
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2363

Abstract—This paper presents the visual control flow support of

Visual Modeling and Transformation System (VMTS), which

facilitates composing complex model transformations out of simple

transformation steps and executing them. The VMTS Visual Control

Flow Language (VCFL) uses stereotyped activity diagrams to specify

control flow structures and OCL constraints to choose between

different control flow branches. This work discusses the termination

properties of VCFL and provides an algorithm to support the

termination analysis of VCFL transformations.

Keywords—Control Flow, Metamodel-Based Visual Model

Transformation, OCL, Termination Properties, UML.

I. INTRODUCTION

N VMTS [1] directed, labeled graphs are used to represent

the internal structure of software models, and transformation

steps (graph rewriting rules) specify the operational behavior

of model processing. The VMTS supports editing metamodels,

design models according to their metamodels, transforms

models using graph rewriting techniques, and facilitates to

check constraints specified in the metamodel during the

metamodel instantiation and the transformation step

constraints during the model transformation process [1].

VMTS is a UML-based [2] approach for model

transformations. The technique is based on graph

transformations [3], where UML class diagrams are used to

represent the metamodels (graph grammars) of the input and

the output of the transformations. The transformations are

defined as controlled structure of elementary transformation

steps.

Graph rewriting [3] is a powerful tool for graph

transformation with a strong mathematical background. The

atoms of the graph transformation are rewriting rules, each

rewriting rule consists of a left-hand-side graph (LHS) and a

right-hand-side graph (RHS). Applying a graph rewriting rule

means finding an isomorphic occurrence (match) of LHS in the

graph to which the rule is applied (host graph), and replacing

this subgraph with RHS. Replacing means removing the

elements that are in LHS but not in RHS, and gluing the

elements that are in RHS but not in LHS.

Model transformation means converting an input model

Manuscript received August 31, 2005.

L. Lengyel, T. Levendovszky, H. Charaf, Budapest University of

Technology and Economics, Goldmann Gyorgy ter 3, 1111 Budapest,

Hungary (e-mails: {lengyel, tihamer, hassan}@aut.bme.hu).

available at the beginning of the transformation process to an

output model. Several widely used approaches to model

transformation uses graph rewriting as the underlying

transformation technique. Previous work [1] has introduced an

approach – metamodel-based rewriting rules –, where the left-

hand-side (LHS) and right-hand-side (RHS) graphs of the rules

are built from metamodel elements. It means that an

instantiation of LHS must be found in the host graph instead of

the isomorphic subgraph of LHS. This metamodel-based

approach facilitates to assign OCL constraint to pattern rule

nodes (PRNs) – nodes of the rewriting rules.

The Object Constraint Language (OCL) [4] is a formal

language for the analysis and design of software systems. It is

a subset of the UML standard [2] that allows software

developers to write constraints and queries over object models.

The motivation of the work presented in this paper is to

support the control flow in visual model transformation

systems and to define the conditions exactly which guarantee

that if a transformation fulfills them it surely terminates or

surely not. An algorithm – VCFL Termination Algorithm

(VTA) – is worked out to support the termination analysis of

VCFL transformations. The VTA is an offline algorithm, as an

input it uses only the control flow model to make the decision.

It means that the decision is independent from any host model.

II. VISUAL CONTROL FLOW LANGUAGE

One of the most important capabilities of a control flow

language is the possibility to express a transformation as an

ordered sequence of the rewriting rules. Classical graph

grammars apply any production that is feasible. This technique

is appropriate for generating and matching languages but

model-to-model transformations often need to follow an

algorithm that requires a more strict control over the execution

sequence of the steps, with the additional benefit of making the

implementation more efficient.

The VMTS approach is a visual approach and it also uses

graphical notation for control flow: Stereotyped Activity

Diagram, which is a technique to describe procedural logic,

business process, and work flow. In many ways, it plays a role

similar to flowcharts, but the principal difference between it

and flowchart notation is that activity diagrams support

parallel behavior [5].

In Fig. 1 the control flow model of Prim’s algorithm is

depicted which implements a greedy-choice strategy for

minimum spanning tree. Starting with an empty tree (one

A Visual Control Flow Language and Its

Termination Properties

László Lengyel, Tihamér Levendovszky, and Hassan Charaf

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2364

optional vertex with no edges), the algorithm repeatedly adds

the lowest-weight edge (u,v) in input graph such that either u

or v, but not both, is already connected to the tree. The pseudo

code of the algorithm is as follows.

PRIMSPANNINGTREEALGORITHM (Graph G)

 1 Select an arbitrary vertex from G to start the tree from

 2 while (there are still non-tree vertices)

 3 Select the edge of minimum weight between a tree and non-tree vertex

 4 Add the selected edge and vertex to the spanningTree

 5 end while

Fig. 1 The VCFL control flow of Prim’s spanning tree algorithm

An arbitrary vertex from G to start the tree from is given as

a pivot node. A pivot node is an input parameter of the control

flow specified by the user. In the graph each vertex and edge

has a property (IsSpanningTreeMember) which determines if a

vertex or an edge has already been added to the spanning tree.

In the decision object this property of the vertices is checked.

If the graph contains at least one vertex which is not a member

of the spanning tree, then the constraints contained by the

decision select the path to SelectNextEdge rule, otherwise to

the rule end.

The first transformation step (SelectNextEdge) selects the

neighbors of the tree vertices which are not members of the

tree yet. It selects the vertex from the neighbor vertices which

is connected to the tree with the edge of minimum weight, and

sets the IsSpanningTreeMember of the selected vertex and

edge to true. The ColorNewElements step obtains the selected

vertex and edge as passed parameter between rules and

modifies their color to red (other, more technical,

transformation steps can also be defined). As a result of the

transformation the minimal spanning tree will be red. The

presented transformation does not modify the topology of the

model but updates the attribute values.

The VCFL is a visual language for controlled graph

rewriting and transformation, which supports the following

constructs: sequencing transformation steps, branching with

OCL constraints, hierarchical steps, parallel executions of the

steps and iteration.

A. Sequencing Transformation Steps

Sequencing transformation steps facilitates a transformation

which contains the steps in an ordered sequence (S0, S1… Sn-1).

Assume the case that the input model of the i
th
 step (Si) is the

model Mi and the result of the Si is the Mi+1 (where 0 ≤ i ≤ n-

1). In this case the input model of the i+1
th
 step (Si+1) is the

Mi+1. It means that during the execution of the step sequence

each step works on the result of the previous step. (Obviously,

except for the first step, which works on the input model.) The

result of the whole transformation is the result of the last step

(Sn).

The interface of the transformation steps allows the output

of one step to be the input of another step, in a dataflow-like

manner. This is used to sequence expression execution. In

VCFL this construction is referred as external causality. An

external causality creates a linkage between a node contained

by the RHS of the i
th
 step and a node contained by the LHS of

the i+1
th
 step. This feature accelerates the matching and

reduces the complexity, because the i
th
 step provides partial

match to the i+1
th
 step. In our example we use external

causalities to pass the selected edge and vertex from

SelectNextEdge rule to ColorNewElements rule.

B. Branching with OCL Constraints

There are many scenarios where the transformation is to be

applied, it depends on a condition, therefore a branching

construct is required. In VCFL the OCL constraints assigned

to the decision elements can choose between branch paths of

optional numbers, based on the properties of the actual host

model and the success of the last transformation step

(SystemLastRuleSucceed). If the last transformation step fails,

then the VCFL could use the values of the SystemLHSFailure

and SystemRHSFailure system variables for the decision.

These variables represent whether a failure has occurred,

because there was no proper match (LHS failure: topologically

not suitable host model or there is at least one constraint not

satisfied in the LHS of the transformation step), or the

transformation result was not sufficient (RHS failure: there

was at least one constraint not satisfied in the RHS of the

transformation step).

In VCFL each branch has an exact OCL guard condition

which is evaluated by the execution engine during the

execution.

When a step is connected to more than one follow-up steps,

then maximum one of the branch conditions is allowed to be

true. It means that the conditions must not have any common

part. This restriction ensures that the control flow execution of

the VCFL is deterministic.

We applied VCFL in several case studies (e.g. generate user

interface from resource model and user interface handler code

from statechart model for mobile platform [6]) which require

control flow support, and all of them could be solved without

non-determinism. But VCFL provides an interface for

nondeterministic control flow as well.

C. Hierarchical Steps

The VCFL supports hierarchical specification of the

transformation steps. High-level steps can be created by

composing a sequence of primitive steps and can be viewed as

separate transformation modules.

A high-level rule can contain several simple rules, hiding

the details which could be unimportant on a specific

abstraction level and represents the contained rules as coherent

units.

Often the OCL constraints assigned to a decision object do

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2365

not cover all possible cases. It could result that in certain cases

none of the branch paths is selected, in this case the parent step

of the actual transformation handles the control flow: breaks

the execution of the transformation on the actual level and

continues the transformation on the parent level.

D. Iteration (Tail Recursion) and Parallel Executions of

the Steps

The iteration is achieved with the help of the decision

objects and the OCL constraints contained by them. A decision

object evaluates the assigned constraints and based on the

results selects a flow edge which could be a follow-up or a

backward edge as well (Fig. 1).

Recursion could be solved with the combination of the

iteration and external causalities. A high level rule can call

itself, where external causalities represent the actual

parameters of the recursive call.

Flattening the state machine is an example when we have to

apply recursive algorithm that first calls flattening on its

children before flattening itself.

The parallel execution of the independent transformation

steps is under implementation, it will supported by the Fork

and Join elements.

In VCFL if a transformation step fails and the next element

in the control flow is a decision object then it could provide

the next branch based on the OCL statements and the value of

the SystemLastRuleSucceed variable. If no decisions can be

found, the control is transferred to the parent state, if there is

no parent state, the transformation terminates with error.

III. TERMINATION PROPERTIES

The termination properties of a transformation need to be

discussed. The difference between a transformation and a

finite sequence of steps is that a finite sequence of steps always

terminates, but a transformation, can contain infinite number

of steps. Our aim is that VCFL transformations terminate,

therefore an algorithm has been worked out to support the

early detection of the infinite loop and the validation of the

control flow that from each step can reach an end step.

In the VCFL a transformation step has two specific

attributes: Exhaustive and MultipleMatch. Recall that applying

a graph rewriting rule means finding a match of the LHS in the

host graph and replacing this subgraph with the RHS. An

exhaustive transformation step is executed continuously as

long as the LHS of the step could be matched to the host

model. The MultipleMatch attribute of a rule allows that the

matching process finds not only one but all occurrence of the

LHS in the host model, and the replacing is executed on all the

found places.

Definition (VCFL Transformation): A VCFL

Transformation is a stereotyped UML activity diagram. A

VCFL Transformation T defines a strict order of the contained

transformation steps TSTEPS...SS,S 1-n10 ∈∈ , where S0 is

the start step of the T. Transformation T contains OCL

constraints, assigned to decision objects to choose between

different control flow branches and external causalities

between transformation steps to support parameter passing.

 Definition (Termination of VCFL transformations): A

VCFL transformation T for a finite input model G0 terminates,

if there is no infinite derivation sequence from G0 via

transformation steps TSTEPS ∈ , where starting from S0

(start step of the T) steps STEPS are applied as it is defined
by the transformation T.

For non-exhaustive and also for exhaustive transformation

steps, the MultipleMatch attribute of the steps does not modify

the termination of the VCFL control flows for optional finite

input model G0.

The termination checker algorithm has to differentiate

between certain cases. It has to take into consideration whether

the VCFL transformation contains loops with decision object

or exhaustive transformation steps.

A. VCFL Control Flows with Non-Exhaustive

Transformation Steps

Proposition: A VCFL transformation T, which contains

only non-exhaustive transformation steps)(1-n10 ...SS,S and

does not contain loops for an optional finite input model G0

always terminates.

Proof: The transformation T contains finite number of

transformation steps (∞<∧= nSTEPSn #). 1-ni 0 |i ≤≤∀

STEPSS i ∈ is executed at the most once because it is a non-

exhaustive step.

If the multiple match attribute of a step STEPSS i ∈ is

true, all occurrence of the Si
LHS

 is searched and the replacing is

executed for all found matches, but the step Si is executed only

once. The number of the found matches (mi) is also finite

because of the finite input model G0.

1-ni 0 |m n i ≤≤∞<∧∞< therefore ∞<=∑
−

=

1n

0i

ii mk .

The number of the steps executed by transformation T is finite

and T terminates.

B. VCFL Control Flows with Exhaustive Transformation

Steps

Definition: (⊆).
nm GG ⊆ if and only if Gn has a

topologically isomorphic subgraph GI to Gm, and in the GI and

in the Gm the corresponding nodes and edges have the same

meta-type, attributes, attribute values and OCL constraints.

An exhaustively applied rule using external causalities gives

itself input model and parameters. For an exhaustive rule the

algorithm has to take into consideration the attribute

modifications and the generated and deleted elements. An

exhaustive transformation step must contain either attribute

modification or element deletion to prevent that the same

match be found again and again by the matching process. A

solution can be also if there is a create type causality and an

OCL constraint which holds before the creation and become

false afterwards, therefore it prevents to find the same match

again on the same place. For example an OCL constraint can

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2366

validate the existence of a neighbor node. In Fig. 2 the

presented transformation step connects a married and

unemployed man to a company. The unemployed property is

checked by the const_employer constraint. After the execution

of the step in the next iteration the matching process does not

match the same pattern again because of the not satisfied

constraint.

Fig. 2 An example metamodel and a Create Termination Step

Definition (Create Termination Step – CT Step): A Create

Termination Step S has only create type internal causalities, it

contains an optional OCL constraint C1 in S
LHS

, which must to

stand for the host models matched to the S
LHS

 and as a result of

the step execution the condition required by the constraint C1

becomes false.

Definition (Create Termination Step with constraint C2 –

CT Step with C2): A Create Termination Step S has only

create type internal causalities, it contains the OCL constraint

C2 in S
LHS

, which must to stand for the host models matched to

the S
LHS

 and as a result of the step execution the condition

required by the constraint C2 becomes false.

The difference between a CT Step and a CT Step with C2 is

that in first case the step can have optional number of

constraints and an arbitrary one of them has to fulfill the

condition, while in the second case the given constraint (C2)

has to comply it.

Obviously, this rule property is important only for

exhaustive rules or rules which are in loops, because the

creation can prevent to find the same match again on the same

place and it helps to avoid infinite loops.

Proposition: Let the transformation step Si be an exhaustive

step. If
RHS

i

LHS

i SS ⊆ and the step Si has a match M on an

optional input model Gi the step Si never terminates for the

input model Gi.

Proof: The step Si has a match M on the input model Gi it

generates its output (Gi
1
) with the Si

RHS
.

RHS

i

LHS

i SS ⊆ ,

therefore the Si
LHS

 has match in Gi
1
. The step Si is an

exhaustive step and it always has match on the result model of

the previous iteration, therefore the Si never terminates for the

input model Gi.

Proposition: Let the transformation step Si be an exhaustive

step which does not contain deletion and modification type

internal causalities and Si is not a CT step. Assume that T is

transformation and TS i ∈ , the input model of the

transformation T is the model G0, and the input model of the

step Si is the model Gi. If the Si
LHS

 has a match M on model Gi,

the transformation T never terminates for the input model G0.

Proof:The step Si is an exhaustive transformation step, it is

executed as long as the Si
LHS

 has match on model Gi. The Si

has a match M, which is not modified by the rule – there is no

deletion, attribute modification and Si is not a CT step –,

therefore the matching process finds the match M in each

iteration. The step Si never terminates for the input model Gi

and T never terminates for the input model G0.

C. Combining VCFL Transformation Steps

The goal of the transformation step combination is to create

a single step SC from optional number of transformation steps

k1jj ...SS,S
+

. The combined step can equivalently replace the

original steps, because it produces the same result. In the

termination analysis we can use the combined step instead of

the original transformation steps. It facilitates to replace the

steps contained by a VCFL loop with their combined

transformation step. The result of the replacement is similar to

an exhaustive transformation step, with the difference that it

has a decision object.

The combination algorithm takes not only the topology of

the steps into consideration but also their internal- and external

causalities and the meta-types of the nodes and edges as well.

The algorithm works based on the double pushout (DPO)

approach [7] [8].

An example for transformation step combination is depicted

in Fig. 3.

D. Termination Properties of VCFL Loops

A loop contains n transformation steps (where n>0) and a

decision object. A decision object evaluates the assigned

constraints on the actual host model and based on the results

selects a flow edge which could be a follow-up or a backward

edge as well.

The main difference between a loop with only non-

exhaustive rules and an exhaustive rule is the exit condition. A

transformation leaves an exhaustive rule if there is no more

match, while in the case of a loop the decision object

determines about the exit. If a loop consists of non-exhaustive

rules the rule combination algorithm combines them and

makes the decision about the termination based on the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2367

combined rule and the OCL constraints of the decision object.

Fig. 3 An example for transformation step combination

An exhaustive rule is itself a specific loop, therefore if a

loop contains exhaustive rules then it is a loop of loops. The

algorithm examines separately the exhaustive rules and if each

of them terminates then analyses the whole loop.

Proposition: Assume that the transformation T contains a

loop L, let SC be the combination of the transformation steps

L...SS,S k1jj ∈+
. The input model of the transformation T

is the model G0, and the input model of the step SC is the

model GC. If
RHS

C

LHS

C SS ⊆ and the step SC has a match M

on input model GC the transformation T never terminates for

the input model G0.

Proof: The transformation step SC has a match M on input

model GC it generates its output model
1

C

RHS

C

1

C GSG ⊆| .

RHS

C

LHS

C SS ⊆ , therefore the SC
LHS

 has match on model
1

CG .

The step SC represents a loop and it always has match on the

result model of the previous iteration, therefore the SC never

terminates for the input model GC and the transformation T

never terminates for the input model G0.

E. VCFL Termination Algorithm

The pseudo code of the VCFL termination algorithm is the

following.

VCFLTERMINATIONALGORITHM(Transformation T): retValue

 1 if T does not contain loop or exhaustive step then return retValue.true

 2 foreach Transformation Step S in T

 3 if S is exhaustive and RHS of the S contains the LHS of the S then

return retValue.false

 4 if S is exhaustive and S does not contain modify or deletion and S is not

an ST step then return retValue.false

 5 end foreach

 6 foreach Loop L in T

 7 combinedStep = COMBINETRANSFORMATIONSTEPS(transformation steps

of the L)

 8 if RHS of the combinedStep contains the LHS of the combinedStep then

return retValue.false

 9 end foreach

10 return retValue.undecided

For an optional VCFL transformation T the termination

algorithm validates the following.

1. If transformation T does not contain loop or exhaustive

transformation step then T terminates.

2. If TS ∈ is an exhaustive transformation step and
RHSLHS SS ⊆ the transformation T does not

terminate.

3. If TS ∈ is an exhaustive transformation step, S does
not contain delete and modify type internal causalities

and S is not a CT step then the transformation T does

not terminate.

4. If TL∈ is a loop and SC is the combination of the

transformation steps L...SS,S k1hh ∈+
 and

RHS

C

LHS

C SS ⊆ the transformation T does not

terminate.

If the rule contains create type internal causality, the

algorithm checks whether the host model with the newly added

elements contains new possible match places. The algorithm

takes into consideration the topology, node and edge types

and, the attributes, the attribute values and also the propagated

OCL constraints.

During the combination of steps S1 and S2, the S1
RHS

 and the

S2
LHS

 could have more than one matching variation. The

algorithm checks all the possible variations in point of VCFL

view (external causalities, meta-types).

In the case of loops the exit conditions (topology, attribute

value by modify internal causalities and

SystemLastRuleSucceed) are also checked by the algorithm.

VTA is an offline algorithm; the termination in many cases

depends not only on the VCFL transformation model but also

on the actual host model. A simple constraint could be itself a

significant difference between two steps or an attribute value

between two models. The problem is not trivial. There are

certain cases when the algorithm can make a sure decision

based on the VCFL transformation, and there are other cases

when not.

IV. RELATED WORK

Many approaches have been introduced in the field of graph

grammars and transformations to capture graph domains; for

instance, the GReAT [9] [10], the PROGRES [11] [12], the

Fujaba [13] [14] and the VIATRA [15]. These approaches are

specific to the particular system, and each of them has some

features that others do not offer.

The GReAT framework is a transformation system for

domain specific languages (DSL) built on metamodeling and

graph rewriting concepts. The sequencing of the rewriting

rules, parameter passing (external causalities) and the

recursion are similar in GReAT and in VCFL.

GReAT distinguishes primitive and test rules. The primitive

rules of the language are to express the steps of the

transformations. A test rule is a special expression and it is

used to change the control flow during execution. A test rule

has only LHS. If a test rule is successful (the matching was

successful), the rule after the test node is executable.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2368

PROGRES is a visual programming language in the sense

that it has a graph-oriented data model and a graphical syntax

for its most important language constructs. The control

structure of the PROGRES has the atomic, the boolean and the

non-deterministic character.

Similarly to GReAT, PROGRES also has test rules, which

have only LHS graphs and test the result of the step but do not

modify the host graph.

In FUJABA the combination of activity diagrams and

collaboration diagrams (story-diagrams) are used to express

control structures. Story-diagrams are a visual programming

language that facilitates the specification of complex

application-specific object structures. Moreover, FUJABA

extended story-diagrams by statecharts to so-called story-

charts. Story-charts use statecharts and activity diagrams to

define complex control flows and collaboration diagrams to

specify the entry, exit, do, and transition actions that deal with

complex object-structures [14].

VIATRA uses abstract state machines to define the control

flow of the system.

In [16] a termination criteria for model transformation is

presented. The criteria is based on dividing the grammar in

deleting or non-deleting layers. The introduced principles offer

visual and formal techniques based on rules, in such a way that

model transformations can be subject to analysis.

In [17] a contribution towards solving the termination

problem for rewriting systems with external control

mechanisms is given. It extends the concept of transformation

unit to high-level replacement systems. For high-level

replacement units, several abstract properties based on

termination criteria are stated and proved.

V. CONCLUSION

This paper has provided a control flow technique for model

transformations based on graph transformations. The

transformations are represented in the form of explicitly

sequenced transformation steps. We have shown the

fundamental concepts of the VCFL approach.

As it was presented, a control structure language needs a

sequence as well as a conditional branch mechanism,

hierarchy, parallel executions and iteration constructs. VCFL

has all these control structures in a deterministic

implementation.

Termination is an important issue for model

transformations. In this work we discussed the termination

properties of the VMTS Visual Control Flow Language. We

stated and proved several termination criteria for

transformation steps, loops and transformations. An algorithm

to validate the termination is also provided.

ACKNOWLEDGMENT

The fund of “Mobile Innovation Centre” has supported, in

part, the activities described in this paper.

REFERENCES

[1] T. Levendovszky, L. Lengyel, G. Mezei, H. Charaf, “A Systematic

Approach to Metamodeling Environments and Model Transformation

Systems in VMTS”, ENTCS, International Workshop on Graph-Based

Tools (GraBaTs) Rome, 2004.

[2] UML 2.0 Specifications, http://www.omg.org/uml/

[3] G. Rozenberg (ed.), ”Handbook on Graph Grammars and Computing by

Graph Transformation: Foundations”, Vol.1 World Scientific,

Singapore, 1997.

[4] Object Constraint Language Specification (OCL), www.omg.org

[5] M. Fowler, UML Distilled, “A Brief Guide to the Standard Object

Modeling Language”, 3rd edition, Addison-Wesley, ISBN:

0321193687, 2003.

[6] L. Lengyel, T. Levendovszky, G. Mezei, B. Forstner, H. Charaf,

“Metamodel-Based Model Transformation with Aspect-Oriented

Constraints, International Workshop on Graph and Model

Transformation”, GraMoT, Tallinn, Estonia, September 28, 2005, to be

published.

[7] H. Ehrig, “Introduction to the Algebraic Theory of Graph Grammars”,

In:Graph Grammars and Their Applications to Computer Science and

Biology, Springer, Ed. V. Claus, H. Ehrig, G. Rozemberg, Berlin, 1979.

[8] H. Ehrig, M. Korff, M. Löwe, “Tutorial introduction to the algebraic

approach of graph grammars based on double and single pushouts”. In

H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Proceedings of the

4th International Workshop on Graph-Grammars and Their Application

to Computer Science, volume 532 of Lecture Notes in Computer

Science, pages 24-37. Springer Verlag, 1991.

[9] G. Karsai, A. Agrawal, F. Shi, J. Sprinkle, “On the Use of Graph

Transformation in the Formal Specification of Model Interpreters”,

Journal of Universal Computer Science, Special issue on Formal

Specification of CBS, 2003.

[10] A. Agrawal, “A Formal Graph-Transformation Based Language for

Model-to-Model Transformations”, PhD Dissertation, Vanderbilt

University, Dept of EECS, August, 2004.

[11] A. Schürr, “PROGRES for Beginners”, Technical Report, Lehrstuhl für

Informatik III, RWTH Aachen, Germany

[12] A. Schürr, A. Zündorf, “Nondeterministic Control Structures for Graph

Rewriting Systems”, in Proc. WG'91 Workshop in Graph- Theoretic

Concepts in Computer Science, LNCS 570, Springer Verlag (1992), pp.

48-62, also: Technical Report AIB 91-17, RWTH Germany, 1991.

[13] FUJABA Homepage, http://wwwcs.upb.de/cs/fujaba/

[14] Hans J. Köhler, Ulrich A. Nickel, Jörg Niere, Albert Zündorf,

“Integrating UML Diagrams for Production Control Systems”, Proc. of

the 22nd International Conf. on Software Engineering (ICSE) Limerick

Ireland, ACM Press, 2000, pp. 241-251.

[15] D. Varró and A. Pataricza, “VPM: A visual, precise and multilevel

metamodeling framework for describing mathematical domains and

UML”, Journal of Software and Systems Modeling, 2003.

[16] Hartmut Ehrig, Karsten Ehrig, Juan de Lara, Gabriele Taentzer, Dániel

Varró and Szilvia Varró-Gyapay, “Termination Criteria for Model

Transformation”, LNCS, Vol. 3442: Fundamental Approaches to

Software Engineering: 8th International Conference, FASE 2005,

Edinburgh, UK, April 4-8, 2005, pages 49-63. Springer-Verlag, 2005.

[17] Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, Gabriele

Taentzer, “Termination of High-Level Replacement Units with

Application to Model Transformation”, Electr. Notes Theor. Comput.

Sci. 127(4): 71-86, 2005.

