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Abstract—This paper aims to perform the second law analysis of 

thermodynamics on the laminar film condensation of pure saturated 
vapor flowing in the direction of gravity on an ellipsoid with variable 
wall temperature. The analysis provides us understanding how the 
geometric parameter- ellipticity and non-isothermal wall temperature 
variation amplitude “A.” affect entropy generation during film-wise 
condensation heat transfer process. To understand of which 
irreversibility involved in this condensation process, we derived an 
expression for the entropy generation number in terms of ellipticity 
and A. The result indicates that entropy generation increases with 
ellipticity. Furthermore, the irreversibility due to finite temperature 
difference heat transfer dominates over that due to condensate film 
flow friction and the local entropy generation rate decreases with 
increasing A in the upper half of ellipsoid. Meanwhile, the local 
entropy generation rate enhances with A around the rear lower half of 
ellipsoid. 
 

Keywords—Free convection; Non-isothermal; Thermodynamic 
second law; Entropy, Ellipsoid.   

I. INTRODUCTION 
HERE are two types of techniques to enhance 
condensation heat transfer process and thus to increase the 

performance of condensers. They are passive and active 
enhancement techniques. The passive techniques do not require 
the application of the external power, whereas the active 
techniques require activator or power supply to bring about the 
enhancement. When we attempt to enhance a rate of 
condensation, what we usually do is the increasing condensing 
area via fins or the formation of very thin condensation. The 
later is achieved by using objects having favorable surface 
tension due to surface curvature. One of objects having 
favorable surface tension is the object of elliptical cross section 
or vertical ellipsoids. As for this kind of passive enhancement 
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of condensation heat transfer, several researches, such as Yang 
and Hsu [1] and Yang and Chen [2], Ali and McDonald [3], 
Karimi [4], and Memory et al. [5] confirmed that cylinders, fins, 
or extended surfaces of elliptical profiles with major axes 
aligned with gravity are superior to those of circular profiles. 

 All the above heat transfer analyses belong to the filed of 
energy analysis, i.e. first law analysis, but first law analysis 
does not account for the irreversibility or degradation of energy 
in the system. Second law analysis provides an effective 
technique for measuring and optimizing performance of a 
thermal system by accounting for the energy quality. Second 
law analysis of thermal systems is widely gaining acceptance 
over traditional energy methods in both industry and academia 
as it is developed into a set of standards for measuring the 
performance. Entropy generation is associated with 
thermodynamic irreversibility which is common in all types of 
heat transfer processes. Film condensation belongs to 
phase-change heat transfer, but little literature regarding its 
second-law analysis is investigated. 

Adeyinka and Naterer [6] first investigated the physical 
significance of entropy generation in plate film condensation. 
Lin et al. [7] performed the second-law analysis on saturated 
vapor flowing through and condensing inside horizontal 
cooling tubes. They noted that in a tube case, an optimum 
Reynolds number exists at which the entropy generates at a 
minimum rate. Dung and Yang [8] presented the entropy 
generation minimization method to optimize a saturated vapor 
flowing slowly onto and condensing on an isothermal 
horizontal tube. They observed that entropy generation 
provides a useful parameter in the optimization of a two-phase 
system. More recently, we first conducted a study [9] on the 
local entropy generation rate of laminar free convection film 
condensation on an elliptical cylinder. That paper investigated 
how the geometric parameter-ellipticity affects local 
entropy-generation rate during film-wise condensation heat 
transfer process. The second law analysis of the film 
condensation outside ellipsoids still remains an unsettled 
question so far. 

Since the current state of knowledge about second law 
analysis of free convection film condensation outside an 
ellipsoid is somewhat incomplete, this investigation into the 
entropy generation rate will thus help us achieve the complete 
thermodynamic analysis, including the first and second law  
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analysis. We will derive an expression for the entropy 
generation number, which accounts for the combined action of 
the specified irreversibility. Basically, this study makes good 
engineering sense to focus on the irreversibility of film 
condensation heat transfer and try to understand the function of 
the entropy generation mechanism. 

II. THERMAL ANALYSIS 
Consider a vertical ellipsoid, with major axis “2a” in the 

direction of gravity and minor axis “2b”, situated in a quiescent 
pure vapor which is at its saturated temperature satT . Moreover, 
the wall temperature wT  may be non-uniform and below satT . 
Thus, condensation occurs on the wall and a continuous film of 
the liquid runs downward over the ellipsoid under the actions of 
the component of gravity, and of the surface tension forces. 

Fig. 1 illustrates schematically a physical model and 
coordinate system where the curvilinear coordinates (x, y) are 
aligned along an ellipsoid surface and its normal. The following 
simplifications are made in the analysis: 
1) The condensate film flow is laminar and steady-state. 
2) The inertia effect is neglected. 
3) The condensate film thickness is much smaller than the 

NOMENCLATURE 

A the wall temperature variation amplitude satT  saturation temperature of vapor 

a  semi-major axis of ellipse wT  wall temperature 

b  semi-minor axis of ellipse U reference velocity component in x  direction 

oB  Bond number, σρρ /)( 2gav−  u  velocity component in x  direction 

Br  Brinkman number, Tku Δ/2
0μ  v  velocity component in y  direction 

pC  specific heat of condensate at constant pressure Greek symbols 

eD  equivalent diameter of ellipsoid δ  thickness of condensate film 

e  ellipticity of ellipse ∗δ  dimensionless thickness of condensate film 

g  acceleration due to gravity θ  angle measured from top of the ellipsoid 

h  condensing heat transfer coefficient at angle φ  μ  absolute viscosity of condensate 

fgh′  latent heat of condensation corrected for condensate subcooling ρ  density of condensate 

Ja  Jakob number, '/)( fgwsatp hTTC −  vρ  density of vapor 

k  thermal conductivity of condensate σ  surface tension coefficient in the film 

•
m  condensate mass flow rate per unit length of ellipsoid φ  angle between the tangent to ellipsoid surface and the normal 

to direction of gravity 

FN ′′′  film flow friction irreversibility Ω  dimensionless temperature difference, sTT /Δ  

HN ′′′  heat transfer irreversibility Subscripts 

SN ′′′  the entropy generation number   

Nu  local Nusselt number, khDe /  sat  saturation 
'''

genS  the volumetric entropy generation rate, V  vapor 
'''

oS  characteristic transfer rate Superscripts 

Ra  Rayleigh number, 23 /Pr)( μρρρ ev Dg−  * indicates dimensionless 

Fig. 1 Physical model and coordinate system for condensate film flow 
on an ellipsoid 
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curvature diameter. 
4) Viscous dissipation is ignored.  
5) Compared with the normal conduction, the streamwise 

conduction is negligible. 
 

Based on the above simplifications, the condensate film 
governing equations for conservations of mass, momentum, 
and energy are as follows: 
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, subject to the following boundary conditions: 
0=y  ; 0=u  ; wTT =                               (4) 
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∂

y
u  ; satTT =                            (5) 

On account of varying radius of surface curvature, the surface 
tension forces can be derived here, as expressed in Yang and 
Chen [2]: 
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Integrating (2) and (3) with the use of the boundary conditions 
gives, respectively.  
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Using (7), we can obtain the mass flow rate of condensate film.   
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An energy balance at the condensate-vapor interface, as in 
the Nusselt-Rohsenow condensation theory, gives 

θπ
δ
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Δ
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where, ( )fgpfgfg hTChh Δ+=′ 68.01 is the modified latent heat 

of condensation proposed by Rohsenow [10] to account for 
convection in the film. In order to derive the local film 
thickness δ  at the circumferential arc length x  in terms ofφ , 
we can substitute (9) into (10) and obtain  
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To solve the above equation, it is convenient at this point to 
express dx and θsinr  in terms of e and φ . the differential 
streamwise length can be written as proposed by Yang [11] 
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Next, by using the geometric relationship for tangent to the 
surface 
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And in Yang [11]: 
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And with the help of (14), one may obtain the following 
expressions: 

2
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Once the wall temperature distribution )(φwT is specified or 
fitted by experimental data, the mean wall temperature is really 
available as 
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and express the temperature difference across the film as 
)()()( φφ ttwsatwsat FTFTTTT Δ=−=−                 (17) 

where wsat TTT −=Δ .  
Representative numerical results for the common axisymmetric 
case that involves the cosine distribution of non-isothermal 
wall temperature variation are given as 

)cos(1)( φφ AFt −=                             (18) 
Here, the non-isothermally function is adopted from the 
experiment of Lee et al. [12] for circular tube. Note that 

10 ≤≤ A  and the amplitude A  depends largely on the ratio of 
the outside-to-inside heat transfer coefficients. 
 Inserting (12) through (18) into (11), and introducing the 
transformation method, we can obtain dimensionless local 
condensate liquid film thickness as follows.   
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As in Nusselt [13] theory, interpreting the result of model is 
straightforward by employing the usual idea of a local heat 
transfer coefficient as follows: 
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According to Bejan [14], together with the fifth item of 
above-mentioned assumptions, the entropy generation rate for 
convection heat transfer can be written as  
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On the right-hand side of (21), the first term and the second 
term represents the entropy generation due to heat transfer and 
due to condensate film flow friction, respectively. Substituting 
(7) and (8) into (21), and assuming 

satsatsat TTTTT ≈−+= = sT  yield 
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Next, entropy generation number ( SN ′′′ ) is the ratio of the 

volumetric entropy generation rate ( '''
genS ) to a characteristics 

transfer rate ( '''
oS ). 
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Further, by introducing the following dimensionless 
parameters  
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the entropy generation number can be expressed as: 
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Notably, HN ′′′  denotes the dimensionless entropy generation 
due to heat transfer irreversibility 
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FN ′′′  denotes the dimensionless entropy generation due to fluid 
friction irreversibility at the wall (y=0) and is evaluated as 
follows.  
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To understand which of the condensate flow fiction or heat 
transfer dominates, we introduce a criterion known as the 

irreversibility distribution ratio in the following equation: 
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Fig. 2 The condensation film profile for varying A and ellipticity 

 

 
Fig. 3 Irreversibility due to heat transfer for varying A and ellipticity 

 

 
Fig. 4 Irreversibility due to film flow friction for varying A and  

ellipticity 
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III. RESULTS AND DISCUSSION 
Fig. 2 shows the condensation film profile for varying 

ellipticity and A. It demonstrates that the dimensionless 
condensate film thickness ∗δ  decreases slightly as A increases. 

Figs. 3, 4, and 5 indicate the variation of dimensionless 
entropy generation numbers HN ′′′ , FN ′′′ , SN ′′′

 
with πφ   under 

the surface tension effects for various ellipticities. Firstly, Fig.3 
indicates that the dimensionless entropy number due to heat 
transfer declines with the film thickness. This may account for 
the fact that the finite temperature difference heat transfer via 
thinner film will cause the higher irreversibility. Secondly, Fig. 
4 demonstrates that the dimensionless entropy number due to 
film flow friction varies significantly with the square of 
( )(sin φφ Bo+ ). Note that if we ignore the effect of surface 
tension, )(φBo , the maximum value of this entropy generation 
will occur at the mid of ellipsoid. Finally, it is clear that the 
local dimensionless entropy number SN ′′′  is similar to HN ′′′   
because the entropy generation due to heat transfer dominates 
that due to film flow friction, as seen in Fig. 5. Besides, Fig. 5 
also confirms the local entropy generation rate increases with 
ellipticity. 

Fig. 6 shows entropy generation rate versus Bo1  and 
JaRa  for e=0.7. The entropy generation number is markedly 

affected by the non-isothermal wall temperature variation. This 
may account for the larger temperature differences.  From (27), 
one may clearly see that the higher value of JaRa  produces 
more entropy generation because the heat transfer 
irreversibility varies as square root of JaRa . Additionally, the 
higher value of Bo1  yields more entropy generation because 
of film flow friction. 

Fig. 7 shows entropy generation rate versus ΦBr  and A  
for e=0.9.  From (27), one may clearly see that the higher value 
of ΦBr  produces more entropy generation. The local entropy 
generation increases slightly with the increase in Brinkman 
number. This can be explained as the fact that the condensate 
film flow friction plays an insignificant role in the entropy 
generation rate.   

Finally, Fig. 8 indicates the dependence of the irreversibility 
distribution ratio with A. The irreversibility distribution ratio 
for the case 0=A  is larger than that for the case 1=A . This 
may account for the more contribution to irreversibility caused 
by larger temperature difference heat transfer. When 1<ψ , 
heat transfer irreversibility dominates over the flow friction 
irreversibility and vice versa for 1>ψ . Increasing 
non-isothermal wall temperature variation amplitude will 
enhance the heat transfer irreversibility due to finite 
temperature difference heat transfer. Hence, the irreversibility 
distribution ratio for isothermal wall case is larger than that for 
the non-isothermal case. 

 
 
 
 

 
Fig. 5 Local entropy generation for varying A and ellipticity 

 

 
Fig. 6 Local entropy generation number for varying group parameters 

1/Bo 

 
Fig. 7 Local entropy generation number for varying group parameters 

Φ/Br  
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Fig. 8 The dependence of the irreversibility distribution ratio with A 

IV. CONCLUDING REMARKS 
This work performed the entropy generation analysis of the 

laminar film condensation on an ellipsoid under the effect of 
the non-isothermal wall temperature variation for various 
ellipticities. The conclusions from this study can be 
summarized as follows: 
1.) The local entropy generation increases with the decreases 

in Bond number. 
2.) The local entropy generation increases with Brinkman 

number. 
3.) The local entropy generation rate reduces with increasing 

wall temperature variation amplitude. 
4.) The local entropy generation rate enhances with the wall 

temperature variation amplitude around the rear lower 
half of ellipsoid perimeter. 

5.)  Compared to entropy generation due to film flow friction, 
entropy generation due to heat transfer is generally 
dominant in most cases. 

6.) The entropy generation Increases with the ellipticity of 
ellipsoid. 
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