A systematic approach for finding Hamiltonian cycles with a prescribed edge in crossed cubes

Jheng-Cheng Chen, Chia-Jui Lai, and Chang-Hsiung Tsai,

Abstract

The crossed cube is one of the most notable variations of hypercube, but some properties of the former are superior to those of the latter. For example, the diameter of the crossed cube is almost the half of that of the hypercube. In this paper, we focus on the problem embedding a Hamiltonian cycle through an arbitrary given edge in the crossed cube. We give necessary and sufficient condition for determining whether a given permutation with n elements over Z_{n} generates a Hamiltonian cycle pattern of the crossed cube. Moreover, we obtain a lower bound for the number of different Hamiltonian cycles passing through a given edge in an n-dimensional crossed cube. Our work extends some recently obtained results.

Keywords-Interconnection network, Hamiltonian, Crossed cubes, Prescribed edge.

I. Introduction

THe ring structure is a fundamental network for multiprocessor systems and suitable for developing simple algorithms with low communication cost. Many efficient algorithms were designed with respect to rings for solving a variety of algebraic problems, graph problems, and some parallel applications, such as those in image and signal processing [2], [9]. To carry out a ring-structure algorithm on a multiprocessor computer or a distributed system, the processes of the parallel algorithm need to be mapped to the nodes of the interconnection network in the system such that any two adjacent processes in the cycle are mapped to two adjacent node of the network. Due to execute a parallel program efficiently, the targeted interconnection network posses a Hamiltonian cycle, i.e., a cycle that passes every node of the network exactly once if the number of processes in the ring-structure parallel algorithm equals the number of nodes of the interconnection network. On the other hand, each link in a parallel distributed system may be assigned with distinct bandwidth, thus, it is meaningful to study the problem of how to embed a Hamiltonian cycle into a network such that these cycles pass through a special edge.
Hypercubes are the most well known of all interconnection networks for parallel computing, given their basic simplicity, their generally desirable topological and algorithmic properties. Thus, many practical parallel computer systems, such as Intel iPSC, the nCUBE family [6], the SGI's Origin 2000 [10], and the Connection Machine [11], employ the hypercubes as the interconnection network. The crossed cube proposed by Efe [3] is one of the most notable variations of hypercube, but some properties of the former are superior to those of

Jheng-Cheng Chen, Chia-Jui Lai, and Chang-Hsiung Tsai are with the Department of Computer Science and Information Engineering National Dong Hwa University, Hualien, Taiwan 97401, R.O.C. e-mail harry527750@yahoo.com.tw; lai@ms01.dahan.edu.tw;chtsai@mail.ndhu.edu.tw
the latter. For example, the diameter of the crossed cube is almost the half of that of the hypercube. With regard to cycles embedding of crossed cubes, many interesting results have received considerable attention [1], [5], [7], [8], [12], [13], [14]. In particular, Zheng and Latifi [14] introduced to the notion of reflected link label sequences and proposed a kind of codeword, called Generalized Gray Code. Applying these concepts, they showed that $C Q_{n}$ can embed cycles of arbitrary length from 4 to 2^{n}. In this paper, we consider the problem of embedding a Hamiltonian cycle passing through a prescribed edge in the crossed cube. We introduce a new concept, the cycle pattern, and use it to propose a systematic approach for embedding a desired Hamiltonian cycle in the crossed cube. In particular, we give necessary and sufficient condition for determining whether or not a given permutation with n elements over Z_{n} generates a Hamiltonian cycle pattern of the crossed cube. Our work extends some recently obtained results in [12], [14].

The rest of this paper is organized as follows. Section II introduces definitions and reflected edge label sequence that will be used throughout this paper. In Section III, we propose cycle pattern concept and give necessary and sufficient condition for determining whether or not a given permutation with n elements over Z_{n} generates a Hamiltonian cycle pattern of the crossed cube. Based on this concept, how many distinct Hamiltonian cycles pass through a given edge in $C Q_{n}$ is calculated in Section IV. Conclusions are given in the final section.

II. Preliminaries

A topology of an interconnection network is conveniently represented by an undirected simple graph $G=(V, E)$, where $V(G)$ and $E(G)$ is the vertex set and the edge set of G, respectively. Throughout this paper, vertex and node, edge and link, graph and network are used interchangeably. For graph terminology and notation not defined here we refer the reader to [9]. A walk in a graph is a finite sequence $\omega: \lambda_{0}, e_{1}, \lambda_{1}, e_{2}, \lambda_{2}, \ldots, \lambda_{k-1}, e_{k}, \lambda_{k}$ whose terms are alternately vertices and edges such that, for $1 \leq i \leq k$, the edge e_{i} has ends λ_{i-1} and λ_{i}, thus each edge e_{i} is immediately preceded and succeeded by the two vertices with which it is incident. In particular, a walk ω is called a path if all internal vertices, λ_{i} for $1 \leq i \leq k-1$, of the walk ω are distinct. The first vertex λ_{0} of ω is called its start vertex, and the vertex λ_{k} is called a last vertex. Both of them are called end-vertices of the path ω. For simplicity, the path ω is also denoted by $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{k}$. If $\lambda_{0}=\lambda_{k}$, then ω is called a cycle. A cycle of

Fig. 1. Crossed cubes $C Q_{3}$ and $C Q_{4}$.
length l is called a l-cycle. A path (respectively, cycle) which traverses each vertex of G exactly once is Hamiltonian path (respectively, Hamiltonian cycle).

An n-dimensional crossed cube, denoted as $C Q_{n}$, was first proposed by Efe [3]. It is derived by "crossing" some edges in Q_{n}. With exactly same hardware cost as hypercube, it has been shown that such a simple variation gains important benefits such as greatly reduced diameter. To define crossed cubes, the notion so called "pair related" relation is introduced. Let R $=\{(00,00),(10,10),(01,11),(11,01)\}$. Two binary strings $u_{1} u_{0}$ and $v_{1} v_{0}$ are pair related, denoted as $u \sim v$, if and only if $(u, v) \in R$. Subsequently, a crossed cube of dimension n is an undirected graph consisting of 2^{n} vertices labeled from 0 to $2^{n}-1$ and defined recursively as following:

Definition 1: [3] The crossed cube $C Q_{1}$ is a complete graph with two vertices labeled by 0 and 1 , respectively. For $n \geq 2$, an n-dimensional crossed cube $C Q_{n}$ consists of two $(n-1)$-dimensional sub-crossed cubes, $C Q_{n-1}^{0}$ and $C Q_{n-1}^{1}$, and a perfect matching between the vertices of $C Q_{n-1}^{0}$ and $C Q_{n-1}^{1}$ according to the following rule:

Let $V\left(C Q_{n-1}^{0}\right)=\left\{0 u_{n-2} u_{n-3} \cdots u_{0}: u_{i}=0\right.$ or 1$\}$ and $V\left(C Q_{n-1}^{1}\right)=\left\{1 v_{n-2} v_{n-3} \cdots v_{0}: v_{i}=0\right.$ or 1$\}$. The vertex $u=0 u_{n-2} u_{n-3} \cdots u_{0} \in V\left(C Q_{n-1}^{0}\right)$ and the vertex $v=$ $1 v_{n-2} v_{n-3} \cdots v_{0} \in V\left(C Q_{n-1}^{1}\right)$ are adjacent in $C Q_{n}$ if and only if
(1) $u_{n-2}=v_{n-2}$ if n is even, and
(2) $u_{2 i+1} u_{2 i} \sim v_{2 i+1} v_{2 i}$, for $0 \leq i<\left\lfloor\frac{n-1}{2}\right\rfloor$.

An edge $(u, v) \in E\left(C Q_{n}\right)$ is labeled by j if $u_{j} \neq v_{j}$ and $u_{i}=v_{i}$ for $j+1 \leq i \leq n-1$, i.e, v is the j-th dimensional neighbor (abbreviated as j-neighbor) of u, denoted by $u[j] v$ or $v[j] u$. It is observed that each vertex u in $C Q_{n}$ has n neighbors in $C Q_{n} ; u$ has exactly one j-neighbor for $0 \leq j \leq n-1$. As a consequence, there are 2^{n-1} edges labeled by $j, 0 \leq j \leq n-1$, in $C Q_{n}$. For example, the graphs shown in Figure 1 are $C Q_{3}$ and $C Q_{4}$.

A path in $C Q_{n}$ might be specified by the source vertex and a sequence of labels detailing the edges to be traversed, for example, the path in $C Q_{3}$ detailed as having the source vertex 000 and then following the edges labeled $1,2,1$ (also denoted $[1,2,1]$) is actually the path $000,010,110,100$, also denoted $000[1,2,1] 100$. Besides, $000[1,2] 110,100,000,010[2,1] 100$, and $000[1,2,1] 100$ are represented the identical path $000,010,110,100$. Therefore, the sequence $L=\left[d_{1}, d_{2}, \ldots, d_{m}\right]$ is called an Edge Label Sequence in $C Q_{n}$ if two adjacent labels are not identical where $d_{i} \in Z_{n}, Z_{n}=\{0,1, \ldots, n-1\}$, for $1 \leq i \leq m$.

A walk, $\omega(L, u)=\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$, in $C Q_{n}$ can be generated with respect to a given edge label sequence L and a
given vertex u as follows: $\lambda_{0}=u$, and λ_{j} is the d_{j}-neighbor of λ_{j-1} in $C Q_{n}$ where $1 \leq j \leq m$, i.e, $\lambda_{j-1}\left[d_{j-1}\right] \lambda_{j}$. Thus, this walk $\omega(L, u)$ is also represented as $\lambda_{0}[L] \lambda_{m}$. In particular, the edge label sequence L is interesting in this paper when it generates a loop-free path $\omega(L, u)$ starting from any vertex u in $C Q_{n}$.

Hereafter, we are interesting a special edge label sequence called reflected link label sequence generated by a systematic method. A reflected edge label sequence of length 2^{k} is generated from a permutation with k elements over Z_{n}. Let $\pi_{k}=\left\langle d_{1}, d_{2}, \ldots, d_{k}\right\rangle, 1 \leq k \leq n$, be a permutation over Z_{n} with k elements, and let $\pi_{k}(i)=\left\langle d_{1}, d_{2}, \ldots, d_{i}\right\rangle$. The Reflected Edge Label Sequence, $R L_{\pi_{k}}$ defined by π_{k}, be generated recursively as follows:

$$
\begin{aligned}
& R L_{\pi_{k}(1)}=d_{1} \\
& R L_{\pi_{k}(i)}=R L_{\pi_{k}(i-1)}, d_{i}, R L_{\pi_{k}(i-1)}, 1 \leq i \leq k ; \text { and } \\
& R L_{\pi_{k}}=R L_{\pi_{k}(k)}
\end{aligned}
$$

As a result, the $R L_{\pi_{k}}$ defined by arbitrary permutation π_{k} over Z_{n} is a symmetry edge label sequence in $C Q_{n}$. Zheng and Latifi [14] observe the following lemma.

Lemma 1: [14] For any vertex u in $C Q_{n}$ and any π_{n} permutation over Z_{n} with n elements, the walk $\omega\left(R L_{\pi_{n}}, u\right)$ corresponds to a Hamiltonian path of $C Q_{n}$ that start from u.

Lemma 2: Assume that π_{n} is a permutation, $\left\langle d_{1}, d_{2}, \ldots, d_{n}\right\rangle$, with n elements over on Z_{n}. Then, the total number of $d_{k}, 1 \leq k \leq n$, in $R L_{\pi_{n}}$ equals to 2^{n-k}. Lemma 3: Assume that π_{n}^{0} and π_{n}^{1} are two distinct permutations with n elements over on Z_{n}. Then, $\omega\left(R L_{\pi_{n}^{0}}, u\right)$ and $\omega\left(R L_{\pi_{n}^{1}}, v\right)$ correspond two distinct Hamiltonian paths of $C Q_{n}$ for any two vertices u and v of $C Q_{n}$.
Proof. Let $\pi_{n}^{0}=\left\langle d_{1}, d_{2}, \ldots, d_{n}\right\rangle$ and $\pi_{n}^{1}=$ $\left\langle d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n}^{\prime}\right\rangle$ be two distinct permutations over on Z_{n}. Since $\pi_{n}^{0} \neq \pi_{n}^{1}$, there exist k and h such that $k \neq h$ and $d_{k}=$ d_{h}^{\prime}. By Lemma 2 and for any two vertices $u, v \in V\left(C Q_{n}\right)$, the path $\omega\left(R L_{\pi_{n}^{0}}, u\right)$ and $\omega\left(R L_{\pi_{n}^{1}}, v\right)$ passes through 2^{n-k} and 2^{n-h} edges in dimension d_{k} and d_{h}^{\prime} of $C Q_{n}$, respectively. As a conclusion, $\omega\left(R L_{\pi_{n}^{0}}, u\right)$ and $\omega\left(R L_{\pi_{n}^{1}}, v\right)$ correspond to two distinct Hamiltonian paths of $C Q_{n}$.

III. Cycle patterns

Let L be an edge label sequence of $C Q_{n}$ with l elements. We called L an l-cycle pattern, l - $C P$ for short, of $C Q_{n}$ if the walk $\omega(L, u)$ forms an l-cycle for every vertex u. Particularly, appending d_{k} to the end of the sequence $R L_{\pi_{k}}$, we obtain an edge label sequence $\left[R L_{\pi_{k}}, d_{k}\right]$ where $\pi_{k}=\left\langle d_{1}, d_{2}, \ldots, d_{k}\right\rangle$. For convenience, we use $C_{\pi_{k}}$ to denote the special sequence [$R L_{\pi_{k}}, d_{k}$] in the following; thus, $C_{\pi_{k}}$ contains 2^{k} edge labels for any permutation, π_{k}, with k elements. In other word, we are interested the special permutations, π_{k} for $1 \leq k \leq n$, with k elements over Z_{n} satisfy that $C_{\pi_{k}}$ is a $2^{k}-\mathrm{CP}$ of $\bar{C} Q_{n}$. Such permutation π_{k} is called a $2^{k}-C P$ generator of $C Q_{n}$. In particular, π_{n} is called a Hamiltonian cycle pattern generator if $C_{\pi_{n}}$ is a 2^{n}-CP.
Herein, fundamental properties of $C Q_{n}$ are proposed in order to help for constructing 2^{k} - CP generator of $C Q_{n}$. Let $B_{2}=\{00,01,10,11\}$ and $\gamma: B_{2} \rightarrow B_{2}$ be a bijection mapping, which is defined as follows: $\gamma\left(u_{1} u_{0}\right)=v_{1} v_{0}$ if and
only if $u_{1} u_{0}$ and $v_{1} v_{0}$ are pair related, i.e., $u_{1} u_{0} \sim v_{1} v_{0}$. Let $\mathcal{C}_{b}: B_{2} \rightarrow B_{2}$ and $\mathcal{C}_{f}: B_{2} \rightarrow B_{2}$ be two bijection mappings, which are defined as follows $\mathcal{C}_{b}\left(u_{1} u_{0}\right)=u_{1} \overline{u_{0}}$ and $\mathcal{C}_{f}\left(u_{1} u_{0}\right)=\overline{u_{1}} u_{0}$, respectively. Thus, a compose function $g \circ f: B_{2} \rightarrow B_{2}$ defined by $(g \circ f)(u)=g(f(u))$ for all $u \in B_{2}$ is obtained where $g, f \in\left\{\gamma, \mathcal{C}_{f}, \mathcal{C}_{b}\right\}$. The following lemma is useful in the proof of Lemma 5. It is not difficult to verify by straightforward; hence, the detail proof is omitted.

Lemma 4: For $k \geq 1$, let u be any 2-bit binary string. Then,

$$
\begin{align*}
& f^{2 k}(u)=u \text { where } f \in\left\{\gamma, \mathcal{C}_{f}, \mathcal{C}_{b}\right\}, \tag{1}\\
& \mathcal{C}_{f} \circ \gamma(u)=\gamma \circ \mathcal{C}_{f}(u), \text { and } \\
& \mathcal{C}_{b} \circ \gamma(u)=\mathcal{C}_{f} \circ \gamma \circ \mathcal{C}_{b}(u) .
\end{align*}
$$

Consequently, Lemma 5 gives necessary and sufficient conditions for determining 2^{k} - CP generator of $C Q_{n}$ for $2 \leq k \geq$ n.

Lemma 5: For $n \geq 3$ and $2 \leq k \leq n$, let $\pi_{k}=$ $\left\langle d_{1}, \ldots, d_{k-1}, d_{k}\right\rangle$ be a permutation over Z_{n} with k elements where $2 \leq k \leq n$. Then, π_{k} is not a 2^{k}-CP generator if and only if $\min \left\{d_{k-1}, d_{k}\right\}$ is even and $\left|d_{k}-d_{k-1}\right| \geq 2$. Moreover, for any vertex u in $C Q_{n}$, two end-vertices of the walk $\omega\left(C_{\pi_{k}}, u\right)$ are only different from the g-th bit position where $g=\min \left\{d_{k-1}, d_{k}\right\}+1$ if π_{k} is not a 2^{k}-CP generator in $C Q_{n}$.

Proof. The lemma is proved by induction on k. We first claim the base case for $k=2$. Without loss of generality, we may assume that $d_{1}<d_{2}$. Also let u be a vertex of $C Q_{n}$.
(\Rightarrow) Suppose that $d_{1}=d_{2}-1$ if d_{1} is even; otherwise, d_{1} is an odd integer. It is claimed that $u\left[d_{1}, d_{2}, d_{1}, d_{2}\right] v$ forms a 4 -cycle in $C Q_{n}$, i.e., $u=v$. It is obvious that $u=v$ if $d_{1}=d_{2}-1$. So, we just consider only d_{1} is an odd integer. Since $d_{1}<d_{2}$ and d_{1} is odd, $u_{j}=v_{j}$ for $j>d_{1}$ or $j<$ $d_{1}-1$. We check only whether $u_{d_{1}} u_{d_{1}-1}=v_{d_{1}} v_{d_{1}-1}$ or not. Note that $v_{d_{1}} v_{d_{1}-1}=\left(\gamma \circ \mathcal{C}_{f}\right)^{2}\left(u_{d_{1}} u_{d_{1}-1}\right)$. By Lemma 4, $\left(\gamma \circ \mathcal{C}_{f}\right)^{2}\left(u_{d_{1}} u_{d_{1}-1}\right)=u_{d_{1}} u_{d_{1}-1}$. Therefore, $u=v$.
(\Leftarrow) Suppose that d_{1} is even and $d_{1}<d_{2}-1$. It is observed that $u_{j}=v_{j}$ for $j>d_{1}+1$ or $j<d_{1}$, and $v_{d_{1}+1} v_{d_{1}}=$ $\left(\gamma \circ \mathcal{\mathcal { C } _ { b }}\right)^{2}\left(u_{d_{1}+1} u_{d_{1}}\right)$. By Lemma 4, $\left(\gamma \circ \mathcal{C}_{b}\right)^{2}\left(u_{d_{1}+1} u_{d_{1}}\right)=$ $\mathcal{C}_{f}\left(u_{d_{1}+1} u_{d_{1}}\right)=\overline{u_{d_{1}+1}} u_{d_{1}}$. Therefore, $u\left[d_{1}, d_{2}, d_{1}, d_{2}\right] v$ is not a 4 -cycle and u, v are only different from the d_{1}-th bit position.

As a subsequence, suppose that the lemma is true for $k \leq m-1$. Let π_{m} be a permutation, $\left\langle d_{1}, \ldots, d_{m-1}, d_{m}\right\rangle$, with m elements over Z_{n}. The $C_{\pi_{m}}$ will be represented by [$R L_{\pi_{m}(m-1)}, d_{m}, R L_{\pi_{m}(m-1)}, d_{m}$] where $R L_{\pi_{m}(m-1)}$ is a reflected edge label sequence generated by the permutation $\left\langle d_{1}, d_{2}, \ldots, d_{m-2}, d_{m-1}\right\rangle$. Let $u=u_{n-1} u_{n-2} \ldots u_{0}$ be an arbitrary vertex of $C Q_{n}$. The walk $\omega\left(C_{\pi_{m}}, u\right)$ is written as $u\left[R L_{\pi_{m}(m-1)}\right] x\left[d_{m}\right] y\left[R L_{\pi_{m}(m-1)}\right] z\left[d_{m}\right] \mathbf{v}$, where $u\left[R L_{\pi_{m}(m-1)}\right] x$ is the path $\omega\left(R L_{\pi_{m}(m-1)}, u\right)$ and $y\left[R L_{\pi_{m}(m-1)}\right] z$ is the path $\omega\left(R L_{\pi_{m}(m-1)}, y\right)$. According to whether or not $\pi_{m}(m-1)$ is a 2^{m-1} - CP generator, the proof is divided into two parts as follows.
Case 1: $\pi_{m}(m-1)$ is a $2^{m-1}-\mathrm{CP}$ generator.
Hence u and y is a d_{m-1}-neighbor of x and z, respectively, i.e., $u\left[d_{m-1}\right] x$ and $y\left[d_{m-1}\right] z$. Therefore, $u\left[d_{m-1}\right] x\left[d_{m}\right] y\left[d_{m-1}\right] z\left[d_{m}\right] v$ is a path having the source vertex u and then following the edge label sequence $\left[d_{m-1}, d_{m}, d_{m-1}, d_{m}\right]$.
(\Rightarrow) Suppose that $\left\langle d_{m-1}, d_{m}\right\rangle$ is a 4-CP generator. Thus, $u=v$. Therefore, $\omega\left(C_{\pi_{k}}, u\right)$ is a 2^{k}-cycle in $C Q_{n}$.
(\Leftarrow) Suppose that $\left\langle d_{m-1}, d_{m}\right\rangle$ is not a 4-CP generator. By induction hypothesis, u and v are only different from the g-th bit position where $g=\min \left\{d_{m-1}, d_{m}\right\}+1$. Hence $\omega\left(C_{\pi_{m}}, u\right)$ is not a 2^{m}-cycle of $C Q_{n}$.
Case 2: $\pi_{m}(m-1)$ is not a $2^{m-1}-\mathrm{CP}$ generator.
By induction hypothesis, $u\left[R L_{\pi_{m}(m-1)}\right] x\left[d_{m-1}\right] w$ does not form a cycle, i.e, $u \neq w$. Moreover, u and w are only different from the h-th bit position where $h=\min \left\{d_{m-2}, d_{m-1}\right\}+1$. Let $g=\min \left\{d_{m-1}, d_{m}\right\}+1$. In this case, there are six situations with respect to the relation of d_{m-2}, d_{m-1}, and d_{m}. The proof of each situation is similar. Thus, we discuss only the case of $d_{m-2}>d_{m-1}>d_{m}$ in the following, that is, $h=d_{m-1}+1$ and $g=d_{m}+1$. By induction hypothesis, $\left\langle d_{m-2}, d_{m-1}\right\rangle$ is not a 4-CP generator. By induction hypothesis, d_{m-1} is an even integer. Obviously, the vertex $x=x_{n-1} x_{n-2} \ldots x_{0}$ satisfies that

$$
\begin{array}{ll}
x_{i} & =u_{i} \text { for } i>h \\
x_{h} x_{h-1} & =u_{h} u_{h-1}, \text { and } \\
x_{2 j+1} x_{2 j} & =\gamma\left(u_{2 j+1} u_{2 j}\right) \text { for } \frac{h-3}{2} \geq j \geq 0
\end{array}
$$

\Leftrightarrow Suppose that $C_{\left\langle d_{m-1}, d_{m}\right\rangle}$ is a $4-C S K$. We will claim that $C_{\pi_{m}}$ is a $2^{m}-C S K$ in $C Q_{n}$, i.e., $\omega\left(C_{\pi_{m}}, u\right)$ is a $2^{m}{ }_{-}$ cycle. Since $d_{m-1}>d_{m}$ and by induction hypothesis, d_{m} is an odd integer. Since y is the d_{m}-neighbor of x, the vertex $y=y_{n-1} y_{n-2} \ldots y_{0}$ satisfies that

$$
\begin{array}{ll}
y_{i} & =u_{i} \text { for } i>h, \\
y_{h} y_{h-1} & =\overline{u_{h} u_{h-1}}, \\
y_{2 l+1} y_{2 l} & =\gamma\left(u_{2 l+1} u_{2 l}\right) \text { for } \frac{h-3}{2} \geq j \geq \frac{d_{m}+1}{2}, \\
y_{d_{m}} y_{d_{m}-1} & =\mathcal{C}_{f} \circ \gamma\left(u_{d_{m}} u_{d_{m}-1}\right)^{2}, \text { and } \\
y_{j} & =u_{j} \text { for }\left(d_{m}-2\right) \geq j \geq 0 .
\end{array}
$$

Note that $y\left[R L_{\pi_{m}(m-1)}\right] z$. Thus, the vertex $z=z_{n-1} z_{n-2} \ldots z_{0}$ satisfies that

$$
\begin{array}{ll}
z_{i} & =u_{i} \text { for } i>h \\
z_{h} z_{h-1} & =u_{h} u_{h-1} \\
z_{2 l+1} z_{2 l} & =(\gamma)^{2}\left(u_{2 l+1} u_{2 l}\right) \text { for } \frac{h-3}{2} \geq j \geq \frac{d_{m}+1}{2} \\
z_{d_{m}} z_{d_{m}-1} & =\gamma \circ \mathcal{C}_{f} \circ \gamma\left(u_{d_{m}} u_{d_{m}-1}\right), \text { and } \\
z_{2 j+1} z_{2 j} & =\gamma\left(u_{2 j+1} u_{2 j}\right) \text { for } \frac{d_{m}-3}{2} \geq j \geq 0
\end{array}
$$

By Lemma 4, we have that $(\gamma)^{2}\left(u_{2 l+1} u_{2 l}\right)=u_{2 l+1} u_{2 l}$. Hence $z_{2 l+1} z_{2 l}=u_{2 l+1} u_{2 l}$ for $\frac{h-3}{2} \geq j \geq \frac{d_{m}+1}{2}$. Since $\mathcal{C}_{f} \circ \gamma=\gamma \circ \mathcal{C}_{f}$ (by Lemma 4), $\gamma \circ \mathcal{C}_{f} \circ \gamma\left(u_{d_{m}} u_{d_{m}-1}\right)=$ $\mathcal{C}_{f}\left(u_{d_{m}} u_{d_{m}-1}\right)$. Consequently, the vertex z can be represented by

$$
\begin{array}{ll}
z_{i} & =u_{i} \text { for } i>d_{m}, \\
z_{d_{m}} z_{d_{m}-1} & =\overline{u_{d_{m}}} u_{d_{m}-1}, \text { and } \\
z_{2 j+1} z_{2 j} & =\gamma\left(u_{2 j+1} u_{2 j}\right) \text { for } \frac{d_{m}-3}{2} \geq j \geq 0 .
\end{array}
$$

Thus, it is observed that vertex z is the d_{m}-neighbor of u, i.e., $z\left[d_{m}\right] u$. Since $z\left[d_{m}\right] v, u=v$ and hence $\omega\left(C_{\pi_{m}}, u\right)$ is a 2^{m}-cycle in $C Q_{n}$.
(\Leftarrow) Suppose that $\left\langle d_{m-1}, d_{m}\right\rangle$ is not a 4CP generator. It is recalled that $\omega\left(C_{\pi_{m}}, u\right)=$ $u\left[R L_{\pi_{m}(m-1)}\right] x\left[d_{m}\right] y\left[R L_{\pi_{m}(m-1)}\right] z\left[d_{m}\right] \mathbf{v}$. We will claim that $\omega\left(C_{\pi_{m}}, u\right)$ is not a 2^{m}-cycle of $C Q_{n}$, and $u_{g}=\overline{v_{g}}$ and $u_{i}=v_{i}$ for all $0 \leq i \neq g \leq n-1$ where $g=\boldsymbol{\operatorname { m i n }}\left\{d_{m-1}, d_{m}\right\}+1$.

Since $d_{m-1}>d_{m}$ and by induction hypothesis, d_{m} is an even integer. Hence the vertex $y=y_{n-1} y_{n-2} \ldots y_{0}$ satisfies that

$$
\begin{aligned}
y_{i} & =u_{i} \text { for } i>h, \\
y_{h} y_{h-1} & =\overline{u_{h} u_{h-1}}, \\
y_{2 l+1} y_{2 l} & =\gamma\left(u_{2 l+1} u_{2 l}\right) \text { for } \frac{h-3}{2} \geq j \geq \frac{d_{m}+2}{2}, \\
y_{d_{m}+1} y_{d_{m}} & =\mathcal{C}_{b} \circ \gamma\left(u_{d_{m}+1} u_{d_{m}}\right), \text { and } \\
y_{j} & \\
\quad & =u_{j} \text { for }\left(d_{m}-1\right) \geq j \geq 0 . \\
\text { Note that } & y\left[R L_{\pi_{m}(m-1)}\right] z . \quad \text { Thus, } \quad \text { the } \quad \text { vertex } \\
z=z_{n-1} z_{n-2} \ldots & z_{0} \text { satisfies that } \\
z_{i} & =u_{i} \text { for } i>h, \\
z_{h} z_{h-1} & =u_{h} u_{h-1}, \\
z_{2 l+1} z_{2 l} & =(\gamma)^{2}\left(u_{2 l+1} u_{2 l}\right) \text { for } \frac{h-3}{2} \geq j \geq \frac{d_{m}+2}{2}, \\
z_{d_{m}+1} z_{d_{m}} & =\gamma \circ \mathcal{C}_{b} \circ \gamma\left(u_{d_{m}+1} u_{d_{m}}\right), \text { and } \\
z_{2 j+1} z_{2 j} & =\gamma\left(u_{2 j+1} u_{2 j}\right) \text { for } \frac{d_{m}-2}{2} \geq j \geq 0 .
\end{aligned}
$$

Since $\mathcal{C}_{b} \circ \gamma=\mathcal{C}_{f} \circ \gamma \circ \mathcal{C}_{b}$ and $\gamma \circ \mathcal{C}_{f}=\mathcal{C}_{f} \circ \gamma$ (by Lemma 4), $\gamma \circ \mathcal{C}_{b} \circ \gamma\left(u_{d_{m}} u_{d_{m}-1}\right)=\mathcal{C}_{f} \mathcal{C}_{b}\left(u_{d_{m}} u_{d_{m}-1}\right)=\overline{u_{d_{m}} u_{d_{m}-1}}$. Consequently, the vertex z can be represented by

$$
\begin{array}{ll}
z_{i} & =u_{i} \text { for } i>d_{m} \\
z_{d_{m}+1} z_{d_{m}} & =u_{d_{m}+1} u_{d_{m}}, \\
z_{2 j+1} z_{2 j} & =\gamma\left(u_{2 j+1} u_{2 j}\right) \text { for } \frac{d_{m}-2}{2} \geq j \geq 0 .
\end{array}
$$

Thus, it is observed that vertex z and u are not adjacent in $C Q_{n}$. Since $z\left[d_{m}\right] v$, the vertex $v=v_{n-1} v_{n-2} \ldots v_{0}$ satisfies that

$$
\begin{array}{ll}
v_{i} & =u_{i} \text { for } i \neq d_{m}, \text { and } \\
v_{d_{m}+1} & =\overline{u_{d_{m}+1}}
\end{array}
$$

Therefore, vertex u and v are only different from the g-th bit position where $g=d_{m}+1$, that is, $g=\min \left\{d_{m-1}, d_{m}\right\}+1$.

Given a permutation π_{n} over on Z_{n} with n elements, one can determine whether or not the permutation π_{n} can generate a Hamiltonian cycle pattern, $C_{\pi_{n}}$, of $C Q_{n}$ by only inspecting the last two numbers d_{n-1} and d_{n} of π_{n}. Thus, we have the following corollary.

Corollary 1: For $n \geq 3$, let $\pi_{n}=\left\langle d_{1}, \ldots, d_{n-1}, d_{n}\right\rangle$ be a permutation over Z_{n} with n elements. Then, $C_{\pi_{n}}$ is a Hamiltonian cycle pattern of $C Q_{n}$ if and only if

$$
\begin{align*}
& \min \left\{d_{n-1}, d_{n}\right\} \text { is odd, or } \tag{1}\\
& \left|d_{n}-d_{n-1}\right|=1
\end{align*}
$$

IV. Distinct Hamiltonian cycles passing a given EDGE

Given a Hamiltonian cycle pattern generator π_{n} and any vertex u in $C Q_{n}$, the walk $\omega\left(C_{\pi_{n}}, u\right)$ corresponds to a Hamiltonian cycle in $C Q_{n}$. In this section, we will construct several distinct Hamiltonian cycles with respect to Hamiltonian cycle pattern in use such that they pass through the same prescribed edge.
Lemma 6: For $n \geq 3$, let π_{n} be arbitrary permutation, $\left\langle d_{1}, d_{2}, \ldots, d_{n}\right\rangle$, with n elements over on Z_{n} and (u, v) be any edge of $C Q_{n}$. Then, there exists a vertex z such that the Hamiltonian path $\omega\left(R L_{\pi_{n}}, z\right)$ of $C Q_{n}$ passes through the edge (u, v).
Proof. Let π_{n} be a permutation, $\left\langle d_{1}, \ldots, d_{k-1}, d_{k}, \ldots, d_{n}\right\rangle$, with n elements over on Z_{n}
and (u, v) be an edge in dimension d. Without loss of generality, $d_{k}=d$. Let $R L_{\left\langle d_{1}, \ldots, d_{k-1}\right\rangle}$ be a reflected edge label sequence defined by the permutation $\left\langle d_{1}, \ldots, d_{k-1}\right\rangle$. Obviously, $R L_{\left\langle d_{1}, \ldots, d_{k-1}\right\rangle}$ is a substring of $R L_{\pi_{n}}$. The proof is trivial if $k=1,2$; thus, we consider only the case of $k \geq 3$.
Let z be the d_{k-1}-th neighbor of u if $\left\langle d_{1}, \ldots, d_{k-1}\right\rangle$ is a 2^{k-1}-CP generator; otherwise, z be a vertex satisfies that

$$
\begin{array}{ll}
z_{i} & =u_{i} \text { for } i>g, \\
z_{g} z_{g-1} & =u_{g} u_{g-1}, \text { and } \\
z_{2 j+1} z_{2 j} & =\gamma\left(u_{2 j+1} u_{2 j}\right) \text { for } \frac{g-3}{2} \geq j \geq 0 .
\end{array}
$$

, where $g=\min \left\{d_{k-2}, d_{k-1}\right\}+1$.
By Lemma 5, we obtain the path $z\left[R L_{\left\langle d_{1}, \ldots, d_{k-1}\right\rangle}\right] u$; besides, $z\left[R L_{\left\langle d_{1}, \ldots, d_{k-1}\right\rangle}\right] u$ lies on the Hamiltonian path $\omega\left(R L_{\pi_{n}}, z\right)$. Since $u\left[d_{k}\right] v$, the path $\omega\left(R L_{\pi_{n}}, z\right)$ passes through the edge (u, v).

With respect to Lemma 6, the subsequent theorem is immediately clear.

Theorem 1: For $n \geq 3$, let π_{n} be arbitrary Hamiltonian cycle pattern generator and (u, v) be any edge in $C Q_{n}$. Then, there exists a vertex z such that the Hamiltonian cycle $\omega\left(C_{\pi_{n}}, z\right)$ of $C Q_{n}$ passes through the edge (u, v).

Given any edge (u, v) in dimension $d, 0 \leq d \leq n-1$, and any two distinct Hamiltonian cycle pattern generators π_{n}^{0} and π_{n}^{1}, by Lemma 3 and Theorem 1, we can generate two distinct Hamiltonian cycles of $C Q_{n}$ based on π_{n}^{0} and π_{n}^{1} such that each cycle passes through the edge (u, v). Indeed, we can obtain a lower bound for the number of different Hamiltonian cycles passing a given edge by calculating how many different Hamiltonian cycle pattern generators in $C Q_{n}$. Subsequently, the following theorem is easy to verify by fundamental calculation.

Theorem 2: For $n \geq 3$, let (u, v) be any given edge in $C Q_{n}$. Then, there are at least m different Hamiltonian cycles in $C Q_{n}$ passing through the edge (u, v) where $m=\frac{n^{2}}{2} \times(n-$ $2)$! if n is even; otherwise, $m=\frac{n^{2}-1}{2} \times(n-2)$!.

V. Conclusion

The crossed cube is one of most prominent variants of hypercube. Because crossed cubes are neither edge- nor vertex-symmetric, producing Hamiltonian cycles to pass any prescribed edge in a crossed cube is more intricate of a process than in a regular hypercube. In this paper, we apply the characterization of Hamiltonian cycles pattern extended from [14] to build a simple systematic approach to generate a Hamiltonian cycle passing through arbitrary prescribed edge.

Numerous variants of hypercube, for example, Möbius cubes, Twisted cubes, and Locally Twisted cubes, have been proposed and proved that there exists a Hamiltonian cycle passing through any given edge in them. Finding an algorithm to generate a desired Hamiltonian cycle passing through arbitrary given edge in these variants of hypercube is still open. We conjecture that such approach may be constructed by applying the concept of Hamiltonian cycle pattern to these networks.

Acknowledgment

This work was supported in part by the National Science Council of the Republic of China under Contract NSC 98-

International Journal of Information, Control and Computer Sciences
 ISSN: 2517-9942
 Vol:4, No:4, 2010

References

[1] E. Abuelrub and S. Bettayeb, "Embedding Rings into Faulty Twisted Hypercubes," Computers and Artificial Intelligence, vol. 16, pp. 425-441 1997.
[2] S. G. Akl,, Parallel Computation: Models and Methods, Upper Saddle River, NJ: Prentice-Hall, 1997.
[3] K. Efe,"The Crossed Cube Architecture for Parallel Computing," IEEE Trans. Parallel and Distributed Systems, vol. 3, no. 5, pp. 513-524, 1992
[4] K. Efe, P. K. Blackwell, W. Slough, and T. Shiau, "Topological Properties of the Crossed Cube Architecture," Parallel Computing, vol. 20, pp. 1763 1775, 1994
[5] J. Fan, X. Lin, and X. Jia, "Node-pancyclicity and edge-pancyclicity of Crossed cubes," Information Processing Letters, vol. 93, pp. 133-138 2005.
[6] J. P. Hayes and T. N. Mudge, "Hypercube supercomputer," Proc. IEEE, vol. 17, pp. 1829-1841, 1989.
[7] W. T. Huang, Y. C. Chuang, J. M. Tan, and L. H. Hsu, "On the Fault-Tolerant Hamiltonicity of Faulty Crossed Cubes," IEICE Trans Fundamentals, vol. E85-A, no. 6, pp. 1359-1370, 2002.
[8] H. S. Hung, J. S. Fu, and G. H. Chen, "Fault-free Hamiltonian cycles in Crossed Cubes with Conditional Link Faults," Information Sciences, vol. 177, pp. 5664-5674, 2007.
[9] F. T. Leighton, Introduction to Parallel Algorithms and Architectures. arrays, trees, hypercubes. San Mateo: Morgan Kaufman, 1992
[10] SGI, Origin2000 Rackmount Ower's Guide, 007-3456-003, http://techpubs.sgi.com/, 1997
[11] L. W. Tucker and G. G. Robertson, "Architecture and applications of the connection machine," IEEE Computer, vol. 21, pp. 26-38, 1988
$12]$ D. Wang,"On Embedding Hamiltonian Cycles in Crossed Cubes," IEEE Trans. Parallel and Distributed Systems, vol. 19, no. 3, pp. 334-346, 2008.
[13] M. C. Yang, T. K. Li, J. M. Tan, and L. H. Hsu, "Fault-tolerant Cycle embedding of Crossed Cubes," Information Processing Letters, vol. 88, pp. 149-154, 2003.
[14] S. Q. Zheng and S. Latifi, "Optimal Simulation of Linear Multiprocessor Architectures on Multiply-Twisted Cube Using Generalized Gray Code," IEEE Trans. Parallel and Distributed Systems, vol. 7, no. 6, pp. 612-619, 1996.

Jheng-Cheng Chen received the BS degree in Information Engineering from Dahan Institute of Technology, Taiwan, in 2007 and the Master degree in Graduate Institute Of Learning Technology National Dong Hwa University, Taiwan, in 2009, respectively. He is currently working toward the Ph.D degree in Computer and Information Science and Engineering at the National Dong Hwa University. His primary research interests include Graph theory and interconnection networks

Chia-Jui Lai is currently a postgraduate student in the department of Computer Science and Information Engineering, National Dong Hwa University, Hualien, Taiwan. He received his BS degree in applied mathematics from Tatung University, Taipei, Taiwan, in 1991, and the Master degree in applied mathematics from the National Cheng Chi University, Taipei, Taiwan in 1993 His research interests are parallel and distributed computing and applied statistics.

Chang-Hsiung Tsai received the BS degree in mathematical sciences from the Chung Yuan Christian University, Taiwan, in 1989, and the Master and Ph.D degrees in Computer Science from the National Chiao Tung University in 1991 and 2002, respectively. Currently, he is a professor in the Department of Computer Science and Information Engineering, Nationa Dong Hwa University, Taiwan. Dr. Tsai's research interests include parallel and distributed computing, fault-tolerent computing, peer-to-peer computing, and interconnection network.

