
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

311

Abstract—In this article, we introduce a new approach for
analyzing UML designs to detect the inconsistencies between
multiple state diagrams and sequence diagrams. The Super State
Analysis (SSA) identifies the inconsistencies in super states, single
step transitions, and sequences. Because SSA considers multiple
UML state diagrams, it discovers inconsistencies that cannot be
discovered when considering only a single UML state diagram. We
have introduced a transition set that captures relationship information
that is not specifiable in UML diagrams. The SSA model uses the
transition set to link transitions of multiple state diagrams together.
The analysis generates three different sets automatically. These sets
are compared to the provided sets to detect the inconsistencies. SSA
identifies five types of inconsistencies: impossible super states,
unreachable super states, illegal transitions, missing transitions, and
illegal sequences.

Keywords—Modeling Languages, Object-Oriented Analysis,
Sequence Diagrams, Software Models, State Diagrams, UML.

I. INTRODUCTION
NIFIED Modeling Language (UML) has been widely
used as a standard language for modeling the software.

UML 2.0 [1] consists of thirteen types of diagrams: class,
composite structure, component, deployment, object, package,
activity, use case, statechart, sequence, communication,
interaction overview, and timing. Each diagram is dedicated to
a different design aspect. Many different UML diagrams are
usually involved in software development. Using more than
one diagram to design a system is necessary but can leave the
system in an inconsistent state and hence produce errors.
Finding inconsistencies in software design before the design is
implemented is very important. “Error detection and
correction in the design phase can reduce total costs and time
to market” [2].

A consistency problem may arise due to the fact that some
aspects of the model will be described by more than one
diagram. Hence, we should pay much attention to the
consistency in the early phases of the system development and
it is important that the consistency of a system should be
checked before implementing it [3]. To avoid such errors, we
should check the consistency among the diagrams and make
sure that the diagrams are consistent.

Mohammad N. Alanazi is a PhD Student at Computing and Information
Science Department, Kansas State University, Manhattan, KS 66506, USA (e-
mail: alanazi@ksu.edu).

David A. Gustafson is a professor at Computing and Information Science
Department, Kansas State University, Manhattan, KS 66506, USA (e-mail:
dag@ksu.edu).

Many researchers found that the problem of ensuring

consistency between UML diagrams has not been solved yet
[4]. The UML specification does not enforce many
consistency requirements between the information contained
in the sequence and state diagrams. While this does allow for
greater flexibility in how UML can be used, it can lead to
inconsistent views of the system being modeled. “The
problem of relating state-based intraagent (or intraobject)
behavioral descriptions with scenario-based interagent
(interobject) descriptions has recently focused much interest
among the software engineering community” [5]. Identifying
inconsistencies between UML diagrams can help the
developers to find errors and fix them at early stages.
Furthermore, current UML CASE-tools (e.g. Rational Rose)
provide poor support for maintaining consistency between
UML diagrams. So, helping to solve this problem can make a
great contribution to the software development process.

This work proposes a new approach to discover the
inconsistency in multiple state diagrams not just in a single
state diagram. The approach analyzes multiple state diagrams.
In our research, we discovered that there is essential
information about the relationships between transitions in
different state diagrams that is not captured in any UML
diagram. This information is critical to understanding the
specified system. In our approach this information is in the
transition set which must be provided by the developer. The
transition set includes all legal transitions that are allowed in
the system. This set pairs transitions in multiple state diagrams
together.

II. THE SUPER STATE
Our approach for consistency analysis combines the state

information of multiple state diagrams into a composite super
state, SS. The super state has the form [s1, s2, …, sn] where si
is the state of object i and n is the total number of objects.
This super state details all of the possible composite states the
objects can be in as well as the transition pairs which lead
from one composite state to another. In this way the super
state provides the complete collaborative view of a set of
objects in the model.

SS is changed after each message call. For every call we
have <SSpre, transition, SSpost> where SSpre is the super state
before transition and SSpost is the super state after the
transition has been taken. In SSpost, only the state of one object
is changed. This object must be the destination object of the
message call. The state of the other objects remains in the
same state as they were before call. We calculate the super
state of multiple state diagrams after each valid transition and

Inconsistency Discovery in Multiple
State Diagrams

Mohammad N. Alanazi, and David A. Gustafson

U

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

312

that is used to evaluate each sequence diagram. A valid
sequence diagram should be a subsequence of the set of
sequences that are possible in a super state. Invalid and
impossible sequences can be identified.

III. THE APPROACH
The information in UML diagrams are related to each other

and represent different views of a system. Hence, they can be
validated against each other. Given a statechart diagram,
researchers [3] have shown how to validate it against a
sequence diagram. On the other hand, given a sequence
diagram, it can be validated against a statechart diagram [6, 7].

However, we are proposing a new approach to check the
consistency between multiple state diagrams and one or more
sequence diagrams. Our analysis, the Super State Analysis
(SSA), focuses on multiple state diagrams instead of a single
state diagram.

The diagram on Fig. 1 shows the complete analysis process
and the relationships between the different sources of
information. Some information is known from the domain
knowledge and provided by the developer while some other
information is extracted from the existing information and
generated automatically. SSA uses the provided information to
generate some information automatically. Comparing the
information from different sources allows us to detect the
inconsistencies. SSA includes some inconsistencies that can
be detected by the computer and some other faults that can be

identified by the human. SSA performs five types of
comparisons to detect the inconsistencies.

The diagram on Fig. 1 includes the 12 information sets that
are involved in SSA model. The system developer provides the
UML state diagrams, the transition set and UML sequence

diagrams (D1, D2, and D3). The developer identifies the
necessary super states, impossible super states, necessary
single step transitions, and the impossible single step
transitions (H1, H2, H3, and H4). The SSA tool is
automatically generates three big sets: set of all generated
super states, set of all valid single step transitions, and set of
all generated sequences (T1, T2, and T3). These three sets are
generated using the UML state diagrams and the provided
transition set. The valid sequences (S) are extracted from the
UML sequence diagram. Table I describes each component
involved in the analysis and the source of each.

The SSA tool uses the UML state diagram (D1) and the
transition set (D2) to generate the set of all generated Super
States (T1). Also, the tool uses the transition set (D2) to
compute the set of all generated sequences (T3). Moreover,
the tool uses the transition set to compute the set of all valid
single step transitions (T2). The developer uses the domain
knowledge to indentify the necessary super states, impossible
super states, necessary single step transitions, and impossible
single step transitions. Furthermore, the UML sequence
diagram is used to extract the sequences which will compare
to the set of all generated sequences.

IV. COMPARISONS
The Super State Analysis consists of five types of

comparisons to detect the inconsistencies in the multiple state
diagrams and sequence diagrams.

Fig. 1 SSA Model

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

313

1) C1: Compares the set of all generated super states (T1)
with the set of necessary super states (H1).

2) C2: Compares the set of all generated super states (T1)
with the set of impossible super states (H2).

3) C3: Compares the set of all valid single step transitions
(T2) with the set of necessary single step transitions
(H3).

4) C4: Compares the set of all valid single step transitions
(T2) with the set of impossible single step transitions
(H4).

5) C5: Compares the set of all generated sequences (T3)
with the set of sequences (S) which are extracted
from the provided UML sequence diagrams.

C1 and C2 detect the valid and invalid super states while C3
and C4 identify the illegal and missing transitions. C5 detects
the invalid sequences. This comparison is fully automated
since both T3 and S are generated automatically. The other
four comparisons can be automated if we formalize the four
sets: H1, H2, H3, and H4 and feed them to the system. By
comparing these four sets to the generated sets: T1 and T2 the
inconstancies can be detected automatically.

V. ERROR DISCOVERY
Super State Analysis (SSA) discovers inconsistencies in

super states, single step transitions, and sequences.

A. States Inconsistencies
The valid and invalid states will possibly be identified by

SSA. If a Super State (SS) is generated by Box T1, but it is not
in set of valid states (Box H1) then the state is invalid SS. This
could happen if there is a wrong transition in the transition set.
On the other hand, if a Super State is in the set of valid states
(Box H1), but it is not generated by Box T1, then this SS is a
valid super state and should be generated. SS wouldn’t be
generated if there is a missing transition in the transition set or
in the state diagram.

The following kinds of inconsistencies can be discovered
by this analysis:

1) Impossible super states
2) Unreachable super states

B. Single Step Transitions Inconsistencies
The necessary and impossible single step transitions (Box

H3 and Box H4) are known from the domain knowledge. The

TABLE I
DESCRIPTION OF EACH COMPONENT INVOLVED IN SSA MODEL

Box Name Description Source

N Domain
Knowledge

The facts that are known by the developer of
the system

Known from the domain
knowledge

H1 Necessary
Super States

The set of states that are identified to be
necessary super states. Domain Knowledge

H2 Impossible
Super States

The set of states that are identified to be
impossible super states. Domain Knowledge

H3
Necessary
single step
transitions

The set of transitions that are identified to
be necessary single step transitions Domain Knowledge

H4
Impossible
single step
transitions

The set of transitions that are identified to
be impossible single step transitions Domain Knowledge

T1
Set of all
generated

Super States

These super states are generated
automatically using the UML diagram and
transition set

Generated Automatically
by the Tool

T2 Set of all single
step transition

This set contains all of the single step
transitions. These transitions are generated
automatically using the transition set

Generated Automatically
by the Tool

T3
Set of all
generated
sequences

This set contains all of the legal sequences
that are allowed by the system. This set is
generated automatically using the transition
set

Generated Automatically
by the Tool

D1 UML State
Diagram

The state diagrams that are written by the
developer who specifies the system Developer

D2 Transition Set
The set of all legal transitions that are
allowed by the system. The developer
provides this set

Developer

D3 UML Sequence
Datagram

The sequence diagrams that are written by
the developer who specifies the system Developer

S Sequences Sequences that are extracted from the UML
sequence diagrams

Generated Automatically
by the Tool

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

314

set of all valid single step transitions (Box T2) are generated
automatically using the transition set. Comparing those sets
will discover some legal and illegal transitions.

If a necessary transition does not appear in set of all valid
single step transitions that means this necessary transition is
missing. Furthermore, if an impossible transition appears in
the set of all valid single step transitions that means this
transition is illegal.

The following kinds of inconsistencies are discovered by

this analysis:
1) Illegal transitions
2) Missing transitions

C. Sequences Inconsistencies
The tool generates the sequences using the transition

matrix. To validate a UML sequence diagram, the tool extracts
the sequences first (Box S), then, compares them to the set of
all generated sequences (Box T3). If there is a matching
sequence in that set, this sequence is valid. Otherwise, it is an
invalid sequence.

The following kinds of inconsistencies are discovered by
this analysis:

1) Illegal Sequences
The tool uses the UML state diagrams and the transition set

to generate the set of all generated Super States (SS). Also, the
tool uses the transition set to compute the set of all generated
sequences. Moreover, the tool uses the transition set to
compute the Set of all single step transitions.

From the domain knowledge, we identify the sets of valid
and invalid Super States (SS) and the necessary and
impossible single step transitions.

The UML sequence diagram is used to extract the
sequences which will be compared to the set of all generated
sequences.

The inconsistency can be fixed by several ways. It can be
fixed by adding or removing a fact to the domain knowledge.
Another way to fix the inconsistencies is correcting the state
diagram by adding a new transition (or removing one).

VI. THE TRANSITION MATRIX
The transition matrix details the possible global states of the

system based on a vector of states of individual instances of
classes and the possible transitions between the states in the
super state (SS). Consider a program that has class X and class
Y. Let class X has an initial state A and two other states, B
and C, while class Y has an initial state D and a second state
E. Fig. 2-a shows the state diagram for class X and Fig. 2-b
shows the state diagram for class Y. The state diagrams depict
how instances of X and Y can transition between those states.
Let class Y makes the transition between state D and state E
whenever class X makes the transition from state A to state B.
Table I shows possible transitions in the super state that is the
cross-product of all states with one instance of X and one
instance of Y.

 a- State diagram for Class X b- State diagram for Class Y

Fig. 2 State Diagrams for Class X and Class Y

An entry in a cell in T1 (Table II) shows that in one step, the
system can transition from the state of the row to the state of
the column. Taking the product of T1 by itself gives a matrix
that contains the transitions possible with two steps. The
closure of T1 is the sum of products, T1 + T1*T1 + T1*T1*T1
+…. The closure shows all possible transitions in any number
of steps. Although the closure is represented as an infinite
sum, it can be calculated in at most the number of products
equal to the rank of the initial matrix. In most cases, it is even
smaller than that number.

TABLE II
 SUPER STATE TRANSITION MATRIX T1

T1 AD BD CD AE BE CE
AD 0 0 0 0 1 0
BD 1 0 1 0 0 0
CD 0 1 0 0 0 0
AE 0 1 0 0 0 0
BE 0 0 0 1 0 1
CE 0 0 0 0 1 0

VII. THE EXAMPLE
In this section, we demonstrate our approach by simple

library system. This example describes the interaction between
a patron of a library and the copies of books the library holds.
In order to simplify the model the library holds only one copy
of each book. Fig. 3 shows the class diagram for this model.
Fig. 4 and Fig. 5 are the state diagrams for the patron and
book objects. Note that the transitions in the state diagrams
are numbered for ease of reference. This example originally
was created by a team of students trying to create a correct
model of a simple library system.

Fig. 3 The Class diagram for the Library Example

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

315

The patron object can be in one of three states; Good
Standing, Too Many Books, and Overdue Fines. We will call
these states G, T, and F respectively for the rest of this paper.
A patron starts in G until the number of books the patron has
checked out is equal to MAX or the patron returns an overdue
book. In the former, the patron will transition to state T where
they will remain until they return a book. In the latter, the
patron will transition to F where they will not be able to do
anything until they pay the fine that is owed.

A book object has six states; On Shelf, Missing, On Hold,
Checked Out, Overdue, and Returned. We will call these
states O, M, H, C, D, and R respectively for the rest of this
paper.

The two transitions from C labeled check represent the
library determining if the book is overdue. If the book is
overdue it will transition to D. Otherwise, it will transition to
R where it will remain until the library places it back on the
shelf.

For our analysis we will assume the library has only one
patron and three books. We now pair the transitions from the
patron and book objects that can occur together. An ‘X’
indicates that we are not concerned about the state of the
object. The transition set is shown in Table III.

Good
Standing

initialState

return checkout[n < MAX]

Too Many
Books

Fines

return

return[returnDate > DUE_DATE]

[returnDate <= DUE_DATE]

[returnDate > DUE_DATE]

payFine

checkout[n = MAX]

return

lose_By_Patron
[1]

[3]

[4]

[6]

[5]

[7]

[2]

[8]

G

TF

Fig. 4 The State Diagram for Patron

initialState

On Shelf

Checked
Out

Returned

Over due

check

Missing

return

On Hold

putOnShelf

find

Today > Due_date

Today <= Due_date

checkout

lose

cancel/expire

expire

return

return

check

lose_By_Patron
reserve

return_late

C

D

R

M

H

O
[113/213/313]

[112/212/312]
[15/25/35]

[114/214/314]

[13/23/33]

[17/27/37]

[18/28/38][110/210/310]

[111/211/311]

[14/24/34]

[11/21/31]

[19/29/39]

[16/26/36]

[12/22/32]

Fig. 3 The State Diagram for Book

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

316

TABLE III
TRANSITION SET FOR THE LIBRARY EXAMPLE

SSpre SSpost Transition Description
GOXX GCXX checkout[n<MAX], checkout
GXOX GXCX checkout[n<MAX], checkout
GXXO GXXC checkout[n<MAX], checkout

Check out a book (if at least one X
= O || R)

GOXX TCXX checkout[n=MAX], checkout
GXOX TXCX checkout[n=MAX], checkout
GXXO TXXC checkout[n=MAX], checkout

Check out a book (if X = C || H ||
D)

GCXX GRXX return, return
GXCX GXRX return, return
GXXC GXXR return, return

Return book on time

GDXX FRXX return[returnDate>dueDate], return
GXDX FXRX return[returnDate>dueDate], return
GXXD FXXR return[returnDate>dueDate], return

Return an over due book

TCXX GRXX return[returnDate<=dueDate], return
TXCX GXRX return[returnDate<=dueDate], return
TXXC GXXR return[returnDate<=dueDate], return

Patron with MAX books returns a
book on time

TDXX FRXX return[returnDate>dueDate], return
TXDX FXRX return[returnDate>dueDate], return
TXXD FXXR return[returnDate>dueDate], return

Patron with MAX books returns an
over due book

GCXX FMXX lose_by_patron, lose_by_patron
GXCX FXMX lose_by_patron, lose_by_patron
GXXC FXXM lose_by_patron, lose_by_patron

Patron lost a book

GCXX GHXX reserve
GXCX GXHX reserve
GXXC GXXH reserve

Patron holds a book

TCXX THXX reserve
TXCX TXHX reserve
TXXC TXXH reserve

Patron with MAX books holds a
book

GHXX GCXX cancel/expire
GXHX GXCX cancel/expire
GXXH GXXC cancel/expire

Cancel/Expiration of holding book
(n < MAX)

THXX TCXX cancel/expire
TXHX TXCX cancel/expire
TXXH TXXC cancel/expire

Cancel/Expiration of holding book
(n = MAX)

O M lose A book lost by the library
M O find A book found by the library
F G payFine Patron pays fine
C D check[today>Due_date] Book becomes over due
C C check[today<=Due_date] Book remains checked out
R O putOnShelf Book is re-shelved
H R return Return an on hold book
C R Return_late Return a late book

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

317

The initial transition matrix A1 has column and row
headings with quadruple representing the states of the four
objects. For this model there are 3*6*6*6 = 648 combinations
of the four objects. Table IV shows a portion of the initial
transition matrix A1.

TABLE IV

PORTION OF A1
 GOOO GOCO GODO GORO GCOO

GOOO 1,21 1,11
GOCO 26 23 2,22
GODO
GORO 25
GCOO 16

The row headings are the initial states and the column

headings are the final states. The numbers in the table arise
from Fig. 4 and Fig. 5. For the purpose of clarification we
have assigned unique numeric identifiers to the transitions for
each instance of an object in our system. The book object has
three numeric identifiers for each transition since we have
three instances of that object. For example, GOOO → GOCO
represents a patron in good standing checking out the second
book. The 1 indicates the patron took the transition labeled
checkout [n < MAX] and the 21 indicates the second book
took the transition labeled checkout. If there is an entry for a
cell in the matrix then the transition is valid. A2 is defined as
A1 * A1 which identifies all the states we can reach in two
steps. Table V shows a portion of A2.

TABLE V

PORTION OF A2
 GOOO GOCO GODO

GOOO (1,21)(26) (1,21)(23)
GOCO (2,22)(25) (26)(26) (26)(23)
GODO
GORO (25)(1,21)
GCOO (2,12)(15)

From Table V we can observe that it is possible to go from

GOCO to GOOO by first returning the second book and then
shelving it.

For this model, the unreachable states include two sets. The
first set includes the states where the patron is in T and one of
the three books is in O or R. Clearly the patron cannot have
MAX books checked out if one of the books is not checked
out. The other set of unreachable states occurs when the
patron is in F and all books are in C or D. In order for the
patron to be in F, one of the three books would have had to
have been returned. An analysis of A* for this model shows
that the columns for these unreachable states are empty.

Some of the faults in the design of the library example can
be discovered by simply analyzing the transition matrix. One
such fault was a missing transition. From FRCO and FCRO
there is no valid single step transition to FRRO. This means
that if one book is returned late, the patron goes to F status
and cannot return the other book until the fine is paid.

Some inconsistencies found in the library example:
1) The patron can’t return the book if she/he find it later on.

2) The patron can’t return any of her/his other books until
the fine is paid first.

3) The patron can’t lose an overdue book.
4) The patron can’t lose a book if he is in state ‘T’.
5) The system reaches an invalid state when the patron

checked out MAX books and trying to return a late book.

VIII. RELATED WORK
There are several different approaches that have been

proposed to perform consistency checking between UML
diagrams. Some approaches use transformation to convert
one diagram to another [2, 4, 7, 8, 9, 10] while others detect
the inconsistencies by comparing one diagram to another
using consistency rules [3, 11] Moreover, many approaches
use formalism, such as OCL and Z, to enforce the consistency
[6, 12, 13, 14].

Almost all approaches focus on all or some of six types of
UML diagrams. Namely, use case, class, object, sequence,
collaboration, and statechart diagram.
[15] studies the consistency between use case, class, sequence,
and statechart diagram. [4] studies the consistency between
class, object, sequence, collaboration, and statechart diagram.
[12] studies use case, class, sequence, and statechart diagram.
[9] studies the consistency between three diagrams: class,
sequence, and statechart diagram. [3, 6, 7, 8] study the
consistencies between sequence and statechart diagram. [16]
studies the class diagram and statechart diagram. .

The researchers pay the attention to enforce consistency
between only two diagrams (e.g. single sequence diagram vs.
single statechart diagram). However, our approach is unique
in that we are proposing a new technique to check the
consistency between multiple state diagrams and one or more
sequence diagrams. Moreover, the approach focuses on
multiple state diagrams instead of a single state diagram.

A. Transformation
The consistency checking in the transformational

approaches is done in two steps. First, the UML diagrams are
converted to interpreted diagrams. Second, the interpreted
diagrams are compared to each other to detect the
inconsistencies. If one diagram cannot convert to the other,
then both diagrams are converted to intermediate diagrams to
perform the comparison and detect the inconsistencies. These
approaches require the developers to identify set of
transformational rules to apply them to the diagrams in order
to produce the interpreted diagrams. As a result of that, more
time needs to be spent to prepare the diagrams for the
comparison.

Our proposed approach converts the state diagrams to sets
of valid and invalid super states. Also, it converts the
transition set to sets of single step transitions and sequences.
However, our approach does not require any transformational
rules since the sets are generated directly from the diagrams.

Alexander Egyed [4] presents a transformation-based
approach to consistency checking. They define a set of model
transformation rules to enable the conversion of one UML
diagram into another. They also define a set of comparison
rules to compare the transformed diagram with an existing one

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

318

of the same type. For example, to check for inconsistencies
between a sequence diagram and a class diagram, they first
transform the sequence diagram into an interpreted class
diagram. The interpreted class diagram is then compared with
the existing class diagram. This approach needs two sets of
rules: transformation rules and consistency rules. If one
diagram can’t transform to another, then both diagrams
transformed to an intermediate diagram to compare.

Hongyuan Wang et al.[8] propose an approach that checks
the consistency between sequence diagrams and state
diagrams. The approach converts statecharts using Finite State
Processes and transforms sequence diagram to messages trace.
They use an existing tool LTSA to support their approach.
However, the approach considers only single sequence
diagram and single stateschart diagram.

Wuwei Shen et al. [7] propose to build a message graph
from a state chart diagram and then go through the graph
based on the sequence of the messages retrieved from a
sequence diagram to find any inconsistency between these two
diagrams. Based on this method, a tool called ICER is
developed to provide software developers with automatic
consistency checking in the dynamic aspects of a model.
However, the approach considers only single statechart vs.
single sequence diagram.

Orest Pilskalns et al. [2] present an approach that combines
structural and behavioral UML representations in order to
derive and execute test cases to validate a UML model. They
develop a method for encapsulating the behavioral aspects
(i.e. message paths between objects) that exists in sequence
diagrams into a directed acyclic graph. The objects in the
graph are then associated with class attribute/parameter values
which are used to generate and execute test cases. Their
approach would require OCL object constraints to be written.

B. Consistency Rules
In consistency rules approaches, the consistency is checked

using the set of consistency rules. The diagrams are compared
to each other directly without transformation or formalism.
Boris Litvak et al. [3] present an approach to consistency
checking between UML sequence and state diagrams. They
created the BVUML (Behavioral Validator of UML) tool
which automates the behavioral validation process. Their
approach associates states with only one object lifeline in the
sequence diagram so a single run of the tool validates
consistency for only one object. Therefore the tool must be
run multiple times in order to check the consistency of an
entire sequence diagram.

Alexander Egyed [11] introduces an approach for quickly,
correctly, and automatically deciding what consistency rules
to evaluate when a model changes. The approach does not
require consistency rules with special annotations. Instead, it
treats consistency rules as black-box entities and observes
their behavior during their evaluation to identify what model
elements they access. The UML/Analyzer tool integrated with
Rational Rose fully implements this approach. It was used to
check 24 types of consistency rules. The author found that the
approach provided design feedback correctly and required, in
average, less than 9 ms evaluation time per model change with

a worst case of less than 2 seconds at the expense of a linearly
increasing memory need.

C. Formalism
Since UML is not precise enough, some researchers

formalize the UML diagrams to some formal languages (e.g.
Z). They then compare this formalism to detect the
inconsistencies between the diagrams.

Yves Dumond et al. [6] show that it is possible to integrate
semi-formal and formal methods for the dynamic behavior of
the UML models. The objective is to favor the integration of
formal techniques in the actual practice of software
engineering. They introduce an approach to formalize
sequence diagrams and verify coherence with the statechart
diagrams. The approach translates the UML sequence
diagrams into the pi-calculus, by preserving the object
paradigms. To preserve the object notation, they name the pi-
calculus processes with the name of the objects. The
consistency between sequence diagrams and statechart
diagrams can be checked by verifying that the messages in the
sequence diagrams trigger states in statechart diagrams.

Krishnan [13] describes a framework in which UML
diagrams can be formalized to perform consistency checking.
UML diagrams are translated into specifications of the
theorem proving tool PVS (Prototype Verification System).
The PVS is a language that allows for the introduction of
abstract data types, functions, etc. To check for consistency
between sequence and class diagrams, the class diagrams must
first be annotated with OCL constraints. The PVS will check
if the sequence of states described in the sequence diagram
can be obtained from the class diagrams. Custom traces (i.e.
sequence of states) can also be supplied by the user to check if
other properties hold.

Soon-Kyeong Kim and David Carrington [15] describe how
consistency checking between different UML models can be
accomplished by using a formal object-oriented metamodeling
approach. They formally define the abstract syntax and
semantics of the UML model using Object-Z as a
metalanguage. They then define consistency constraints that
logically exist between semantically equivalent elements in
the metamodel but are not defined in the current UML
metamodel structure. Once the consistency constraints have
been defined for each of the UML model elements,
consistency checking between different model elements can
be achieved by verifying that the combined models preserve
all of the consistency constraints for the individual model
elements. They use the formal language to ensure the
consistency between two diagrams.

IX. CONCLUSION AND FUTURE WORK
To avoid errors in UML diagrams, we should check the

consistency among the diagrams and make sure that the
diagrams are consistent to each other. To accomplish this, we
have proposed this work to identify the problem that may arise
due to the fact that some aspects of the model will be
described by more than one diagram.

We proposed a solution that analyzes the multiple UML
state diagrams and UML sequence diagrams to detect

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

319

inconsistencies in states, single step transitions, and
sequences. Our approach, The Super State Analysis (SSA),
consider transition of multiple state diagrams instead of
transition of a single state diagram. Super State Analysis
generates automatically three different sets to detect the five
types of inconsistencies. SSA generates the set of all generated
super states (T1), set of all valid single step transitions (T2),
and set of all generated sequences (T3). SSA performs five
types of comparisons between these generated sets and the
provided sets to detect the inconsistencies. Namely the super
state analysis compares set T1 with set H1, set T1 with set H2,
set T2 with set H3, set T2 with set H4, and set T3 with set S.
SSA identifies five types of inconsistencies: impossible super
states, unreachable super states, illegal transitions, missing
transitions, and illegal sequences.

On the future work, we are planning to expand the case
study to a bigger one with more states and sequence diagrams.
We will consider more interaction between the state diagrams
with different number of instantiations. Furthermore, we will
investigate the different type of inconsistencies using the five
comparisons. Moreover, we will use the set notations to
formalize the different sets that are involved in the
comparisons. Also, we plan to build the SSA tool to perform
all five comparisons automatically. We are also developing
approaches to minimize the state explosion to allow the SSA to
scale to larger systems.

REFERENCES
[1] OMG Unified Modeling Language Specification, UML 2.0, Object

Management Group, 2006, http://www.uml.org.
[2] O. Pilskalns, A. Andrews, S. Ghosh, & R. France, Rigorous Testing by

Merging Structural and Behavioral UML Representations, Proc. 6th Int.
Conf. on UML, San Francisco, CA, 2003, 234-248.

[3] B. Litvak, S. Tyszberowics, & A.Yehudai, Behavioral Consistency
Validation of UML Diagrams, Proc. 1st Int. Conference on Software
Engineering and Formal Methods, 2003, 118-125.

[4] A. Egyed, Scalable Consistency Checking between Diagrams-The
ViewIntegra Approach, Proc. 16th Annual International Conference on
Automated Software Engineering, 2001, 387-390.

[5] Y. Bontemps, P. Heymans, & P. Schobbens, From Live Sequence Charts
to State Machines and Back: A Guided Tour, IEEE Transactions on
Software Engineering, 31(12), 2005, 999-1014.

[6] Y. Dumond, D. Girardet, & F. Oquendo, A relationship between
sequence and statechart diagram, A Workshop, Proc. Dynamic
Behaviour in UML Models: Semantic Questions, York, UK, 2000.

[7] W. Shen & W. Low, Consistency Checking Between Two Different
Views Of a Software System, Proc. 10th IASTED Int. Conf. on Software
Engineering and Applications, Dallas, TX, 2006.

[8] H. Wang, T. Feng, J. Zhang, & K. Zhang, Consistency check between
behaviour models, Proc. IEEE International Symposium on
Communications and Information Technology, China, 2005, 486-489.

[9] R. Straeten , J. Simmonds & V. Jonckers, Maintaining Consistency
between UML Models Using Description Logic, Journal S'erie L'objet -
logiciel, base de donn'ees, r'eseaux, 10(2-3), 2004, 231-244.

[10] R. Wagner, H. Giese, & U. Nickel, A Plug-In for Flexible and
Incremental Consistency Management, Proc. International Conference
on the UML 2003, San Francisco, October 2003, 78-85.

[11] A. Egyed, Instant consistency checking for the UML, Proc. 28th
International Conference on Software Engineering, China, 2006, 381-
390.

[12] H. Gomaa & D. Wijesekera, Consistency in Multiple-View UML
Models: A Case Study, Proc. of Workshop on Consistency Problems in
UML-based Software Development, 6th Int. Conf. on the UML, San
Francisco, 2003.1-8.

[13] P. Krishnan, Consistency Checks for UML, Proc. 7th Asia-Pacific
Software Engineering Conference, Singapore, 2000, 162-169.

[14] S. Kim & D. Carrington, A Formal Object-Oriented Approach to
defining Consistency Constraints for UML Models, Proc. of the 2004
Australian Software Engineering Conference Australia, 2004, 87-94.

[15] L. Kuzniarz & M. Staron, Inconsistencies in Student Designs, Proc. 2nd
Workshop on Consistency Problems in UML-based Software
Development, San Francisco, CA, 2003, 9-18.

[16] Z. Pap, I. Majzik, A. Pataricza, & A. Szegi, Completeness and
Consistency Analysis of UML Statechart Specifications, Proc. IEEE
Design and Diagnostics of Electronic Circuits and Systems Workshop,
Hungary, April, 2001, 83-90.

