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Abstract—A Watson-Crick automaton is recently introduced as a 

computational model of DNA computing framework.  It works on 
tapes consisting of double stranded sequences of symbols.  Symbols 
placed on the corresponding cells of the double-stranded sequences are 
related by a complimentary relation.  In this paper, we investigate a 
variation of Watson-Crick automata in which both heads read the tape 
in reverse directions.  They are called reverse Watson-Crick finite 
automata (RWKFA).  We show that all of following four classes, i.e., 
simple, 1-limited, all-final, all-final and simple, are equal to 
non-restricted version of RWKFA. 
 

Keywords—automaton, DNA computing, formal languages, 
Watson-Crick automaton  

I. INTRODUCTION 
NA computing provides new paradigms of computation 
[1].  The Watson-Crick automata, introduced in [2], 

provide computational models of the DNA computing 
framework.  They use a double-stranded tape called 
Watson-Crick tape, whose strands are separately scanned by 
read-only heads.  The symbols placed on the corresponding 
cells of the double-stranded sequences are related by a 
complimentary relation similar to a DNA molecule.  The 
relationships between classes of the automata are investigated 
in [2 - 5]. 

The two strands of a DNA molecule have opposite 5’ → 3’ 
orientation.  This suggests considering a variant of 
Watson-Crick finite automata that read the two strands of its 
input tape in opposite direction.  Such automata are called 
reverse Watson-Crick automata and introduced in [2].  Some 
variations of the reverse Watson-Crick automata which have 
sensing power that tells the upper and the lower heads are 
within a fixed distance (or meet at the same position) are 
discussed in [6, 7].   

In this paper, we investigate the relationship between classes 
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of the reverse Watson-Crick automata.  We show that 
RWK = SRWK = 1RWK = FRWK = FSRWK  as in the case of 
the Watson-Crick automata. 

The rest of the paper is organized as follows.  In Section II, 
basic definitions of the Watson-Crick finite automata are 
reviewed.  Definitions of the reverse version are given in 
Section III.  Some relationships between classes of reverse 
version are investigated in Section IV.  Finally a brief 
conclusion is given in Section V. 

II. WATSON-CRICK FINITE AUTOMATON 

A. Complementarity Relation 
DNA strands consist of polymer chains which are composed 

of nucleotides. There are four types of nucleotides: A 
(Adenine), G (Guanine), C (Cytosine), and T (Thymine).  The 
double helix of DNA arises by the bonding of two separate 
strands.  Bonding occurs by the pairwise attraction of types: A 
always bonds with T, and G with C.  This phenomenon is 
known as Watson-Crick complementarity. 

Consider an alphabet V and a symmetric relation ρ ⊆ V × V  
over V.  We consider the complementarity relation as a 
generalization of Watson-Crick complementarity. 

B. Watson-Crick Domain 
We associate with V the monoid V * ×V * , of pair of strings.  

In accordance with the way of representing DNA molecules, 
where one considers the two strands placed one over the other, 

we write the elements (x1, x2 ) ∈V * ×V *  in the form 
x1

x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

.  

The concatenation of two pairs 
x1

x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 and 
y1

y2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 is 

x1y1

x2 y2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

.  We also write V *
V *

⎛

⎝⎜
⎞

⎠⎟
 instead of V * ×V * . 

We denote V
V

⎡

⎣
⎢

⎤

⎦
⎥

ρ

= { a
b

⎡

⎣
⎢

⎤

⎦
⎥ | a, b ∈V , (a, b) ∈ρ}  and 

WKρ (V ) = V
V

⎡

⎣
⎢

⎤

⎦
⎥
*

ρ

.  The set WKρ (V )  is called the 

Watson-Crick domain associated to the alphabet V and the 
complementarity relation ρ .   
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For  w1 = a1a2 L an ,  w2 = b1b2 L bn , the elements 

 

a1

b1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

a2

b2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
L

an

bn

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∈WKρ (V )  are written in the form 

w1

w2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.  We call the elements double stranded sequences.  

The string w1  is called the upper strand and w2  is called the 
lower strand. 

C. Definition of Watson-Crick finite Automaton 
A Watson-Crick automaton is a construct 

M = (V , ρ, Q, s0 , F, δ )  
where V is an alphabet, ρ ⊆ V × V  is a complementarity 
relation, Q is a set of states, s0 ∈Q  is the initial state, F ⊆ Q  

is the set of final states, and 
 
δ :Q × V *

V *
⎛

⎝⎜
⎞

⎠⎟
→ P (Q)  is a 

transition function.  The interpretation of s ' ∈δ (s,
x1

x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

)  is 

that the automaton M, in the state s, passes over x1  in the upper 
strand and x2  in the lower strand of a double stranded 
sequence, and enters the state s’. 

A transition in a Watson-Crick finite automaton can be 

defined as follows: For 
u1

u2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

,
x1

x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

,
v1

v2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∈ V *
V *

⎛

⎝⎜
⎞

⎠⎟
 

such that 
u1x1v1

u2x2v2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∈WKρ (V )  and s, s ' ∈Q , we write 

u1

u2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

s
x1

x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

v1

v2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⇒
u1

u2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x1

x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

s '
v1

v2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 

iff s ' ∈δ (s,
x1

x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

) . 

We denote by ⇒ *  the reflexive and transitive closure of the 
relation ⇒ . 

The language L(M )  of M is defined as follows: 

L(M ) = {w1 | s0
w1

w2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⇒ *
w1

w2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

s f ,

for some s f ∈F and
w1

w2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∈WKρ (V )}.

 

There are some restricted variations of the Watson-Crick 
finite automata. 
• N: stateless, i.e., with only one state: if Q = F = {q0} ; 
• F: all-final, i.e., with only final states: if Q = F ; 

• S: simple, if 
 
δ : (Q ×

V *
{λ}

⎛

⎝
⎜

⎞

⎠
⎟ ∪

{λ}
V *

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ → P (Q) ; 

• 1: 1-limited, if  δ : (Q ×
V

{λ}
⎛

⎝
⎜

⎞

⎠
⎟ ∪

{λ}
V

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ → P (Q) . 

Further variations, such as NS, FS, N1 and F1 Watson-Crick 
automata can be defined in a straightforward way by using 
multiple constrains.  We denote by WK, NWK, FWK, SWK, 
1WK, NSWK, N1WK, FSWK, F1WK, the families of languages 
of Watson-Crick automata which are arbitrary, stateless, 
all-final, simple, 1-limited, stateless and simple, stateless and 
1-limited, all-final and simple, and all-final and 1-limited, 
respectively. 

III. REVERSE WATSON-CRICK AUTOMATON 
The two strands of a DNA molecule have opposite 5’ → 3’ 

orientation.  This suggests considering a variant of 
Watson-Crick finite automata that read the two strands of its 
input tape in opposite direction.  Such automata are called 
reverse Watson-Crick finite automata.  Fig. 1 illustrates the 
initial configuration of such an automaton. 

 

 
 

Fig. 1.  A reverse Watson-Crick finite automaton 
 

Formally, a reverse Watson-Crick finite automaton is a 
construct 

M = (V , ρ, Q, s0 , F, δ )  
with the components defined exactly as for Watson-Crick finite 
automata, but the relation ⇒  defined as follows: 

For 
u1

u2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

,
x1

x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

,
v1

v2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∈ V *
V *

⎛

⎝⎜
⎞

⎠⎟
 such that 

u1x1v1

u2x2v2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∈WKρ (V )  and s, s ' ∈Q , we write 

u1

u2x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

s
x1v1

v2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⇒
u1x1

u2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

s '
v1

x2v2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 

iff s ' ∈δ (s,
x1

x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

) . 

The language L(M )  of M is defined as follows: 

L(M ) = {w1 |
λ

w2

⎛

⎝
⎜

⎞

⎠
⎟ s0

w1

λ

⎛

⎝
⎜

⎞

⎠
⎟ ⇒ *

w1

λ

⎛

⎝
⎜

⎞

⎠
⎟ s f

λ
w2

⎛

⎝
⎜

⎞

⎠
⎟ ,

for some s f ∈F and
w1

w2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∈WKρ (V )}.
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All restriction of the Watson-Crick finite automata can be 
defined for reverse Watson-Crick automata.  We denote by 
RWK, NRWK, FRWK, SRWK, 1RWK, NSRWK, N1RWK, 
FSRWK, F1RWK, the families of languages of reverse 
Watson-Crick automata which are arbitrary, stateless, all-final, 
simple, 1-limited, stateless and simple, stateless and 1-limited, 
all-final and simple, and all-final and 1-limited, respectively. 

IV. RELATIONS BETWEEN CLASSES OF REVERSE 
WATSON-CRICK AUTOMATA 

Directly from the definitions we obtain: 
 

• XRWK ⊆ RWK , for X ∈{N , F, S, 1, NS, N1, FS, F1} , 
• NRWK ⊆ FRWK , NSRWK ⊆ FSRWK , and 

N1RWK ⊆ F1RWK , 
• XSRWK ⊆ SRWK , X1RWK ⊆ 1RWK , 1RWK ⊆ SRWK , 

and X1RWK ⊆ XSRWK ⊆ XRWK  for X ∈{N , F} . 
 

The following relationships are proved in [1]: 
 

• NSRWK ⊆ REG , 
• NRWK − CF ≠ ∅  and F1RWK − CF ≠ ∅ , 
• NSRWK ⊂ FSRWK  and NSRWK ⊂ NRWK . 
 

These relations are summarized in Fig. 2. 
 

 
 

Fig. 2.  Known relations on classes of reverse Watson-Crick finite 
automaton 

 
 

Now, we show some relationships between families of RWK 
languages. 
 
Theorem 1:  1RWK = SRWK = RWK . 
 
Proof.  For any unrestricted reverse Watson-Crick automaton 
M = (V , ρ, Q, s0 , F, δ ) , there exists an 1-limited reverse 
Watson-Crick automaton M ' = (V , ρ, Q ', s0 , F ', δ ')  such that 
L(M ) = L(M ') . 

For each transition rule 

 
t : s ' ∈δ (s,

a1a2 L an

b1b2 L bm

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

) , n, m ≥ 0 , n + m ≥ 2 , 

we introduce the following rules of δ ' : 

st ,1 ∈δ (s,
a1

λ

⎛

⎝
⎜

⎞

⎠
⎟ ) , 

st ,i+1 ∈δ (st ,i ,
ai+1

λ

⎛

⎝
⎜

⎞

⎠
⎟ ) , 1 ≤ i ≤ n − 1, 

s 't ,1 ∈δ (st ,n ,
λ

bm

⎛

⎝
⎜

⎞

⎠
⎟ ) , 

s 't ,i+1 ∈δ (s 't ,i ,
λ

bm− i

⎛

⎝
⎜

⎞

⎠
⎟ ) , 1 ≤ i ≤ m − 2 , 

s ' ∈δ (s 't ,m−1,
λ
b1

⎛

⎝
⎜

⎞

⎠
⎟ ) ,  

where states st ,i , s 't ,i  are newly introduced in Q’. 
From this construction, it is easy to see that RWK ⊆ 1RWK .  

So we conclude that 1RWK = SRWK = RWK .       ,  
 

Theorem 2:  FSRWK = RWK . 
 
Proof.  For any unrestricted reverse Watson-Crick automaton 
M = (V , ρ, Q, s0 , F, δ ) , there exists an all-final and simple 
reverse Watson-Crick automaton M ' = (V , ρ, Q ', i, Q ', δ ')  
such that L(M ) = L(M ') . 

To handle “all-final” situation, the upper head of M’ always 
rest on odd positions while the lower head always rest on even 
position.   

Let m be larger than the maximum length of strands which 

appear in δ .  So for each δ (s,
x1

x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

) ≠ ∅ , | x1 |< m  and 

| x2 |< m  hold.  Then we define the set of states Q’ as follows: 
Q ' = {(s, u, v) | s ∈Q, u, v ∈V*, | u |, | v |≤ m} ∪ {i, f } , 
where i, f ∉Q .  The transition function δ '  is constructed as 
follows: 
• For any a ∈V , we introduce a transition rule 

δ '(i, a
λ

⎛

⎝⎜
⎞

⎠⎟
) = {(s0 , a, λ)} .  At this point, the upper head 

moves one step and the state of M’ memorizes the letter a 
scanned by the head. 

• For any (s,ux, v) ∈Q ' , | x |= 2 , we introduce a transition 

(s,ux, v) ∈δ '((s,u, v), x
λ

⎛

⎝⎜
⎞

⎠⎟
) .  Symmetrically, for any 

(s,u, yv) ∈Q ' , | y |= 2 , we introduce a transition 

(s,u, yv) ∈δ '((s,u, v),
λ
y

⎛

⎝
⎜

⎞

⎠
⎟ ) .  These transitions keep track 
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the scanned symbols which lengths are at most m.  Since 
| x |, | y |= 2 , the upper head always stays on odd positions 
and the lower head always on even positions. 

• For any (s, xu, vy) ∈Q '  and s ' ∈δ (s, x
y

⎛

⎝
⎜

⎞

⎠
⎟ ) , we introduce 

a transition (s ',u, v) ∈δ '(s, xu
vy

⎛

⎝
⎜

⎞

⎠
⎟ ) .  These transitions 

simulate the corresponding transitions in M without any 
moves of heads of M’. 

• For any (s,u, v) ∈Q '  and s ' ∈δ (s, ua
v

⎛

⎝⎜
⎞

⎠⎟
) , a ∈V , 

s ' ∈F , then we introduce a transition 

f ∈δ '((s,u, v), a
λ

⎛

⎝⎜
⎞

⎠⎟
) .  Symmetrically, For any 

(s,u, v) ∈Q '  and s ' ∈δ (s, u
bv

⎛

⎝⎜
⎞

⎠⎟
) , b ∈V , s ' ∈F , then 

we introduce a transition f ∈δ '((s,u, v), λ
b

⎛

⎝⎜
⎞

⎠⎟
) .  These 

transitions simulate the acceptance process of M.  At this 
stage, the upper (lower) head moves one step if the length of 
input tape is even (odd), respectively. 
At the final stage, M’ read its input tape completely, if and 

only if M accepts the input tape.  Since M’ is all-final, it accepts 
the tape, if and only if M accepts the input tape.  

From this construction, it is easy to see that 
RWK ⊆ FSRWK .  So we conclude that FSRWK = RWK .   ,  

 
Corollary 1: RWK = SRWK = 1RWK = FRWK = FSRWK . 

 
Our results together with the results in Fig. 2 are summarized 

in Fig. 3. 
 

 
 
Fig. 3.  Refined relations on classes of reverse Watson-Crick finite 
automaton 

V. CONCLUSION 
We have investigated some relationships between classes of 

reverse Watson-Crick automata.   The relationships between F1 
and FS in both normal and reverse Watson-Crick automata will 
be very interesting at next phase. 
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