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Abstract—A feed-forward, back-propagation Artificial Neural 

Network (ANN) model has been used to forecast the occurrences of 
wastewater overflows in a combined sewerage reticulation system. 
This approach was tested to evaluate its applicability as a method 
alternative to the common practice of developing a complete 
conceptual, mathematical hydrological-hydraulic model for the 
sewerage system to enable such forecasts. The ANN approach 
obviates the need for a-priori understanding and representation of the 
underlying hydrological hydraulic phenomena in mathematical terms 
but enables learning the characteristics of a sewer overflow from the 
historical data. 

The performance of the standard feed-forward, back-propagation 
of error algorithm was enhanced by a modified data normalizing 
technique that enabled the ANN model to extrapolate into the 
territory that was unseen by the training data. The algorithm and the 
data normalizing method are presented along with the ANN model 
output results that indicate a good accuracy in the forecasted sewer 
overflow rates. However, it was revealed that the accurate 
forecasting of the overflow rates are heavily dependent on the 
availability of a real-time flow monitoring at the overflow structure 
to provide antecedent flow rate data. The ability of the ANN to 
forecast the overflow rates without the antecedent flow rates (as is 
the case with traditional conceptual reticulation models) was found to 
be quite poor. 
 

Keywords—Artificial Neural Networks, Back-propagation 
learning, Combined sewer overflows, Forecasting. 

I. INTRODUCTION 
OMBINED sewers are a common feature in urban 
drainage systems in towns and cities with well-

established old sewerage systems. The overflows from these 
systems are a major source of pollution in the urban 
waterways. In coastal cities, an association between storm 
events, urban runoff, and coastal water quality has been 
established [1]. In separated wastewater systems too, 
overflows can get triggered by excessive inflow and 
infiltration during rain events.  
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Auckland City has a population of approximately 370,000.  
Auckland City Council (ACC) owns the stormwater and 
combined sewer systems in Auckland City.  ACC is the sole 
shareholder in Metro Water Ltd (Metrowater), the Council 
Controlled Organisation that owns, operates and manages the 
separated wastewater system in Auckland City.  Metrowater 
also operates and manages the combined sewer system on 
behalf of ACC. 

Under the Resource Management Act (1991) and Auckland 
Regional Council’s proposed Air, Land and Water Plan, 
Metrowater and Auckland City are required to obtain 
Resource Consents to operate their drainage networks.  A 
requirement to obtain the Resource Consents is that an 
understanding of each of the overflow structures is developed 
and the performance of the overflow structures is described, in 
terms of discharge volumes and frequencies and spill rates.  A 
$23 million modelling study that studied the overflows was 
completed in December 2005. 

The standard method to predict the operation of constructed 
overflows is to develop a calibrated hydrological/hydraulic 
model that is then fed in with the real or design rainfall. This 
involves the estimation of the amount of RDII (Rainfall 
dependant inflow and infiltration) in the model which is a 
difficult and complex task given the unpredictability 
associated with seasonal variations when a long term 
prediction is required. Various investigations are being carried 
out to come up with solutions to this challenge [2]. The 
process of hydraulic model development, calibration and 
simulation is, however, quite time consuming. Many of these 
deterministic and conceptual models require a large quantity 
of good quality data, sophisticated approaches for calibration,  
and a detailed understanding of the underlying physical 
processes. Black-box models such as ANNs attempt to 
develop a relationship among input and output variables 
without considering the physical processes involved [3, 4]. 

The existing calibrated hydrological and hydraulic model of 
the trunk wastewater system serving Auckland City has had 
100 years of stochastic rainfall representing the existing 
climate, with data at five minute intervals run through it to 
gain an understanding of the performance of the overflows, in 
terms of volumes, frequencies and spill rates.  This process 
took approximately 18 months.  The outputs have been used 
to help select options for managing the overflows and to 
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prioritise overflow structures for remedial work through long 
term works programmes. 

This study is intended to investigate the possibility of 
replacing the traditional hydrological/hydraulic model with an 
ANN type model given the ability of the ANN to learn from 
the available data. It is envisaged that if the ANN model 
succeeds, then the process of overflow frequency estimation 
can be accomplished with less effort and time than has been 
hitherto possible. 

II. THEORY 
Various forms of ANNs have found applications in 

predicting and forecasting [5, 6, 7] The ANN used in this 
application is a Multi Layer Perception (MLP) type network. 
The learning algorithm follows the back propagation 
technique that was first established by Rumelhart et. al. [8,9]. 
The method adopted in this study is described below. A 
conceptual representation of the used network is shown in 
Figure 1. The generic case of  an N-dimensional  input vector 
Xp = (Xp1,Xp2,Xp3......XpN ) that is to be mapped to the desired 
M dimensional output vector Zp = (Zp1,Zp2,Zp3.....ZpM) through 
a multi-layer perceptron L nodes in the hidden layer is 
considered for the establishment of the algorithm [10]. Let the 
output from the network be Op = (Op1,Op2,Op3......OpM.) which 
is different form the desired output. The output layer weights 
are super-scripted “o” and the hidden layer weights are super-
scripted “h”. A typical node in the input, hidden and output 
layers respectively are i (1 ≤ i ≤ N), j (1 ≤ j ≤ L) and k (1 ≤ k ≤ 
M). Only the pth pattern or sample in the training set is 
considered here. 

 

 
Fig. 1 Generic representation of the ANN of MLP 

A. Hidden Layer Input  
The net input into the jth node in the hidden layer is  

∑
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where the last term is the bias term which was set to zero in 
this application.  

B. Hidden Layer Output  
The outgoing signal from the jth hidden node is, 

)h
pj(neth

jpji f=  

where f is the transfer function. A Hyperbolic tangent 
function was used in this application. 

C. Output Layer Input 
Input into kth node in the output layer is the weighted sum 

of all the incoming signals, i.e., 
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where again the last term is the bias which was set to zero 
in this case.  

D. Output Layer Output  
 The output from the kth output node is, 

)o
pk(neto

kpkO f=  

E. Weight Update to Output Layer Connections  
The desired weight change for the synaptic weight 

connecting the kth output layer node with the jth hidden layer 
node when the pth pattern is introduced to the network is 
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where the value η is the learning rate which was set at 0.05. 
The weights on the output layer were updated according to, 
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where t and t+1 respectively refer to the previous and 
current time steps in the iterative learning procedure. 

F. Weight Update to Hidden Layer Connections  
The desired weight change for the synaptic weight 

connecting the jth hidden layer node with the ith input layer 
node when the pth pattern is introduced to the network is 
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 Defining a hidden layer error term as  

∑
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the updated hidden layer weight can be expressed as, 
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where t and t+1 respectively refer to the previous and 
current time steps in the iterative learning procedure. 
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A computer program in FORTRAN was developed to 
represent this training algorithm and extended to freeze the 
connection weights once the training has been completed and 
compute the final outputs for any given set of input data.  

G. Normalization of the Raw Data  
The raw data associated with this application (overflow 

rate, rainfall depth) can vary widely and it is general practice 
to normalize (or standardize) the raw data to lie between a 
specific range [11]. It is common to use a linear normalization 
technique for this purpose. However, this normalization limits 
the future use of the trained ANN to forecast for ranges 
outside the data ranges used during training. This application 
uses a non-linear technique which has previously shown to 
enable some extrapolation outside the data ranges used for 
learning [12]. Other methods to enable extrapolation have also 
been reported [e.g. 13].  

III. DATA FOR NETWORK TRAINING 

A. Estimation of Overflows using Traditional Models 
The traditional model was simulated with synthetically 

generated rainfall for the period of 2011 – 2020. The results of 
the model simulation included the overflow rates at the 
constructed overflow structures. 

B. Data used 
For the purpose of this study, only one specific overflow 

structure was chosen. The data used included the traditional 
model-predicted overflow rates for the overflow structure and 
the synthetically generated rainfall data for the rain-gauge that 
is in the closest proximity. The overflow rates were in m³/s 
while the rainfall depths were in mm; The time resolution of 
all the data was 15 minutes. 

IV. METHOD 

A. Choice of Overflow 
The chosen overflow structure (numbered 5EAA220w1) is 

situated in Avondale, a suburb of Auckland city 
approximately 10km away from the city centre. This structure 
is known to overflow a few times in an average year and was 
deemed to be a good test case. Another attribute of this 
overflow is that a permanent raingauge is operational in the 
proximity, data from which have been used to synthetically 
generate rainfall for a 10 year period. As mentioned 
previously, the overflow rates from the traditional model and 
the synthetic rainfall data for the Avondale rain-gauge were 
chosen for this study. 

B. Choice of Input Data 
Although it is qualitatively presumed that the overflow rate 

at the future time step [Q(t)] is bound to be a function of 
antecedent rainfall [R (t-1), R(t-2), ….R(t-i) ]and antecedent 
overflow rates [ Q(t-1), Q(t-2), …Q(t-j)], it is impossible to 
gauge qualitatively how many time steps into the past would 
allow the best predictability, i.e., it is not known a priori what 

the values of i and j are.  
From the ANN point of view, determining the appropriate 

architecture is important since the network topology directly 
affects the computational complexity and the generalization 
capability. Thus it is crucial to choose the “just right” number 
of inputs to, on the one hand, reduce redundancies, and on the 
other, enable proper learning of the input-output mapping 
function by the ANN [14, 15]. While too small a network may 
fail to capture the underlying function, too big a network may 
cause inefficiency in the form of redundancies in the 
connection weights in the ANN. 

To enable the right choice of appropriate input variables, 
i.e., the choice of most suitable values for i and j, the serial- 
and cross-correlation between the overflow and rainfall data 
were investigated. This method, previously successfully used 
for similar studies [12] provides useful information to 
determine the size of the ANN in order to capture the 
underlying function efficiently. 

The cross-correlation between the overflow rates and 
rainfall data and serial correlation amongst the overflow rates 
were determined for the first three years of data and plotted as 
shown in Fig.2. 

Similarly, the serial correlation values for the overflow rates 
were plotted for the first three years’ of data. The serial 
correlation plot is shown in Fig. 2. 

From Fig. 2, it can be concluded that the cross correlation 
values increase with increasing lag time, peak around a time 
lag of approximately 9 units and then decreases with 
increasing lag time. In general, a high correlation can be 
observed between approximate lag time units of 5 and 16. 
Thus, the appropriate rainfall input to forecast Q(t) were R(t-
5), R(t-6), R(t-7), R(t-8), R(t-9), R(t-10), R(t-11), R(t-12), R(t-
13), R(t-14), R(t-15), R(t-16). 

 

0.0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Time Lag (15 min intervals)

C
r
o
s
s
 
C
o
r
r
e
l
a
t
i
o
n
 
v
a
l
u
e

Year 1

Year 2

Year 3

 
Fig. 2 Cross correlation between overflow rate (Q) and rainfall (R) 
 
For serial-correlation (Fig. 3), on the other hand, the 

correlation values decreases gradually, as expected, with 
increasing lag time. The overflow rate input values chosen 
were therefore Q(t-1), Q(t-2), Q(t-3), Q(t-4), Q(t-5), Q(t-6). 
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Fig. 3 Serial correlation amongst overflow rates (Q) 

 
The ANN model (ANN-I) for forecasting the current value 

of overflow rate Q(t) thus consisted of 18 input nodes (12 
antecedent overflow rates and 6 antecedent rainfall data). A 
hidden layer nodes in the MLP was set to 9. 

For comparison purposes with the traditional methods, 
another model (ANN-II) which uses only the antecedent 
rainfall data was also developed. ANN-II model used 12 input 
nodes with the antecedent rainfall R(t-5) to R(t-16). 

It is now accepted in practice, after Amari et. al. [16], that 
no over-fitting to the data occurs if the ratio between the 
training sample size to the number of weights is larger than 30 
[17]. This condition is satisfied in this application. 

C. Standardization of Training Data 
In order to enable forecasting into values unseen during 

training, the commonly used linear normalization of input data 
was replaced with a modified normalization [9].  The raw 
values (v) were fist normalized to obtain the linearly 
standardized value V to span between 0 and 1 as follows: 

minmax

min

vv
vvV
−

−
=  

The linearly standardized value V was then further 
normalized using a hyperbolic tangent function to obtain the 
standardized value SV as 

v

V

e
eSV

−+
−

=
1
1 . 

This transformation is illustrated in Fig. 4. 
 

 
Fig. 4 Standardization of the raw data 

 

D. Learning  
The first three years’ data were used for training the ANN 

while the remaining seven were used for testing. Of the 
various stopping criteria [18], termination following a fixed 
number of training iterations was adopted for simplicity. The 
ANN program developed by the principal author begins by 
assigning a random set of weights for the network 
connections. Several runs were completed and the one with 
the least total mean squared error (MSE) for the training set 
was used as the model. Fig. 5 shows an example of one such 
training run that has been stopped at 30 error-reducing 
iterations (66 total iterations) with a final MSE of 0.430.  

Both the ANNs were trained several times (20) starting 
with random connection weights and stopped when the total 
mean squared error reduced 30 times. The connection weights 
of the trained ANN that ended up with the least total MSE 
were frozen and the resulting ANN models were used for 
forecasting.  
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Fig. 5 Variation of error during learning for ANN-I 

 
Table I below summarizes the characteristics of the ANN 

models developed to forecast overflow rates.  
 

TABLE I  
BASIC CHARACTERISTICS OF THE ANN MODELS 

ANN Model ANN - I ANN -  II 
Input layer nodes  18  12 
Hidden layer nodes 9 6 
Input flow rate 

variables 
Q(t-1) to  

Q(t-6) 
 

Input rainfall 
variables 

R(t-5) to  
R(t-16) 

R(t-5) to  
R(t-16) 

Training set Year 1 to  
Year 3 

Year 1 to  
Year 3 

Testing set Year 4 to  
Year 10 

Year 4 to  
Year 10 

 

V. RESULTS AND DISCUSSION 

A. ANN – I Model Forecasts   
The results for the training set show that the forecast 
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overflow rates closely follow the actual ones. Fig. 6 shows the 
actual flow rates plotted against the forecast overflow rates 
while Fig. 7 shows the specific overflow events (leaving out 
the zero valued no overflow periods) concatenated for the 
training set. 
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Fig. 6 Performance of the ANN-I model for training set 
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Fig. 7 ANN-I forecasts and actual values for training set 

 
With a correlation coefficient of 0.98, the agreement 

between the actual and forecast values for the training set is 
very satisfactory for the ANN-I model. 

Figs 9 through 14 show the correlation between the forecast 
and actual over flow rates for each year in the testing set. The 
agreement of forecasts at higher overflow rates are very good 
as indicated by the close fit to the straight line at the upper 
end. However, there is considerable scatter at the lower end of 
forecasts, particularly those below 0.03 m³/s. 

Table II gives a summary of the statistics of the forecasts. 
The root mean squared error (RMSE) expressed as a 
percentage of the actual mean value of the overflow rate gives 
a measure of the disagreement of the forecasts with the actual 
values. This varies from 12.7% to 18.3% for the years in the 
training set. Overflow rate in Year 6 (0.064m³/s) goes 
marginally outside that in the training set (0.062m³/s) and the 
forecast of this high value is almost perfect which seems to 
indicate that the modified normalization technique has been 
effective. 
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Fig. 8  Forecast and actual overflow rates for Year 4 

 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Actual overflow rate  (m³/s)

Fo
re

ca
st

 o
ve

rf
lo

w
 r

at
e 

(m
³/s

)

Forecast

Actual

 
Fig. 9 Forecast and actual overflow rates for Year 5 
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Fig. 10 Forecast and actual overflow rates for Year 6 
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Fig. 11 Forecast and actual overflow rates for Year 7 
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Fig. 12 Forecast and actual overflow rates for Year 8 
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Fig. 13 Forecast and actual overflow rates for Year 9 
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Fig. 14 Forecast and actual overflow rates for Year 10 

 
TABLE II 

THE STATISTICAL PROPERTIES OF THE FORECASTS FROM ANN-I MODEL 

Year Actual Mean 
(m³/s) 

RMSE expressed as a 
% of Actual Mean 

Training set 
(Years 1-3) 0.010 25.1 
Year 4 0.019 16.6 
Year 5 0.021 12.7 
Year 6 0.022 13.7 
Year 7 0.022 13.8 
Year 8 0.015 18.3 
Year 9 0.020 16.0 
Year 10 0.020 13.9 
 

B. ANN – II ModelForecasts   
The ANN-II has difficulty learning a pattern relating the 

antecedent rainfall to future overflow rates. As can be seen in 
the Fig. 15 below, the agreement between the forecast and 
actual overflow rate is extremely poor for the training set 
revealing a complete contrast to Fig. 7. The performance on 
the testing sets, although not presented here, proved to be 
even poorer. This leads to the conclusion that the ANN-II 
model, based on the rainfall input alone, cannot effectively 
forecast the overflow rates. The ANN-I model, however, is 
effective and gives good agreement between the forecast and 
actual overflow rates. 

It can be concluded that the ANN-I model can be used for 
overflow forecasting provided that this predictive tool can be 
connected an on-line to a monitor installed at the overflow 
structure. Installing telemetry to critical or important overflow 
structures for this purpose can be done easily.  
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Fig. 15 ANN-II forecasts and actual values for training set 
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