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Abstract—LDPC codes could be used in magnetic storage 

devices because of their better decoding performance compared to 
other error correction codes. However, their hardware 
implementation results in large and complex decoders.  This one of 
the main obstacles the decoders to be incorporated in magnetic 
storage devices.  We construct small high girth and rate 2 column-
weight codes from cage graphs.  Though these codes have low 
performance compared to higher column weight codes, they are 
easier to implement. The ease of implementation makes them more 
suitable for applications such as magnetic recording. Cages are the 
smallest known regular distance graphs, which give us the smallest 
known column-weight 2 codes given the size, girth and rate of the 
code. 
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I. INTRODUCTION 
OW-density parity-check (LDPC) codes have been shown 
to perform close to the Shannon limit. It was proved in [1] 

that LDPC codes with column weight (number of 1’s in code 
matrix column) j ≥ 3 have a minimum distance that grows 
linearly with the block length (number of columns)  n for 
given j and row-weight (number of 1’s in matrix row) k and 
that the minimum distance for codes with j =2 grows 
logarithmically with n.  However, compared with j ≥ 3 codes, 
codes with j =2 are easier to implement and require less 
storage making them a target for applications such as 
magnetic recordings [2].  It is also reported that codes with 
column weight of 2 exhibits block error statistics more 
compatible with an outer Reed-Solomon (RS) code.  

Reed-Solomon(R-S) codes are widely used in current 
storage devices, mainly because of their relatively low 
hardware-complexity and high capacity to detect and correct 
burst errors. They also lend themselves to high-speed 
encoding and decoding required for high bandwidth disk 
drives [3]. These applications require short codeword lengths, 
which allow easier encoding, less implementation memory 
and low decoding complexity. LDPC codes offer significant 
performance advantage over R-S codes; however, it comes at 
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the expense of increased complexity.  LDPC codes can be 
used as second level codes in concatenated error correction 
architectures as shown in Figure 1 [2]. For this architecture to 
be practical we need small decoder VLSI to fit both encoder 
and decoder making it easier to integrate in magnetic storage 
devices.  LDPC codes with column weight of 2 have low 
implementation complexity and good performance for 
magnetic recording applications[2].  

 
There are several ways of constructing column-weight 2 

LDPC codes.  In [2], 4 and 6 cycle-free codes are constructed 

Fig. 1 Serial concatenation of partial response channel encoding and 
decoding 

 
using disjoint difference sets and in [4] codes with large girth 
are constructed based on geometry.  Though the codes in [4] 
have large girth, they are not the smallest.  The construction 
method also does not produce high girths and rates codes. For 
example, codes of girths 16 and 20 are of rate 1/3. In this 
paper we construct low complexity codes that could be 
incorporated in magnetic storage devices from cage graphs, 
with high girth and high rates. Since cages are the smallest 
known graphs of a given vertex degree and girth, the resulting 
codes are the smallest one could get for the same girth and 
vertex degree. 

 
This paper is organized as follows. Section II describes 

cages and construction of codes based on cages. Section III 
concludes.  
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Fig. 2 Graph and matrix representation of 10-cycle 

 

II. CONSTRUCTING LDPC CODES FROM CAGES  
A LDPC code matrix could be represented by a bipartite 

graph on which one set of vertices represents rows and 
another set represent columns.  The girth, g is the smallest 
circle in the graph.  A large girth improves the decoding 
performance of the sum-product algorithm used in LDPC 
codes. The code matrix could also be represented by a graph 
with vertices as rows only.  In this type of graph, the vertices 
are rows whereas the columns are represented as edges.  The 
rows connected to the same column form a complete graph. 
The complete graph in the graph representation forms a 
column in the matrix. For column weight 2 codes the column 
is formed by a connection between 2 vertices. Figure 2 shows 
a graph with a cycle of length 5.  Each edge represents a 
column. The corresponding matrix representation, on which 
the vertices are rows and edges are columns has a cycle length 
of 10. The distance in the graph is half what it is in the code 
matrix.  Therefore to construct a code of girth g we can 
construct a graph of girth g/2.  

 

 
Fig. 3 A (6,4) cage graph 

 

A. Cages 
A (k,g)-cage is a regular graph of valency (edge degree) k 

and girth g with minimal number of vertices. A lower bound 
on n(k,g), the number of vertices of a cage, depends on 
whether g is even or odd.  If g is odd then 
 

       n(k,g)=1+k+k(k-1)+...+k(k-1) (g-3)/2                         (1) 

 
[5][6] and if g is even, then 
 

            n(k,g)=1+k+k(k-1)+...+k(k-1) g/2 -2 +(k-1)g/2 -1     (2) 
 
The lower bounds, known as Moore bounds are met very 
infrequently [6]. Though there isn't a uniform approach to 
constructing arbitrary cages, there are many cages constructed 
for some valencies and girths. Cages with valency of 3 are 
called cubic cages and are easier to find compared to cages of 
higher valencies [7]. Examples of cubic cages of varying 
girths and construction methods could be found in [5][6] and 
[8]. These graphs produce codes with a rate of 1/3. In general 
the rate is 1-2/k. The size of the matrix is the number of 
vertices by the number of edges in the graph.  
Cages of higher valencies are desirable in that they increase 
decoding performance. More nodes (rows and columns) 
contribute towards estimating the received bit. They also 
improve the data rate. Though they are harder to find at higher 
girths compared to cubic cages, they are many examples and 
constructions methods in literature. Some examples could be 
found in [9][10]. In [11] ways of generating regular graphs 
and cages are described. There is also associated software by 
the same author at [12] that generates cages.   
 

We use cages to construct regular LDPC codes with column 
weight of 2. The vertices of the graph represent the rows of 
the code matrix whereas the edges are the columns. That is, 
each edge is a connection of two rows in the code matrix. 
Since only two vertices/rows are connected, the column 
weight is 2. Cages are the smallest (number of vertices) 
known regular graphs of a given valency and girth. Therefore, 
they give us the smallest known regular column-weight 2 
LDPC codes with a given rate (vertex degree) and girth. 
Figure 3 shows a (6,4) cage graph. There are 12 vertices and 
36 edges. A corresponding adjacency matrix is shown in 
Figure 4 with girth 8. 

 
 Figure 5 shows the performance curve for a (2,11) code of 

a high rate of 9/11 with girth of 10. Though the performance 
of the code is not as good as other codes, it is good enough for 
magnetic storage systems [2]. 

 

 
     Fig. 4 Structured matrix for the (6,4) cage graph 
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B.  Hardware Implementation 
Structured codes reduce hardware complexity both in the 

encoder and decoder. The structure or pattern in the code 
makes it easier to multiply elements of the generator matrix. 
The cage graph of figure 3 produces a 12x36 code matrix with 
a girth of 8. The matrix has a defined structure in that odd 
vertices are connected to even vertices and vice versa. As an 
example the edges (columns) could be divided into six groups 
as shown in figure 4. Edges from each odd vertex could form 
a group. By doing that we get 6 groups of 6 edges each. A 
similar division with edges from even vertices works in a 
similar way. In figure 4 columns (edges) for each row (vertex) 
are treated as a group. In each group connections are between 
the odd row and all even rows. So the connections could be 
calculated rather than storing the destination addresses. The 
grouping reduces the number of interconnections. The number 
of groups is much smaller than the number of individual rows 
or columns. Structuring also simplifies addressing.  Addresses 
are generated according to the code pattern. The addressing in 
each group is determined by the pattern, which are all odd or 
even rows. In random codes the random communication 
makes exchange of messages between processing nodes 
complicated. If the communication network is not hardwired 
an address table is needed. 

 
 Column-weight 2 codes simplify the encoder and decoder 

complexity further by reducing the number of elements in the 
code matrix.  This means less computations and memory in 
the encoder. Besides reduced memory, the variable nodes 
(column computations) complexity of the decoder is reduced. 
The variable node computation involves the summation of the 
incoming messages and the channel estimate of the 
information (received) bit. With two incoming messages, the 
computation is reduced to exchanging incoming messages and 
adding them to the channel estimation before sending them as 
outgoing messages.  

 
However, as noted above, cage graphs are not constructed 

with one method. Therefore their structure will differ from 
graph to graph. It is important then to analyze each graph to 
best exploit its structure for hardware implementation. 
Decoding performance characteristics for each graph also 
need to be analyzed before implementation. 

III. CONCLUSION 
An approach for constructing LDPC codes with column 

weight of 2 has been described.  Cage graphs are used to 
represent the code matrix, where vertices are rows and edges 
are columns.  Since cages are the smallest known regular 
graphs of a given girth and valency, the resulting codes are the 
smallest one could obtain. These codes have low 
implementation costs and could therefore be incorporated in 
magnetic storage devices.  Non-regular distance graphs could 
also be used to construct column-weight 2 codes in a similar 
way. The resulting codes would have varying rows valencies.  
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Fig. 5 BER performance curve of a (2,11) code with g=10 
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