. Prokhorov, Backpropagation Through Time and Derivative
Adaptive Critics: A Common Framework for Comparison, chapter
Learning and Approximate Dynamic Programming, Wiley, 2004.

[31] T. Rashid, B. Q. Huang, and T. Kechadi, `A new simple recurrent
network with real-time recurrent learning process', in The 14th Irish
Artifcial Intelligence and Cognitive Science (AICS'03), ed., Padraig
Cunningham, volume 1, pp. 169--174, Dublin, Ireland, (2003).

[32] T. Rashid and T. Kechadi, `A practical approach for electricity load
forecasting', in The proceeding WEC'05, The ThirdWorld Enformatika,
ed., C. Ardal, volume 5 of ISBN 975-98458-4-9, pp. 201--205, Isanbul,
Turky, (2005). ACTA Press.

[33] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal
Representations by Error Propagation In D. E. Rumelhart, et al. (Eds.),
Parallel Distributed Processing: Explorations in the Microstructures
of Cognition, 1: Foundations, MA: MIT Press, Cambridge, 1962.

[34] M. Schnekel, I. Guyon, and D. Henderson, `On-line cursive script
recognition using time delay networks and hidden markove models', in
Proc. ICASSP'94, volume 2, pp. 637--640, Adelaide, Australia, (April
1994).

[35] P. Stagge and B. Sendho, `Organization of past states in recurrent
neural networks: Implicit embedding', in Proc. The Internation
conference Computational Intelligence for Modelling, Control &
Automation, pp. 21--27, Amsterdam, (1999). IOS Press.

[36] J.C. Tomasz and M.Z. Jacek, `Neural network tools for stellar light
prediction', in Proc. of the IEEE Aerospace Conference, volume 3, pp.
415--422, Snowmass, Colorado, USA, (February 1997).

[37] P. J. Werbos, `Backpropagation through time: What it does and how to
do it', in Proceedings of the IEEE, volume 78, pp. 1550--1560, (1990).

[38] William H. Wilson, `Learning performance of networks like elman's
simple recurrent netwroks but having multiple state vectors', Workshop
of the 7th Australian Conference on Neural Networks, Australian
National University Canberra, (1996).

[39] Shi XH, YC. Liang, and X. Xu, `An improved elman model and
recurrent bck-propagation control neural networks', Journal of
Software, 6(14), 1110--1119, (2003).

