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Enhancing Camera Operator Performance with
Computer Vision Based Control

Paul Y. Oh and Rares I. Stanciu

Abstract— Cameras are often mounted on platforms that can
move like rovers, booms, gantries and aircraft. People operate such
platforms to capture desired views of scene or target. To avoid
collisions with the environment and occlusions, such platforms often
possess redundant degrees-of-freedom. As a result, manipulating
such platforms demands much skill. Visual-servoing some degrees-
of-freedom may reduce operator burden and improve tracking per-
formance. This concept, which we call human-in-the-loop visual-
servoing, is demonstrated in this paper and applies a � � � � �

filter and feedforward controller to a broadcast camera boom.

Keywords— Computer vision, visual-servoing, man-machine sys-
tems, human-in-the-loop control

I. INTRODUCTION

Human-in-the-loop systems involve an operator who
manipulates a device for desired tasks based on feedback
from the device and environment. For example, devices like
rovers, gantries, and aircraft possess a video camera where
the task is to maneuver the vehicle and position the camera
to obtain desired fields-of-view. Such tasks have applications
in areas like broadcasting, inspection and exploration. Such
device-mounted camera systems often possess many degrees
of freedom (DOF) because it is important to capture as many
fields-of-view as possible. To overcome joint limits, avoid
collisions and ensure occlusion-free views, these devices are
typically equipped with redundant DOF. Tracking moving
subjects with such systems is a challenging task because it
requires a well skilled operator who must manually coordinate
multiple joints. Tracking performance becomes limited to
how quickly the operator can manipulate redundant DOF.
Figure 1 for example, shows a typical broadcast boom and
pan-tilt camera head. Here, the operator can push and steer
the dolly, as well as boom, pan and tilt the camera. Our
particular interest is to apply visual-servoing to augment an
operator’s ability to track moving targets; computer vision
is used to control some DOF so that the operator has fewer
DOF to manipulate.

The prototype shown in Figure 1 was constructed to capture
data, implement controllers and assess performance. Hardware
includes a 266MHz PC, an pan-tilt DC motor controller and
quadrature encoders. The vehicle is a four wheeled dolly
with gimbaled broadcast boom, a motorized pan-tilt head,
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Fig. 1. The operator positions the camera by booming the arm horizon-
tally and vertically. The pan-tilt head (inset) provides additional degrees-of-
freedom.

color camera, wireless video transmitter and framegrabber.
The boom pivots on the steerable dolly to sweep the camera
horizontally and vertically. Both proportional [9] [10] and
partitioned [7] controllers were designed that visually servo
the pan-tilt motors to keep a moving target centered in the
camera’s field-of-view despite boom or dolly motions. Sample
image stills acquired from videotaping tracking experiments
are shown in Figure 3. The net effect is what we call human-
in-the-loop visual servoing – the operator just focuses on
safely manipulating the boom and dolly while computer-
control automatically servos the pan-tilt camera.

A challenge underlined in [9] was the system’s stability,
especially when the target and the boom move 180 degrees out
of phase. If boom motion data is not included, camera pose
cannot be determined explicitly because there are redundant
degrees-of-freedom. As a result, the system could track a slow
moving target rather well, but would be unstable when the
target or boom moves quickly. In this paper a feedforward con-
troller is employed to improve stability. Section II describes
the camera boom in more detail and provides its Denavit-
Hartenberg configuration. Section III models the pan-tilt mo-
tors. The feedforward controller is presented in Section IV.
Several experiments were performed to assess the performance
of this controller. The results as well as some conclusions and
a map of future work are presented in Sections V and VI
respectively.
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II. SYSTEM DESCRIPTION

The boom-camera system is composed of a 4-wheeled
dolly, boom, motorized pan-tilt unit (PTU) and camera as
shown in Figure 1. The 1.22 � long by 0.76 � wide dolly
has four wheels and thus can be pushed and steered. The 1.2

� long boom is linked to the dolly via a 1.04 � cylindrical
pivot, which allows the boom to sweep motions horizontally
(pan) and vertically (tilt). Mounted on one end of the boom
is a 2-DOF motorized PTU and video camera weighing 9.525� �

. The motors allow an operator to both pan and tilt the
camera 360 degrees at approximately 90 � � � � �

. The PTU and
camera are counterbalanced by 29.5

� �
of dumbbell plates

mounted on the boom’s opposite end.

Normal broadcast use of this boom-camera system entails
one or more skilled personnel: (1) With a joystick, the
operator servos the pan-tilt head’s DC motors to point the
camera. A PC or small board computer motion control card,
ISA or PC-104 bus respectively, allows for accurate and
relatively fast camera rotations. (2) The operator physically
pushes on the counterweighted end to boom the camera
horizontally and vertically. This allows one to deliver a
diverse range of camera views (like shots looking down at
the subject), overcome pan-tilt head joint limits and capture
occlusion-free views. (3) The operator can push and steer the
dolly in case the boom and PTU are not enough to keep the
target’s image in the camera’s field-of-view.

Our augmentation interests are to use machine vision to
visually servo the pan-tilt camera and integrate computer
control in the human-in-the-loop system. For the former, the
target’s image centroid can be measured from the real-time
frame data to visually servo the 2-DOF PTU-camera. This
can automatically keep the image centered in the camera’s
field-of-view and allow the operator to just focus on boom
swings and dolly translations. For the latter, ultimately the
pan-tilt head and boom motions redundantly orient the camera
and can be problematic. For example during the visually
servoing of the pan-tilt camera the operator conceivably can
boom in the opposite direction. To compensate, the visually
servoing must rotate the camera faster and if the two motions
are out of phase by 180 degrees, they can conflict and
visual-servoing will be unstable.

The control aspects of this latter problem are particularly
interesting to us. The pan-tilt head is a fast bandwidth
actuator but has limited range-of-motion. On the other hand,
the boom can swing the camera over larger areas but its
inertia limits swinging speeds. Such a system is an example
of a manipulator with both fine and course ranges of motion.
If a fine/course motion controller can be properly tuned then
one can leverage the best performance each actuator has to
offer. Such fine/course schema characterize many motion
platform-mounted camera systems such as pan-tilt cameras
mounted on helicopters and rovers; the vehicle provides large
range of motion but fine pan-tilt motions are required to
ensure the image remains centered in the camera.

Fig. 2. Denavit-Hartenberg notation for joint frames

Joint � d a �
1 	 
 � � 
 � �
2 0 0 � � � �
3 � 
 � 0 � � � �
4 	 
 � � � 0 � �

TABLE I

DENAVIT-HARTENBERG LINK AND JOINT PARAMETERS

To underscore the man-machine control issues of visually
servoing redundant DOF systems, a simple but reliable vision
system is used. Real-time image centroid measurements are
performed using a Newton Cognachrome color tracker, which
is an embedded microprocessor that serially transmits the
centroid’s pixel location of a colored target. Additionally a
joint encoder to measure horizontal booming was installed.

To summarize, the boom-camera system’s Denavit-
Hartenberg reference frames and arm matrix are given in
Figure 2 and Table I. Readers interested in the arm matrix
are directed to [9] for a complete derivation.

III. MODELING THE PTU

As shown in Figure 1, the camera is mounted on a 2 degree-
of-freedom pan-tilt unit (PTU). Two DC motors are driven by
a motion card installed in a PC. Like many commercial motion
cards, the PID control gains are factory set, balancing transient
response with minimal overshoot. Using a standard DC motor
transfer function, one has

� � � � � � �� � � � �
� � � � � (1)

� � �
� � � � � � �  � � ! � � � " � � � # � �

where �� �
is motor speed,

� �
is the applied voltage, � � is the

motor torque constant, � � is the back EMF constant,
" �

and# �
are the rotor resistance and inductance respectively and ! �
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Fig. 3. Three sequential images from videotaping a tracking experiment. Camera field-of-view (top row) shows the target is kept centered in the image plane
despite boom motions executed by the operator. Such motions are illustrated by the middle and bottom rows’ images; two cameras placed in the room were
used to record the experiment.

Motor Parameters Value and Units� �
, rotor resistance 1.15 �� �
, rotor inductance 1.4 � �� �
, torque constant 0.055 � � 	 
� �
, back EMF constant 5.8 � 	 
 � � �� �
rotor moment of inertia � � � � � � � � � 
 � � � �

TABLE II

PTU MOTOR PARAMETERS.

is the armature viscous damping. Values for these parameters
are given in Table II.

� �
is the motor shaft’s moment of inertia.

� � � � � � � � � � �
� �

� �
(2)

where,
� �

is load moment of inertia,
� �

is the rotor moment
of inertia and � �� � is the gear ratio. The PTU’s gear ratio and

	 �
are both small and were set to zero. As such, Equation 2

with values from Table II results in


 � � � � � �
 � � � �
� � � � � � � �   

 !   " # $ % � � � " ! % & � � � ' " ! & (3)

Using a zero-order-hold to model a digital-to-analog con-
verter, the discrete form of the transfer function can be

calculated. Figure 4 gives the block diagram where ( ) * +
is the command reference velocity,

�
is the error between

the command and actual motor velocities and � * � %    
counts/rev is the encoder constant. The sampling time , was
set at 1.25 msec. 	 � - �

is the factory tuned PID controller
with proportional, integral and derivative gains set at � . �

" �    , � / � 0  and � 1 � %     respectively for the PTU
pan motor. PID gains for the tilt motor were factory set at

� . � " �    , � / � %  and � 1 � ' %    . With

 � � � �

given by Equation 3, the discrete transfer function relating the
command and actual velocities is given as

2 3 4 5 6 7 � � 8 � 9 � � � 8 : 8 5 � � � � � 9 � ; 5 � � � � � � < < 5 � � � � � � � < 5 � �
� 9 � ; � � � � < 8 < � � = 5 � � � : 8 : 5 � � � � � � � > 5 � � � 8 � 5 � � (4)

Equation 4 is validated experimentally as described in
Section V.

IV. FEEDFORWARD CONTROLLER

As mentioned in Section I, the boom-camera system under
proportional control [9] becomes unstable when tracking a fast
moving target. The boom and PTU are redundant rotational
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Fig. 4. The PTU Controller Block Diagram

DOF that at high frequencies can become 180 degrees out-of-
phase. The net result is the boom and PTU rotations conflict
rather than cooperate and tracking fails. To overcome such
instabilities, a feedforward controller can be designed which
provides target motion estimation [3]. Figure 6 depicts a block
diagram with transfer function

� � � � �
� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � (5)

where
� � � � �

is the position of the target in the image,� � � � �
is target position, � � � �

and
� � � � �

, are respectively
the transfer functions for the vision system and PTU. � � � � �
and � � � �

are respectively the transfer functions for the
feedforward and feedback controllers.

Clearly if � � � � � � � � �
� � 	

� � �
the tracking error will be

zero, but this requires knowledge of the target position which
is not directly measurable. Consequently the target position
and velocity are estimated. For a horizontally translating target,
its centroid in the image plane is given by the relative angle
between the camera and the target

� � � � � � � 
 � � � � � � � � � � �
�

� � � �
(6)

where
� � � � �

and
� � � � �

are the target position in the image
plane and world frame respectively.

�
�

� � �
is the position of

the point which is in camera’s focus (due to the booming and
camera rotation) and � 
 � � � is a constant mapping the world
to image space. The target position prediction can be obtained
from the boom and PTU as seen in Figure 5. Rearranging this
equation yields


� � � � � � � �� � � �

� 
 � � � � �
�

� � �
(7)

where

� � is predicted target position.

A. � � � � � Filter

Predicting target velocity requires a tracking-filter.
Oftentimes a Kalman filter is used but is computationally
expensive. Since Kalman gains often converge to constants,

camera
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*

Fig. 5. A schematic of camera-scene.
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Fig. 6. The Feedforward Controller with Feedback Compensation.

the simpler � � � � � tracking filter can be employed which
tracks both position and velocity without steady-state errors
[6].

Tracking involves a two step process. The first step is to
predict target position and velocity

� � � � � � � � � � � � � � � � � � � � � � � � � � � � 	 	 (8)

�
� � � � � � � � � � � � � � � � � � �

(9)

where � is the sample time and � � � � � � �
and �

� � � �
� �

are respectively the predictions for position and velocity
at iteration

� � � . � � � � �
, � � � � �

and
� � � 
 �

are the corrected
values of iteration

�
for position, velocity and acceleration

respectively.
The second step is to make corrections

� � � � � � � � � � � � � � � � � � � � � � � � � �
(10)

� � � � � � �
� � � � � � � 	 � � � � � � � � � � � � � � �

(11)
� � � � � � � � � � � � � � � � 	 	 � � � � � � � � � � � � � � � �

(12)

where � � � � �
is the observed (sampled) position at iteration�

. The appropriate selection of gains � , � and � will
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Fig. 7. The Feedforward Controller with Feedback Compensation as it was
implemented.

determine the performance and stability of the filter [11].

An � � � � � filter was implemented to predict target
velocity in the image plane with gains set at � � � � � � ,

� � � � � and � � � � � � . This velocity was then used in the
feedforward algorithm as shown in Figure 7.

Image processing in the camera system can be modeled
as a � � �

unit delay which affects camera position � � , and
estimates of target position. In Figure 7, the block

� � � � � � �
represents the transfer function of the � � � � � filter, with the
observed position as input and the predicted velocity as output.

The focal length, � � � � � , was set a constant value and
assumes a pinhole camera model that maps the image plane
and world coordinates. This focal length was experimentally
determined by comparing known lengths in world coordinates
to their projections in the camera’s image plane.

Taking the � transform of the � � � � � filter yields its
discrete-time transfer function

� � � � � � � � � � �	 
 � � � or

	 � 
 � � 
 � � � � � � � � � � � 	 
 � � � � � � � � � � � � �
� � � � � � � � � � � 
 � � � � � � � 	 � � � � � � � � � � � � � � � � � 
 � � � �

(13)

where 	 � � � �
is the predicted velocity and


 � � � �
is target’s

observed position.

V. EXPERIMENTAL RESULTS

Experiments to validate the dynamic models and to
compare the performance of feedforward and proportional
control in human-in-the-loop visual-servoing were performed.
A condensation algorithm was implemented to capture the
target’s position in image space. A � � � � � � � � 
 
 � . wooden
block was mounted in the end-effector of a 7-DOF Mitsubishi
robot arm, Figure 8. The camera-to-target distance was 3.15

 and focal length of � � � � � � � � � pixels.

To validate the dynamic model, Equation 4, a Bode plot
was generated. Here, the input would be an oscillating target
and the output would be the resulting PTU angle. As such,
the robot arm oscillated the block horizontally over a range
of frequencies and PTU output angles were recorded. As
shown in Figure 9, the resulting magnitude and phase plots

Fig. 8. A wooden block target was mounted in the end-effector of a
Mitsubishi robot arm (background). The boom-camera system (foreground)
attempts to keep the target’s image centered in the camera’s field-of-view.

(top two) match well with a Matlab simulation on Equation 4
(bottom).

Figure 10 shows the results tracking the target which
oscillated at 0.08 � �

from � � � � � 
 to � � � � � 
 (top
plot). While the controllers attempted to track the target, the
boom was manually moved over from -15 to +25 degrees
(second plot from top). The bottom two plots depict tracking
errors resulting from such human-in-the-loop visual-servoing.
Feedforward based control has a � � � � pixel peak-to-peak
tracking error (bottom-most plot) compared to � � � � pixel
errors in proportional-only control. Zero peak-to-peak pixel
error reflect perfect tracking such that the target image always
remains centered in the camera’s field-of-view. As such, the
results suggest that a feedforward strategy performs better than
proportional control for human-in-the-loop visual-servoing.

VI. CONCLUSIONS AND FUTURE WORK

This paper integrates visual-servoing for augmenting the
tracking performance of camera teleoperators. By reducing
the number of DOF that need to be manually manipulated,
the operator can concentrate on coarse camera motion. Using
a broadcast boom system as an experimental platform, the
dynamics of a camera pan-tilt-unit were derived and validated
experimentally. A feedforward controller with an � � � � �
filter was the formulated and implemented experimentally.
Results comparing proportional and feedforward controllers
were illustrated. Feedforward control yielded lower peak-to-
peak pixel errors which suggest that estimating target position
improves tracking performance despite a human-in-the-loop
disturbances. Future work will look at increasing the band-
width under which the boom-camera system can track stably.
A multivariable controller approach is being considered.
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Fig. 9. The PTU Bode magnitude (top) and phase (bottom) plots

Fig. 10. Tracking errors comparing feedforward and proportional control in
human-in-the-loop visual-servoing.
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