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Abstract—In this article, we introduce a new approach for 
analyzing UML designs to detect the inconsistencies between 
multiple state diagrams and sequence diagrams. The Super State 
Analysis (SSA) identifies the inconsistencies in super states, single 
step transitions, and sequences. Because SSA considers multiple 
UML state diagrams, it discovers inconsistencies that cannot be 
discovered when considering only a single UML state diagram. We 
have introduced a transition set that captures relationship information 
that is not specifiable in UML diagrams. The SSA model uses the 
transition set to link transitions of multiple state diagrams together. 
The analysis generates three different sets automatically. These sets 
are compared to the provided sets to detect the inconsistencies. SSA 
identifies five types of inconsistencies: impossible super states, 
unreachable super states, illegal transitions, missing transitions, and 
illegal sequences. 
 

Keywords—Modeling Languages, Object-Oriented Analysis, 
Sequence Diagrams, Software Models, State Diagrams, UML. 

I. INTRODUCTION  
NIFIED Modeling Language (UML) has been widely 
used as a standard language for modeling the software. 

UML 2.0 [1] consists of thirteen types of diagrams: class, 
composite structure, component, deployment, object, package, 
activity, use case, statechart, sequence, communication, 
interaction overview, and timing. Each diagram is dedicated to 
a different design aspect. Many different UML diagrams are 
usually involved in software development.  Using more than 
one diagram to design a system is necessary but can leave the 
system in an inconsistent state and hence produce errors. 
Finding inconsistencies in software design before the design is 
implemented is very important. “Error detection and 
correction in the design phase can reduce total costs and time 
to market” [2].  

A consistency problem may arise due to the fact that some 
aspects of the model will be described by more than one 
diagram. Hence, we should pay much attention to the 
consistency in the early phases of the system development and 
it is important that the consistency of a system should be 
checked before implementing it [3]. To avoid such errors, we 
should check the consistency among the diagrams and make 
sure that the diagrams are consistent. 
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Many researchers found that the problem of ensuring 

consistency between UML diagrams has not been solved yet 
[4]. The UML specification does not enforce many 
consistency requirements between the information contained 
in the sequence and state diagrams.  While this does allow for 
greater flexibility in how UML can be used, it can lead to 
inconsistent views of the system being modeled. “The 
problem of relating state-based intraagent (or intraobject) 
behavioral descriptions with scenario-based interagent 
(interobject) descriptions has recently focused much interest 
among the software engineering community” [5].  Identifying 
inconsistencies between UML diagrams can help the 
developers to find errors and fix them at early stages. 
Furthermore, current UML CASE-tools (e.g. Rational Rose) 
provide poor support for maintaining consistency between 
UML diagrams. So, helping to solve this problem can make a 
great contribution to the software development process. 

This work proposes a new approach to discover the 
inconsistency in multiple state diagrams not just in a single 
state diagram. The approach analyzes multiple state diagrams. 
In our research, we discovered that there is essential 
information about the relationships between transitions in 
different state diagrams that is not captured in any UML 
diagram. This information is critical to understanding the 
specified system.  In our approach this information is in the 
transition set which must be provided by the developer. The 
transition set includes all legal transitions that are allowed in 
the system. This set pairs transitions in multiple state diagrams 
together. 

II. THE SUPER STATE 
Our approach for consistency analysis combines the state 

information of multiple state diagrams into a composite super 
state, SS. The super state has the form [s1, s2, …, sn] where si 
is the state of object i and n is the total number of objects. 
This super state details all of the possible composite states the 
objects can be in as well as the transition pairs which lead 
from one composite state to another.  In this way the super 
state provides the complete collaborative view of a set of 
objects in the model.   

SS is changed after each message call. For every call we 
have <SSpre, transition, SSpost> where SSpre is the super state 
before transition and SSpost is the super state after the 
transition has been taken. In SSpost, only the state of one object 
is changed. This object must be the destination object of the 
message call. The state of the other objects remains in the 
same state as they were before call. We calculate the super 
state of multiple state diagrams after each valid transition and 
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that is used to evaluate each sequence diagram. A valid 
sequence diagram should be a subsequence of the set of 
sequences that are possible in a super state. Invalid and 
impossible sequences can be identified. 

III. THE APPROACH 
The information in UML diagrams are related to each other 

and represent different views of a system. Hence, they can be 
validated against each other. Given a statechart diagram, 
researchers [3] have shown how to validate it against a 
sequence diagram. On the other hand, given a sequence 
diagram, it can be validated against a statechart diagram [6, 7].   

However, we are proposing a new approach to check the 
consistency between multiple state diagrams and one or more 
sequence diagrams. Our analysis, the Super State Analysis 
(SSA), focuses on multiple state diagrams instead of a single 
state diagram.  

The diagram on Fig. 1 shows the complete analysis process 
and the relationships between the different sources of 
information. Some information is known from the domain 
knowledge and provided by the developer while some other 
information is extracted from the existing information and 
generated automatically. SSA uses the provided information to 
generate some information automatically. Comparing the 
information from different sources allows us to detect the 
inconsistencies.  SSA includes some inconsistencies that can 
be detected by the computer and some other faults that can be 

identified by the human.  SSA performs five types of 
comparisons to detect the inconsistencies. 

The diagram on Fig. 1 includes the 12 information sets that 
are involved in SSA model. The system developer provides the 
UML state diagrams, the transition set and UML sequence 

diagrams (D1, D2, and D3). The developer identifies the 
necessary super states, impossible super states, necessary 
single step transitions, and the impossible single step 
transitions (H1, H2, H3, and H4). The SSA tool is 
automatically generates three big sets: set of all generated 
super states, set of all valid single step transitions, and set of 
all generated sequences (T1, T2, and T3). These three sets are 
generated using the UML state diagrams and the provided 
transition set. The valid sequences (S) are extracted from the 
UML sequence diagram. Table I describes each component 
involved in the analysis and the source of each.  

The SSA tool uses the UML state diagram (D1) and the 
transition set (D2) to generate the set of all generated Super 
States (T1). Also, the tool uses the transition set (D2) to 
compute the set of all generated sequences (T3). Moreover, 
the tool uses the transition set to compute the set of all valid 
single step transitions (T2). The developer uses the domain 
knowledge to indentify the necessary super states, impossible 
super states, necessary single step transitions, and impossible 
single step transitions. Furthermore, the UML sequence 
diagram is used to extract the sequences which will compare 
to the set of all generated sequences. 

IV. COMPARISONS 
The Super State Analysis consists of five types of 

comparisons to detect the inconsistencies in the multiple state 
diagrams and sequence diagrams. 

 
Fig. 1 SSA Model 
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1) C1: Compares the set of all generated super states (T1) 
with the set of necessary super states (H1).  

2) C2: Compares the set of all generated super states (T1) 
with the set of impossible super states (H2). 

3) C3: Compares the set of all valid single step transitions 
(T2) with the set of necessary single step transitions 
(H3). 

4) C4: Compares the set of all valid single step transitions 
(T2) with the set of impossible single step transitions 
(H4). 

5) C5: Compares the set of all generated sequences (T3) 
with the set of sequences (S) which are extracted 
from the provided UML sequence diagrams. 

C1 and C2 detect the valid and invalid super states while C3 
and C4 identify the illegal and missing transitions. C5 detects 
the invalid sequences. This comparison is fully automated 
since both T3 and S are generated automatically. The other 
four comparisons can be automated if we formalize the four 
sets: H1, H2, H3, and H4 and feed them to the system. By 
comparing these four sets to the generated sets: T1 and T2 the 
inconstancies can be detected automatically. 

V. ERROR DISCOVERY 
Super State Analysis (SSA) discovers inconsistencies in 

super states, single step transitions, and sequences. 
 

A. States Inconsistencies 
The valid and invalid states will possibly be identified by 

SSA. If a Super State (SS) is generated by Box T1, but it is not 
in set of valid states (Box H1) then the state is invalid SS. This 
could happen if there is a wrong transition in the transition set. 
On the other hand, if a Super State is in the set of valid states 
(Box H1), but it is not generated by Box T1, then this SS is a 
valid super state and should be generated. SS wouldn’t be 
generated if there is a missing transition in the transition set or 
in the state diagram. 

The following kinds of inconsistencies can be discovered 
by this analysis: 

1) Impossible super states 
2) Unreachable super states 

 

B. Single Step Transitions Inconsistencies 
The necessary and impossible single step transitions (Box 

H3 and Box H4) are known from the domain knowledge. The 

 
 

TABLE I 
DESCRIPTION OF EACH COMPONENT INVOLVED IN SSA MODEL 

Box Name Description Source 

N Domain 
Knowledge 

The facts that are known by the developer of 
the system 

Known from the domain 
knowledge 

H1 Necessary 
Super States 

The set of states that are identified to be 
necessary super states.  Domain Knowledge 

H2 Impossible 
Super States 

The set of states that are identified to be 
impossible super states.  Domain Knowledge 

H3 
Necessary 
single step 
transitions 

The set of transitions that are identified to 
be necessary single step transitions Domain Knowledge 

H4 
Impossible 
single step 
transitions 

The set of transitions that are identified to 
be impossible single step transitions Domain Knowledge 

T1 
Set of all 
generated 

Super States 

These super states are generated  
automatically using the UML diagram and 
transition set 

Generated Automatically 
by the Tool 

T2 Set of all single 
step transition 

This set contains all of the single step 
transitions. These transitions are generated 
automatically using the transition set 

Generated Automatically 
by the Tool 

T3 
Set of all 
generated 
sequences 

This set contains all of the legal sequences 
that are allowed by the system. This set is 
generated automatically using the transition 
set 

Generated Automatically 
by the Tool 

D1 UML State 
Diagram 

The state diagrams that are written by the 
developer who specifies the system Developer 

D2 Transition Set 
The set of all legal transitions that are 
allowed by the system. The developer 
provides this set 

Developer 

D3 UML Sequence 
Datagram 

The sequence diagrams that are written by 
the developer who specifies the system Developer 

S Sequences Sequences that are extracted from the UML 
sequence diagrams 

Generated Automatically 
by the Tool 
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set of all valid single step transitions (Box T2) are generated 
automatically using the transition set. Comparing those sets 
will discover some legal and illegal transitions. 

If a necessary transition does not appear in set of all valid 
single step transitions that means this necessary transition is 
missing. Furthermore, if an impossible transition appears in 
the set of all valid single step transitions that means this 
transition is illegal.  

 
The following kinds of inconsistencies are discovered by 

this analysis: 
1) Illegal transitions 
2) Missing transitions 

 

C.  Sequences Inconsistencies 
The tool generates the sequences using the transition 

matrix. To validate a UML sequence diagram, the tool extracts 
the sequences first (Box S), then, compares them to the set of 
all generated sequences (Box T3). If there is a matching 
sequence in that set, this sequence is valid. Otherwise, it is an 
invalid sequence.  

The following kinds of inconsistencies are discovered by 
this analysis: 

1)   Illegal Sequences  
The tool uses the UML state diagrams and the transition set 

to generate the set of all generated Super States (SS). Also, the 
tool uses the transition set to compute the set of all generated 
sequences. Moreover, the tool uses the transition set to 
compute the Set of all single step transitions. 

From the domain knowledge, we identify the sets of valid 
and invalid Super States (SS) and the necessary and 
impossible single step transitions. 

The UML sequence diagram is used to extract the 
sequences which will be compared to the set of all generated 
sequences. 

The inconsistency can be fixed by several ways. It can be 
fixed by adding or removing a fact to the domain knowledge. 
Another way to fix the inconsistencies is correcting the state 
diagram by adding a new transition (or removing one). 

VI. THE TRANSITION MATRIX 
The transition matrix details the possible global states of the 

system based on a vector of states of individual instances of 
classes and the possible transitions between the states in the 
super state (SS). Consider a program that has class X and class 
Y.  Let class X has an initial state A and two other states, B 
and C, while class Y has an initial state D and a second state 
E. Fig. 2-a shows the state diagram for class X and Fig. 2-b 
shows the state diagram for class Y. The state diagrams depict 
how instances of X and Y can transition between those states. 
Let class Y makes the transition between state D and state E 
whenever class X makes the transition from state A to state B. 
Table I shows possible transitions in the super state that is the 
cross-product of all states with one instance of X and one 
instance of Y. 

 
               a- State diagram for Class X                  b- State diagram for Class Y 
 

Fig. 2 State Diagrams for Class X and Class Y 
 

An entry in a cell in T1 (Table II) shows that in one step, the 
system can transition from the state of the row to the state of 
the column.  Taking the product of T1 by itself gives a matrix 
that contains the transitions possible with two steps.  The 
closure of T1 is the sum of products, T1 + T1*T1 + T1*T1*T1 
+…. The closure shows all possible transitions in any number 
of steps.  Although the closure is represented as an infinite 
sum, it can be calculated in at most the number of products 
equal to the rank of the initial matrix. In most cases, it is even 
smaller than that number. 

TABLE II 
 SUPER STATE TRANSITION MATRIX T1 

T1 AD BD CD AE BE CE 
AD 0 0 0 0 1 0 
BD 1 0 1 0 0 0 
CD 0 1 0 0 0 0 
AE 0 1 0 0 0 0 
BE 0 0 0 1 0 1 
CE 0 0 0 0 1 0 

VII. THE EXAMPLE 
In this section, we demonstrate our approach by simple 

library system. This example describes the interaction between 
a patron of a library and the copies of books the library holds. 
In order to simplify the model the library holds only one copy 
of each book. Fig. 3 shows the class diagram for this model. 
Fig. 4 and Fig. 5 are the state diagrams for the patron and 
book objects. Note that the transitions in the state diagrams 
are numbered for ease of reference. This example originally 
was created by a team of students trying to create a correct 
model of a simple library system. 

 
Fig. 3 The Class diagram for the Library Example 
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The patron object can be in one of three states; Good 
Standing, Too Many Books, and Overdue Fines. We will call 
these states G, T, and F respectively for the rest of this paper. 
A patron starts in G until the number of books the patron has 
checked out is equal to MAX or the patron returns an overdue 
book. In the former, the patron will transition to state T where 
they will remain until they return a book. In the latter, the 
patron will transition to F where they will not be able to do 
anything until they pay the fine that is owed.  

A book object has six states; On Shelf, Missing, On Hold, 
Checked Out, Overdue, and Returned. We will call these 
states O, M, H, C, D, and R respectively for the rest of this 
paper. 

The two transitions from C labeled check represent the 
library determining if the book is overdue. If the book is 
overdue it will transition to D. Otherwise, it will transition to 
R where it will remain until the library places it back on the 
shelf. 

For our analysis we will assume the library has only one 
patron and three books.  We now pair the transitions from the 
patron and book objects that can occur together.  An ‘X’ 
indicates that we are not concerned about the state of the 
object. The transition set is shown in Table III. 

Good 
Standing

initialState

return checkout[ n < MAX ]

Too Many 
Books

Fines

return

return[ returnDate > DUE_DATE ]

[ returnDate <= DUE_DATE ]

[ returnDate >  DUE_DATE ]

payFine

checkout[ n = MAX ]

return

lose_By_Patron
[1]

[3]

[4]

[6]

[5]

[7]

[2]

[8]

G

TF

  
Fig. 4 The State Diagram for Patron 

 

initialState

On Shelf

Checked 
Out

Returned

Over due

check

Missing

return

On Hold

putOnShelf

find

Today > Due_date

Today <= Due_date

checkout

lose

cancel/expire

expire

return

return

check

lose_By_Patron
reserve

return_late

C

D

R

M

H

O
[113/213/313]

[112/212/312]
[15/25/35]

[114/214/314]

[13/23/33]

[17/27/37]

[18/28/38][110/210/310]

[111/211/311]

[14/24/34]

[11/21/31]

[19/29/39]

[16/26/36]

[12/22/32]

 
Fig. 3 The State Diagram for Book 

 
 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

316

 

 

 

TABLE III 
TRANSITION SET FOR THE LIBRARY EXAMPLE 

SSpre  SSpost Transition Description 
GOXX  GCXX checkout[n<MAX], checkout 
GXOX  GXCX checkout[n<MAX], checkout 
GXXO  GXXC checkout[n<MAX], checkout 

Check out a book (if  at least one X 
= O || R ) 

GOXX  TCXX checkout[n=MAX], checkout 
GXOX  TXCX checkout[n=MAX], checkout 
GXXO  TXXC checkout[n=MAX], checkout 

Check out a book (if  X = C || H || 
D) 

GCXX  GRXX return, return 
GXCX  GXRX return, return 
GXXC  GXXR return, return 

Return book on time 

GDXX  FRXX return[returnDate>dueDate], return 
GXDX  FXRX return[returnDate>dueDate], return 
GXXD  FXXR return[returnDate>dueDate], return 

Return an over due book 

TCXX  GRXX return[returnDate<=dueDate], return 
TXCX  GXRX return[returnDate<=dueDate], return 
TXXC  GXXR return[returnDate<=dueDate], return 

Patron with MAX books returns a 
book on time 

TDXX  FRXX return[returnDate>dueDate], return 
TXDX  FXRX return[returnDate>dueDate], return 
TXXD  FXXR return[returnDate>dueDate], return 

Patron with MAX books returns an 
over due book 

GCXX  FMXX lose_by_patron, lose_by_patron 
GXCX  FXMX lose_by_patron, lose_by_patron 
GXXC  FXXM lose_by_patron, lose_by_patron 

Patron lost a book 

GCXX  GHXX reserve 
GXCX  GXHX reserve 
GXXC  GXXH reserve 

Patron holds a book 

TCXX  THXX reserve 
TXCX  TXHX reserve 
TXXC  TXXH reserve 

Patron with MAX books holds a 
book 

GHXX  GCXX cancel/expire 
GXHX  GXCX cancel/expire 
GXXH  GXXC cancel/expire 

Cancel/Expiration of holding book 
(n < MAX) 

THXX  TCXX cancel/expire 
TXHX  TXCX cancel/expire 
TXXH  TXXC cancel/expire 

Cancel/Expiration of holding book 
(n = MAX) 

O  M lose A book lost by the library 
M  O find A book found by the library 
F  G payFine Patron pays fine 
C  D check[today>Due_date] Book becomes over due 
C  C check[today<=Due_date] Book remains checked out 
R  O putOnShelf Book is re-shelved 
H  R return Return an on hold book 
C  R Return_late Return a late book 
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The initial transition matrix A1 has column and row 
headings with quadruple representing the states of the four 
objects. For this model there are 3*6*6*6 = 648 combinations 
of the four objects.  Table IV shows a portion of the initial 
transition matrix A1.  

 
TABLE IV 

PORTION OF A1 
 GOOO GOCO GODO GORO GCOO 

GOOO  1,21   1,11 
GOCO  26 23 2,22  
GODO      
GORO 25     
GCOO     16 

 
The row headings are the initial states and the column 

headings are the final states. The numbers in the table arise 
from Fig. 4 and Fig. 5. For the purpose of clarification we 
have assigned unique numeric identifiers to the transitions for 
each instance of an object in our system. The book object has 
three numeric identifiers for each transition since we have 
three instances of that object. For example, GOOO → GOCO 
represents a patron in good standing checking out the second 
book. The 1 indicates the patron took the transition labeled 
checkout [n < MAX] and the 21 indicates the second book 
took the transition labeled checkout. If there is an entry for a 
cell in the matrix then the transition is valid. A2 is defined as 
A1 * A1 which identifies all the states we can reach in two 
steps. Table V shows a portion of A2. 

 
TABLE V 

PORTION OF A2 
 GOOO GOCO GODO 

GOOO  (1,21)(26) (1,21)(23) 
GOCO (2,22)(25) (26)(26) (26)(23) 
GODO    
GORO  (25)(1,21)  
GCOO (2,12)(15)   

 
From Table V we can observe that it is possible to go from 

GOCO to GOOO by first returning the second book and then 
shelving it. 

For this model, the unreachable states include two sets. The 
first set includes the states where the patron is in T and one of 
the three books is in O or R. Clearly the patron cannot have 
MAX books checked out if one of the books is not checked 
out. The other set of unreachable states occurs when the 
patron is in F and all books are in C or D. In order for the 
patron to be in F, one of the three books would have had to 
have been returned. An analysis of A* for this model shows 
that the columns for these unreachable states are empty. 

Some of the faults in the design of the library example can 
be discovered by simply analyzing the transition matrix.  One 
such fault was a missing transition.  From FRCO and FCRO 
there is no valid single step transition to FRRO.  This means 
that if one book is returned late, the patron goes to F status 
and cannot return the other book until the fine is paid. 

 
Some inconsistencies found in the library example: 
1) The patron can’t return the book if she/he find it later on. 

2) The patron can’t return any of her/his other books until 
the fine is paid first. 

3) The patron can’t lose an overdue book. 
4) The patron can’t lose a book if he is in state ‘T’. 
5) The system reaches an invalid state when the patron 

checked out MAX books and trying to return a late book. 

VIII. RELATED WORK 
There are several different approaches that have been 

proposed to perform consistency checking between UML 
diagrams.  Some approaches use transformation to convert 
one diagram to another [2, 4, 7, 8, 9, 10] while others detect 
the inconsistencies by comparing one diagram to another 
using consistency rules [3, 11] Moreover, many approaches 
use formalism, such as OCL and Z, to enforce the consistency 
[6, 12, 13, 14]. 

Almost all approaches focus on all or some of six types of 
UML diagrams. Namely, use case, class, object, sequence, 
collaboration, and statechart diagram.  
[15] studies the consistency between use case, class, sequence, 
and statechart diagram. [4] studies the consistency between 
class, object, sequence, collaboration, and statechart diagram. 
[12] studies use case, class, sequence, and statechart diagram. 
[9] studies the consistency between three diagrams: class, 
sequence, and statechart diagram. [3, 6, 7, 8] study the 
consistencies between sequence and statechart diagram. [16] 
studies the class diagram and statechart diagram.       . 

The researchers pay the attention to enforce consistency 
between only two diagrams (e.g. single sequence diagram vs. 
single statechart diagram). However, our approach is unique 
in that we are proposing a new technique to check the 
consistency between multiple state diagrams and one or more 
sequence diagrams. Moreover, the approach focuses on 
multiple state diagrams instead of a single state diagram. 

A. Transformation 
The consistency checking in the transformational 

approaches is done in two steps. First, the UML diagrams are 
converted to interpreted diagrams. Second, the interpreted 
diagrams are compared to each other to detect the 
inconsistencies.  If one diagram cannot convert to the other, 
then both diagrams are converted to intermediate diagrams to 
perform the comparison and detect the inconsistencies. These 
approaches require the developers to identify set of 
transformational rules to apply them to the diagrams in order 
to produce the interpreted diagrams. As a result of that, more 
time needs to be spent to prepare the diagrams for the 
comparison.  

Our proposed approach converts the state diagrams to sets 
of valid and invalid super states. Also, it converts the 
transition set to sets of single step transitions and sequences. 
However, our approach does not require any transformational 
rules since the sets are generated directly from the diagrams. 

Alexander Egyed [4] presents a transformation-based 
approach to consistency checking. They define a set of model 
transformation rules to enable the conversion of one UML 
diagram into another. They also define a set of comparison 
rules to compare the transformed diagram with an existing one 
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of the same type. For example, to check for inconsistencies 
between a sequence diagram and a class diagram, they first 
transform the sequence diagram into an interpreted class 
diagram. The interpreted class diagram is then compared with 
the existing class diagram. This approach needs two sets of 
rules: transformation rules and consistency rules. If one 
diagram can’t transform to another, then both diagrams 
transformed to an intermediate diagram to compare. 

Hongyuan Wang et al.[8] propose an approach that checks 
the consistency between sequence diagrams and state 
diagrams. The approach converts statecharts using Finite State 
Processes and transforms sequence diagram to messages trace. 
They use an existing tool LTSA to support their approach. 
However, the approach considers only single sequence 
diagram and single stateschart diagram. 

Wuwei Shen et al. [7] propose to build a message graph 
from a state chart diagram and then go through the graph 
based on the sequence of the messages retrieved from a 
sequence diagram to find any inconsistency between these two 
diagrams. Based on this method, a tool called ICER is 
developed to provide software developers with automatic 
consistency checking in the dynamic aspects of a model. 
However, the approach considers only single statechart vs. 
single sequence diagram. 

Orest Pilskalns et al. [2] present an approach that combines 
structural and behavioral UML representations in order to 
derive and execute test cases to validate a UML model. They 
develop a method for encapsulating the behavioral aspects 
(i.e. message paths between objects) that exists in sequence 
diagrams into a directed acyclic graph. The objects in the 
graph are then associated with class attribute/parameter values 
which are used to generate and execute test cases. Their 
approach would require OCL object constraints to be written. 

B. Consistency Rules 
In consistency rules approaches, the consistency is checked 

using the set of consistency rules. The diagrams are compared 
to each other directly without transformation or formalism. 
Boris Litvak et al. [3] present an approach to consistency 
checking between UML sequence and state diagrams. They 
created the BVUML (Behavioral Validator of UML) tool 
which automates the behavioral validation process. Their 
approach associates states with only one object lifeline in the 
sequence diagram so a single run of the tool validates 
consistency for only one object. Therefore the tool must be 
run multiple times in order to check the consistency of an 
entire sequence diagram. 

Alexander Egyed [11] introduces an approach for quickly, 
correctly, and automatically deciding what consistency rules 
to evaluate when a model changes. The approach does not 
require consistency rules with special annotations. Instead, it 
treats consistency rules as black-box entities and observes 
their behavior during their evaluation to identify what model 
elements they access. The UML/Analyzer tool integrated with 
Rational Rose fully implements this approach. It was used to 
check 24 types of consistency rules. The author found that the 
approach provided design feedback correctly and required, in 
average, less than 9 ms evaluation time per model change with 

a worst case of less than 2 seconds at the expense of a linearly 
increasing memory need.  

C. Formalism 
Since UML is not precise enough, some researchers 

formalize the UML diagrams to some formal languages (e.g. 
Z). They then compare this formalism to detect the 
inconsistencies between the diagrams. 

Yves Dumond et al. [6] show that it is possible to integrate 
semi-formal and formal methods for the dynamic behavior of 
the UML models. The objective is to favor the integration of 
formal techniques in the actual practice of software 
engineering. They introduce an approach to formalize 
sequence diagrams and verify coherence with the statechart 
diagrams. The approach translates the UML sequence 
diagrams into the pi-calculus, by preserving the object 
paradigms. To preserve the object notation, they name the pi-
calculus processes with the name of the objects. The 
consistency between sequence diagrams and statechart 
diagrams can be checked by verifying that the messages in the 
sequence diagrams trigger states in statechart diagrams. 

Krishnan [13] describes a framework in which UML 
diagrams can be formalized to perform consistency checking. 
UML diagrams are translated into specifications of the 
theorem proving tool PVS (Prototype Verification System). 
The PVS is a language that allows for the introduction of 
abstract data types, functions, etc. To check for consistency 
between sequence and class diagrams, the class diagrams must 
first be annotated with OCL constraints. The PVS will check 
if the sequence of states described in the sequence diagram 
can be obtained from the class diagrams. Custom traces (i.e. 
sequence of states) can also be supplied by the user to check if 
other properties hold. 

Soon-Kyeong Kim and David Carrington [15] describe how 
consistency checking between different UML models can be 
accomplished by using a formal object-oriented metamodeling 
approach. They formally define the abstract syntax and 
semantics of the UML model using Object-Z as a 
metalanguage. They then define consistency constraints that 
logically exist between semantically equivalent elements in 
the metamodel but are not defined in the current UML 
metamodel structure. Once the consistency constraints have 
been defined for each of the UML model elements, 
consistency checking between different model elements can 
be achieved by verifying that the combined models preserve 
all of the consistency constraints for the individual model 
elements. They use the formal language to ensure the 
consistency between two diagrams.  

IX. CONCLUSION AND FUTURE WORK 
To avoid errors in UML diagrams, we should check the 

consistency among the diagrams and make sure that the 
diagrams are consistent to each other. To accomplish this, we 
have proposed this work to identify the problem that may arise 
due to the fact that some aspects of the model will be 
described by more than one diagram.  

We proposed a solution that analyzes the multiple UML 
state diagrams and UML sequence diagrams to detect 
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inconsistencies in states, single step transitions, and 
sequences. Our approach, The Super State Analysis (SSA), 
consider transition of multiple state diagrams instead of 
transition of a single state diagram. Super State Analysis 
generates automatically three different sets to detect the five 
types of inconsistencies. SSA generates the set of all generated 
super states (T1), set of all valid single step transitions (T2), 
and set of all generated sequences (T3). SSA performs five 
types of comparisons between these generated sets and the 
provided sets to detect the inconsistencies. Namely the super 
state analysis compares set T1 with set H1, set T1 with set H2, 
set T2 with set H3, set T2 with set H4, and set T3 with set S. 
SSA identifies five types of inconsistencies: impossible super 
states, unreachable super states, illegal transitions, missing 
transitions, and illegal sequences.  

On the future work, we are planning to expand the case 
study to a bigger one with more states and sequence diagrams. 
We will consider more interaction between the state diagrams 
with different number of instantiations. Furthermore, we will 
investigate the different type of inconsistencies using the five 
comparisons. Moreover, we will use the set notations to 
formalize the different sets that are involved in the 
comparisons. Also, we plan to build the SSA tool to perform 
all five comparisons automatically.  We are also developing 
approaches to minimize the state explosion to allow the SSA to 
scale to larger systems. 
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