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Abstract—In this paper a systematic method via H∞ control
design is proposed to select a sensor set that satisfies a number
of input criteria for a MAGLEV suspension system. The proposed
method recovers a number of optimised controllers for each possible
sensor set that satisfies the performance and constraint criteria using
evolutionary algorithms.
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I. INTRODUCTION

A sensor optimisation systematic framework is considered

for a MAGnetic LEVitated (MAGLEV) transport vehicle [11].

This work is part of a bigger project investigating optimised

configurations of sensing elements for control and fault tol-

erant. The research is focusing upon practical engineering

applications that are dynamically complex, electromechanical

in nature and typified the kinds of systems in aerospace, auto-

motive and railway. The model considered is a linearised elec-

tromagnetic suspension system of a quarter car in state space

form with five possible measurements leading to 25 − 1 = 31
possible sensor combinations. The framework presented aims

to find a set of optimised controllers that improve the ride qual-

ity while minimizing the control effort and the performance

metric within a range of hard and soft constraints assigned

beforehand for each sensor combination. Both deterministic

and stochastic track disturbances are considered, with noise

and noise-free measurement conditions.

This framework merges the H∞ controller design, the Linear

Matrix Inequalities (LMI) optimisation tool and heuristic al-

gorithms that are used to adjust the H∞ weighting filters and

achieve a Pareto front of optimised controllers solution for

each sensor set. Among the metaheuristic algorithms [5], the

evolutionary algorithms are used extensively in engineering

and are being proved to perform satisfactorily for hard engi-

neering optimisation problems [6]. Note that a scheme of loop-

shaping design procedure (LSDP) on a MAGLEV suspension

application was presented in [2] using genetic algorithms but

on the control design rather than the optimisation of sensor

configurations.

The Non-dominated Sorting Genetic Algorithms II (NSGAII)

method introduced in [4], proves to be a power optimisation

tool, and is the class of evolutionary algorithms implemented

in the proposed framework.
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This paper is organised as follows: Section two discuss the

linearised model of a MAGLEV suspension and the possible

input disturbances to the system. Section three presents the

requirements of the MAGLEV suspension as well as the

objective functions to be minimised, the overall problem

formulation, and the genetic algorithm parameter adjustment.

Moreover presents how the constraints are merged into the

algorithm procedure. Simulations and data analysis of the

overall framework are given in section 4 with a comparison

between noisy and noise-free measurements. Conclusions with

future work are given in section 5.

II. MODEL DESCRIPTION

The diagram of a one degree-of-freedom, ‘quarter-car’

electromagnetic suspension system is shown in Fig.1. The

suspension consists of an electromagnet with a ferromagnetic

core and a coil of N turns which is attracted to the rail that

is made out of ferromagnetic material. The carriage mass is

attached on the electromagnet, with zt being the rail position

and z the electromagnet position. The air gap (zt − z) is to

be maintained close to the operating condition required. The
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Fig. 1. Suspension system for MAGLEV

LTI state space model is derived by considering the operating

point (nominal) values of the coil current I0, flux B0, force

F0 and air gap G0. The following relationships hold

F = f + F0, B = b+B0

G = (zt − z) +G0, I = i+ I0

(1)

where, f, b, (zt − z) and i are small variations around their

nominal values. The fundamental magnetic relationships are

F ∝ B2 and B ∝ I/G, thus, the linearised expressions for

the magnet are [9]

b = Kii−K(zt−z)(zt − z) (2)

f = Kbb (3)
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where Ki = B0/I0, K(zt−z) = B0/G0 and Kb = 2F0/B0.

The voltage v, applied to the coil is given by:

v = Ri+ L
di

dt
+NA

db

dt
(4)

where N is the number of coil turns, R the coil resistance, A

is the pole face area and L the coil inductance. Moreover, the

force f depends on the mass M and the vertical acceleration

z̈.

f = Mz̈ and f = Kbb (5)

therefore, from (5) and (2) the equation for z̈ is

z̈ =
KbKi

M
i− KbK(zt−z)

M
(zt − z) (6)

where (zt − z) is the air gap between the rail and the

electromagnet. Also, from (2) and (6) the current equation

is

di

dt
=

V

L+NAKi

+
NAK(zt−z)

L+NAKi

(żt − ż)− Ri

L+NAKi

(7)

and from (6) and (7) a state vector can be constructed as

follows

X =
[

i ż (zt − z)
]T

(8)

with the relevant state space expression given by

Ẋ = AgX +Bvv +Bz żt, y = CX (9)

where matrices

Ag =







− R

L+KiNA
−K(zt−z)NA

L+KiNA
0

KbKi

M
0 −KbK(zt−z)

M

0 −1 0






(10)

(Bv Bz) =





1

L+KiNA

K(zt−z)NA

L+NAKi

0 0
0 1



 (11)

C =













1 0 0
Ki 0 −K(zt−z)

0 0 1
0 1 0

KbKi

M
0 −KbK(zt−z)

M













(12)

Note that the output matrix in (12) refers to all possible

measurements that can be considered (y = [i b (zt−z) ż z̈]T ).
The parameter values for a one tone suspension system are

shown in Table I. Note that the maglev system is open-loop

unstable.

TABLE I
PARAMETERS OF MAGNETIC SUSPENSION

M = 1000kg R = 10Ω I0 = 10A
G0 = 0.015m L = 0.1H A = 0.01m2

B0 = 1T N = 2000 F0 = 10000N

A. Rail disturbances to the suspension

Two track input characteristics are considered, i.e. deter-

ministic changes such as gradients or curves and stochastic

(random) changes in the track position due to misalignments.

1) Random input: Random behavior of the rail position is

caused as the vehicle moves along by track-laying inaccuracies

and steel rail discrepancies. Consider the vertical direction,

the velocity variations are quantified by a double-sided power

spectrum density (PSD) which in the frequency domain is

expressed by

Sżt
= πArV (13)

where, V is the vehicle speed (in this work is taken as 15m/s)
and Ar represents the track roughness equal to 1×10−7m (for

a typical high quality track). The corresponding (one-sided)

autocorrelation function is given by

R(τ) = 2π2ArV δ(τ) (14)

2) Deterministic input: The main deterministic inputs to

a suspension for the vertical direction are transitions onto

gradients. In this work, the deterministic input components

utilised are shown in Fig.2 and represent a gradient of 5%
at a vehicle speed of 15m/s and an allowed acceleration of

0.5m/s2.
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Fig. 2. Deterministic input to the suspension with a vehicle speed of 15ms−1

and 5% gradient.

III. PROBLEM FORMULATION

A. Design requirements

Fundamentally there is a trade off between the deterministic

and the stochastic response (ride quality) of the suspension.

For slow speed vehicles, performance requirements are de-

scribed in [7] and [8]. In particular, the practical objective is to

minimize both the vertical acceleration (improve ride quality)

and the RMS current variations. The H∞ performance (γopt)
measure has also been assigned as an additional objective.

These objectives can be can be formally written as

φ1 = irms, φ2 = z̈rms, φ3 = γopt (15)

with the constraints given in Table II. All constraints are soft

constraints except the steady state error which is required to

be zero and has been set as a hard constraint.

B. Sensor optimisation

The problem set up is shown in Fig. 3. The aim is to tune the

weights (Wp,Wu) so that a set of optimised controllers (K(s))
are recovered that satisfy all of the constraints showed in



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:5, 2008

809

TABLE II
CONSTRAINTS FOR THE MAGNETIC SUSPENSION PERFORMANCE.

Constraints Value

RMS acceleration(≃ 5%′g′),(z̈rms) < 0.5ms−2

RMS air gap variation, ((zt − z)rms) < 5mm
Maximum air gap deviation,((zt − z)p) < 7.5mm

Control effort,(Vp) < 300V (3I0R0)
Settling time, (ts) < 3s

Air gap Steady state error, ((zt − z)ess
) = 0

section III-A for each sensor set (y) that is available for mea-

surement. Note that the sensor combinations are selected using

the output matrix (Cy) as shown in equation (16). The total

measurements available are 5 (i, b, (zt−z), żt, z̈t) as described

in section II resulting to 31 sensor sets (i.e i, b, iż, bz̈...etc).
The MAGLEV state equation in (9) is imposed into the

P(s)

Wp

Wu

(zt − z)

u
u

w

K(s)

y
Cy

Fig. 3. Multi-objective generalised plant configuration.

generalised form of (16).

ẋ = Ax+Bzw +Buu

z∞ = C∞x+D∞1w +D∞2u

y = Cyx+Dy1w +Dy2u (16)

w is exogenous inputs (as described in Section II-A), u the

controller output, z∞ is the regulated output, i.e control effort

and air gap (zt − z) and y is the corresponding sensor set.

The infinity norm of the closed loop transfer function from

the exogenous inputs to the regulated outputs is minimized

subject to the constraints mentioned in III-A.

‖ Tzw ‖∞< γ (17)

This problem is solved for each sensor set, and for each

random pair of weighting functions produced by the genetic

algorithm, via LMI formulation (18). This can be easily solved

in MATLAB using function ’hinfmix’ of the robust control

toolbox.




Aclx∞ + x∞A
T

cl
Bcl x∞C

T

cl1

BT

cl
−I DT

cl1

Ccl1x∞ Dcl1 −γ2I



 < 0 (18)

subject to x∞ > 0.

The weighting filters Wp and Wu are appropriate low pass

and high pass filters respectively (see 19), to adjust the per-

formance of the controller by varying their parameters. There

is no general approach to select weighting functions as this

depends on the application but some guidelines on selecting

the weights for the H∞ design of a plant are suggested in

[12].

Wp =





s

M
1/np

p

+ ωb

s+ ωbA
1/np

p





np

Wu =

(

τs+A
1/nu

u

τ

M
1/nu
u

s+ 1

)nu

(19)

In particular, for the performance weighting (Wp) Mp is the

high frequency gain, Ap the low frequency gain and ωb the

crossover frequency. For the control effort weight, (Wu) τ
determines the crossover frequency, Au is the low frequency

gain and Mu is the high frequency gain. Both np and nu

control the roll-off rates of the filters taken as 1 in this case.

The shape of the filters is shown in Fig. 4 which is typical in

the H∞ framework. Note that the controller output is fixed, as

it is only the applied voltage to the MAGLEV system, however

the controllers inputs vary based upon the sensors utilised. i.e.

SISO controller for 1 sensor, MISO controller for more sensor

combinations. In fact, the order of the controller is fixed to

the order of the plant and the order of the filters (currently

3 + 2 = 5th order in a state space description - note that

further controller reduction could be followed if required).
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Fig. 4. Weights shape for H∞ controller design.

C. NSGAII implementation

In this section only the necessary information is given and

for more details refer to [3], [4]. The parameters used are

shown in table III. The crossover probability is generally

selected to be large in order to have a good mixing of genetic

material. The mutation probability is defined as 1/nv , where

nv is the number of variables. This is appropriate in order

to give a mutation probability that mutates an average of

one parameter from each individual. For the simulated binary

crossover parameter (SBX) and the mutations parameter it was

decided to use the default value of 10 and 50 since they provide

good distribution of solutions for the algorithm operations. To

achieve the required constraints, different ways exist in genetic

algorithms [1]. The penalty function approach [3] is used to

achieve the constraint within limits. The constraint violation

for each constraint, ki, defined in Table II, is given as

ωj(k
j) = {|gj(k

j
)|, if gj(k

j
)<0

0 otherwise
(20)
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TABLE III
NSGA-II PARAMETERS USED FOR THE EVOLUTION PROCEDURE.

Parameter setting

Crossover probability 0.9
Mutation probability 1/nu

SBX parameter 10
Mutation parameter 50

Rigid bounds 1(yes)
Population 50
Generations 100

Each soft constraint is normalised as in (21) for values less

than the predefined level.

gj = − kj

k
j

des

+ 1 ≥ 0 (21)

Where, k
j

des
is the predefined constraint value and kj is the

measured value. The hard constraint violation is given as

ψi(f
i) = {0, if hi(f

i
)=0

|hi(f
i)| otherwise

(22)

This is transformed into a soft constraint, allowing a small

tolerance value ǫ. Therefore, the steady state error for the air

gap is given as shown in (23).

hi =| f i | −ǫ < 0 (23)

Where f i is the steady state error of the control effort that

eventually controls the steady state error for the air gap.

The overall constraint violation is given in (24). The overall

constraint violation is going to be used as a metric for the

controllers that either satisfy or not satisfy the aforementioned

constraints.

Ω(k(j), f (i)) =

j
∑

j=1

ωj(k
(i)) +

i
∑

i=1

ψi(f
(i)) (24)

This constraint violation is then added to each of the objective

functions values

Φm = φm +RmΩ(k(i), f (i)) (25)

where Rm is the penalty parameter and Φm the objective

function value. In this case, a dynamically updated penalty

parameter is required. This is useful, in order to avoid infeasi-

ble solutions and the penalty parameter is set to be a function

of the generation number [10]. The penalty parameters are

finalised as follows:

Rirms
= C ∗ 1, Rz̈rms

= C ∗ 0.5, Rγopt
= C ∗ 1 (26)

With, C being the generation number for the current sensor

set.

IV. SIMULATIONS AND DATA ANALYSIS

The flow chart for the sensor optimisation framework, is

shown in Fig. 5. The flowchart shows how the NSGAII is

merged to the sensor selection framework efficiently, produc-

ing the Pareto front of optimised controllers for each possible

sensor set with the required criteria. Initially, the NSGAII

parameters and controller selection criteria are given. Then

the first sensor set is selected and the evolutionary algorithm

tunes the weights to recover the Pareto front of optimised

controllers (which is equal to the number of population). After

that, the controllers that satisfy all constraints are selected base

on the overall constraint violation function (24). Moreover,

the optimised controllers that actually satisfy the selection

criteria are saved and the procedure continues with the next

sensors set (if exists). The overall algorithm was tested using

a Pentium 4, Dual core processor running at 2GHz with 4GB

DDR memory and without the Java tool of MATLAB 7.2.

The average simulation time per sensor set was about one

hour and the procedure for all possible sensor sets takes about

37hours with noise-free measurements. From the simulations

it can be seen that the proposed systematic framework is able

to find controllers that satisfy the constraints for 29 out of

31 sensor set combinations. No controllers where found to

Initialise algorithm and
assign controller selection 
criteria

Select a sensor set.

More
sensor
sets?

yes

STOP

Select optimised 
controllers that satisfy all
criteria.

Save optimised
controllers that satisfy
selection criteria.

no

Recover Pareto front
of optimised controllers 
using NSGAII

REPORT

Fig. 5. Sensor selection flow chart.

meet some of the constraints ((ts, (zt − z)ess)) for two single

sensor sets (i (current) and (zt − z) (air gap)). In particular,

for a population of 50 the final result is about 1550 optimised

controllers assuming none of them violates the constraints for

all sensor sets. However, about 1440 optimised controllers

satisfy the constraints for the 31 sensor sets.

The next step is to analyse the results based on the controller

selection criteria in (27). There are no optimised controllers

to satisfy the criteria with 12 out of 31 sensor sets including

the full sensor set. Table IV presents the results obtained with

some randomly selected sensor sets.

γ < 1 and z̈ < 0.4m/s2 (27)

Ω and Ωnoise columns indicates if there are optimised con-

trollers that satisfy the contraints for the corresponding sensor

set based on overall constraint violation in (24). Ωnoise is for
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noise and Ω for noise-free measurements. ’x’ symbol is shown

when there is no controller that satisfy the contraints and ’
√

’

is shown when there exist a number of controllers that satisfy

the constraints. n[K(s)] and n[K(s)noise] is the number of

TABLE IV
SENSOR COMBINATIONS WITH CONSTRAINTS.

id Sensor noise-free with noise
set Ω n[K(s)] Ωnoise n[K(s)noise]

1 i x 0 x 0
2 b

√
6

√
0

3 (zt − z) x 0
√

0
4 ż

√
11 x 0

5 z̈
√

4
√

0
6 i,z̈

√
17

√
3

7 b,(zt − z)
√

13
√

12
8 i,ż,z̈

√
1

√
0

9 i,b,ż
√

5 x 0
10 i,b,z̈

√
0

√
5

11 b,(zt − z),z̈
√

0
√

3
12 i,b,(zt − z),ż,z̈

√
0

√
0

optimised controllers found to satisfy the controller selection

criteria with noise and noise-free conditions respectively for

the corresponding sensor set. Optimised controllers with three

(id:2,4,5) out of 5 single measurements are able to meet the

contraints and selection criteria assigned. The measurement

with id:4 results to a Pareto front of optimised controllers

depicted in Fig. 6. From the graph, it can be seen that the

vertical acceleration (z̈) of the suspension is limited to the

constraint value of 0.5m/s2 as required and also a trade-

off between z̈ (ride quality) and the RMS current (irms)
exists. On the same figure, it is shown that there exist

two disjoint Pareto fronts of optimised controllers which are

successfully recovered from the recommended evolutionary

algorithm (NSGAII). The corresponding air gap deviations

v
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γ
o
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t
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Fig. 6. Disjoint Pareto fronts with id:4 sensor set.

using id:4 sensor set are shown in Fig.7(a). It can be seen

that all virtually deterministic responses remain within the

constraints allowing a zero (zt−z)ess
, a maximum of 7.5mm

deflection and settling time less that the required 3s. Using

the id:1 sensor set (see Fig.7(b)) some constraints are violated

(z̈rms, ts and (zt−z)ess
) therefore, all controllers are rejected

(see Ω function). However, the suspension still remains stable
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(a) Air gap deflections with id:4
sensor set.
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(b) Air gap deflections with id:1
sensor set.

Fig. 7. Air gap deflection with single measurements.

with id:1 sensor set and therefore the data could be used to be

part of a fault tolerant control scheme that is able to predict

the behavior of the suspension. In case of faulty sensors, if

the system remains with only id:1 sensor set this can lead to

poor performance until the MAGLEV vehicle stops.

The Pareto front of optimised controllers with full sensor set

combination (id:12) is shown in Fig.8. As it can be noted, all

values of γopt are greater than the required criteria of γopt < 1
which explains why all controllers are rejected. The air gap

deflections are not shown here because they look similar to

the corresponding (id:4) as in Fig.7(a). Another useful remark

ibgva
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Fig. 8. Pareto front with full sensor set.

is that the control effort is limited to about 50V for the three,

id:2,4,12. For the id:2 and id:12 the control effort signal is

shown in Fig.9 but the control effort for the id:4 is not shown

because it is similar to id:2.
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Fig. 9. Control effort with id:2 and id:12 sensor sets combinations.

A. Sensor optimisation with noisy measurements

In this section, the measurement noise is taken into account,

although a similar procedure is followed as in the previous

case with noise-free measurements. The difference is adding

extra constraint relating to the noise issues. In fact, a simple

control analysis shows that the outputs in the closed loop will

not be affected much by noise. However, the control input

can be quite sensitive to the noise and care should be taken

to limit this. Thus the measurement noise is treated separately

and the effect of the noise on the control effort is limited to

unoise = 2Vrms (an extra constraint is added) and unoise is

introduced in the algorithm as a fourth objective (φ4 = unoise)
as well. The population is set to 50 and the maximum

generations 200. The noise covariance for the simulations is

set as 1% of the peak value from each measurement and

this is updated dynamically because the peak value varies for

each simulation. The optimisation for each sensor set takes

about 3.5hours and the overall time taken is 105 hours on the

same computer. The systematic framework presented found

controllers that satisfy the assigned constraints for 24 out of

31 sensor sets.

The results shows that there exist controllers for 8 sensor

sets that satisfy all constraints and the controller selection

criteria shown in (27). Table IV present the results obtained

with these criteria compared with the results with noise-free

measurements. Column Ωnoise shows the constraint violations

for the corresponding sensor sets and n[K(s)noise] is the

number of controllers found to meet the controller selection

criteria for noisy measurements situation. Compared to the

noise-free results it can be seen that the measured noise has

a significant effect on the optimisation procedure as many of

the controllers for each sensor set are rejected due to noise

amplification by controller.

More details follows to analyse the results. Three out of five

single measurements are able to meet the constraints. The

three measurements are: id:3, id:2 and id:5. It appears that,

without measurement noise, only the id:1 and id:3 do not

satisfy the constraints. The problem here, is that id:3 should

have had solutions for the noise-free situation as well but it

seems that the algorithm wasn’t able to find the solution area.

This could be either not sufficient chromosome population or

not sufficient maximum generation. It indicates how important

is to properly assign parameters for the NSGAII. Probably, for

the measurement noise case the extra objective and constraint

’guide’ the search space to the solution area.

The graph depicted in Fig. 10 shows the trade-off between

the objectives assigned using id:5 sensor set. Clearly, there is

a conflict between the objectives assigned to the problem (note

that the coordinate values are normalised to unity).

The air gap deviations for the sensor set id:5 is shown in Fig.

11(a) and is compared with the air gap deviations for the full

sensor set (id:12) that appears to be satisfactory in both cases.

The peak values remains less that 7.5mm as required and the

settling time less than 3s. Note here, that the measurement

noise affects the air gap deflections with the full sensor set

(id:12). A sample of the control effort is shown in Fig. 12. It

is clear that with the current systematic framework the noise

amplitude which appears on the control effort is limited to the

constrained for both sensor sets id:5 and id:12.
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(b) With full sensor set.

Fig. 11. Air gap deflections for two sensor sets.
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(a) With id:5 sensor set.
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(b) With full sensor set (id:12).

Fig. 12. Limited noise that appears on the control effort with id:5 and id:12.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a systematic framework via H∞ control

design for selecting the desired sensor set that satisfies a

number of constraints and controller selection criteria for a

MAGLEV suspension is presented. The problem is rather
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complicated to solve manually (especially tuning the weights

manually for each sensor set combination), while the powerful

optimisation tool based on evolutionary algorithms NSGAII

is incorporated to offer faster solutions. It was found that

29 out of 31 optimised sensor configurations are tuned and

perform satisfactory. The results show a variety of optimised

controllers (about 1440) which can be used and the choice

depends on the user’s controller selection criteria. A number

of useful outcomes can be seen from using the framework:

The overall control system complexity and cost is reduced, or

a single measurement can be used to control the suspension.

Subsequently, fault probabilities are reduced. This proposed

method could be used as part of a fault tolerant controller

scheme, i.e using a bank of selected optimised controllers

and replacing relevant controllers with other sets depending

on sensor faults.
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