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Abstract—Face Recognitionis a field of multidimensional
applications. A lot of work has been done, extegigion the most of
details related to face recognition. This ideaaaff recognition using
PCA is one of them. In this paper the PCA featumsFeature
extraction are used and matching is done for thee fander
consideration with the test image using Eigen femefficients.The
crux of the work lies in optimizing Euclidean dist& and paving the
way to test the same algorithm using Matlab whgchn efficient tool
having powerful user interface along with simflidn representing
complex images.
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I. INTRODUCTION

HE Principal Component Analysis (PCA[1][6])[1][6k i

one of the most powerful techniques that have heseal
in image recognition or in compression. PCA[1][ a
statistical method under the broad title of facaalysis. The
function of PCA[1][6] is to reduce the large sizetbe data
space (variables) to the smaller intrinsic dimemality or size
of feature space (independent variables), thatnaexled to
describe the data cost efficiently. This is thescaken there is
a strong correlation between observed variables[1]n[6]
various functions of PCA are discussed.

Eigenspace is calculated by identifying the eigetos of the
covariance matrix derived from a set of facial ies(ectors).
Once the eigenfaces have been computed, severed typ
decision can be made depending on the applicatiace
recognition is a broad term which is categorized
identification where the labels of individuals mbst obtained,
categorization where the face must be assigned dertain
class. Recognition of a person, where it must lmded if the
individual has already been seen, PCA[1][6] compuiiee
basis of a space which is represented by its trginectors.
These basis vectors, actually eigenvectors, cordpldg
PCA[1][6] are in the direction of the largest vawie of the
training vectors called eigenfaces. Each eigen¥cefn be
viewed a feature. When a particular face is preganto the
face space, its vector into the face space descrihe
importance of each of those features in the fate fhce is
expressed in the face space [5] by its eigenfaefficients.
We can handle a large input vector, facial imagdy doy
taking its small weight vector in the face spachisTmeans
that we can reconstruct the original face with semer, since
the dimensionality of the image space is much latigen that
of face space.

Each face in the training set is transformed itfte face
space and its components are stored in memory. fade

Because PCA[1][6] is a classical technique whichh cagpace has to be populated with these known facesnput

perform functions in the linear domain, thus thelegations
having linear models are much suitable.

The field of Face recognition has so many areas
application as in security, biometric systems, Isaakd many
more that are beyond the list. Moreover, face raitmm can
be partitioned into Face identification, Face dfasgion, sex
determination, people surveillance in crowded aréadeo
content indexing, Personal identification (e.g. Jerls
License), Mug shots matching and Entrance security

The main idea of using PCA[1][6] for face recogmitiis to
express the large 1-D vector of pixels construdtedh 2-D
facial image into the compact principal componeotsthe
feature space. This can be called projection oéreipace.
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face is given to the system, and then it is prejganto the
face space. The system computes its distance filbrihe
8fored faces.

Il. PCAIMPLEMENTATION

Principal component analysis (PCA) has been caltes of
the most valuable results from applied linear algePCA is
used abundantly in all forms of analysis - fromnosgience to
computer graphics - because it is a simple, noafatric
method of extracting relevant information from aasihg data
sets. With minimal additional effort PCA providesaadmap
for how to reduce a complex data set to a lowerediion to
reveal the sometimes hidden, simplified structurat toften
underlie it.

I1l.  PCA:EIGENVECTORSOF COVARIANCE

Researchers derive algebraic solution to PCA uBivear
algebra. This solution is based on an importanpeny of
eigenvector decomposition. The data setvhich is af€mm x n

as

973



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:3, No:4, 2009

matrix, wherem is the number of measurement types and n imethod is information reduction. When one evaluaesn a
the number of samples. The goal is summarizedlasv small image, there is an incredible amount of imfation
Find some orthonormal matrixwhereY = PX such that: present. From all the possible things that coulddpeesented
CYELXYYTis diagonalized. The rows of P are théh a given image, pictqres of things that look Ifkees clea.rly
n-1 represent a small portion of this image space. Bscaf this,
principal components of. We begin by rewritin@€Y in terms we seek a method to break down pictures that wilbbtter
of our variable of choicP. equipped to represent face images rather than snage

cy :LXYYT (1) general. To do this, one should generate ‘basesfand then

n-1 represent any image being analyzed by the systemliagar

_ 1 (2) combination[10-12] of these base faces. Once tlse li@ces

cY —n—_1><(PX)(PX)T have been chosen we have essentially reduced thplexity

1 (3) of the problem from one of image analysis to a cdac

Cy= ﬁx PXXTPT classification problem. Each face that we wish lassify can

1 (4) be projected into face-space and then analyzedvastar. A

CY:EXP(XXT)PT k-nearest-neighbor approach, a neural network orenea
1 (5) simply Euclidian distance measure can be used for

CYEEX PAPT classification. The technique discussed in [13-tdh be
broken down into the following components:

a. Generate the eigenfaces.

b. Project training data into face-space to be usithd a
predetermined classification method.

c. Evaluate a projected test element by projedtiimgo face

space and comparing to training data.

Note that, we defined a new matx= XX', whereA is
symmetric The roadmap is to recognize that a symimnet
matrix (A) is diagonalized by an orthogonal matox its
eigenvectors. For a symmetric matrix:

A=EDE" ©®)

Where, D is a diagonal matrix and& is a matrix of
eigenvectors oA arranged as columns. The matixasr <m Before any work can be done to generate the Eigeesf

orthonormal eigenvectors whereis the rank of the matrix. sample faces are needed. These images will be ased
The rank ofA is less tharm whenA is degenerate or all dataexamples of what an image in face-space looks Mteese
occupy a subspace of dimension< m. Maintaining the images do not necessarily need to be images giehple the
constraint of orthogonality. We can remedy thisiaion by system will later be used to identify (though itnchelp);
selecting i - r) additional orthonormal vectors to “fill up” the however the image should represent variations onaldv
matrix E. These additional vectors do not effect the finabypect to see in the data on which the systempectzd to be

V. GENERATIONEIGEN FACES

solution because the variances associated witle tiesctions
are zero. We select the matRExo be a matrix where each row
pi is an eigenvector oXXT. By this selection,P = E'.
Substituting into Equation, we findh = P'DP. With this
relation P = P™) we can finish evaluatingY.

cy=—2 xpap’ (7)
n-1

cy=—1 xp(PTDP)PT ®
n-1

CY:ni_lx(PPT)D(PPT) ©

cy =L x(PPYD(PPY (10)
n-1

(11)

cv=-1xpq)
n-1

It is evident that the choice &f diagonalize<CY. This was
the goal for PCA.

IV. EIGENFACES

Eigen face method for human face recognition isarably
clean and simple. The basic concept behind thenEfgee

used, such as head tilt/angle, a variety of shadorglitions,
etc. ldeally these images should contain pictufefaces at
close to the same scale, although this can be gistrad
through preprocessing if necessary. It is requihed all of the
images being used in the system, both sample ahihtages,
be of the same size. The resulting Eigen facesalsth be of
this same size once they have been calculated.

It is assumed that all images being dealt withgreg/scale
images, with pixel intensity values ranging fromtd 255.
Suppose, there ar images in our data set. Each sample
image will be referred to a% wheren indicates that we are
dealing with ith sample image (1<=<= K). EachX; is a
column vector. Generally images are thought ofiaslg each
having &, y) coordinates with (0, 0) being at the upper left
corner (or one could think of an image as a matitk y rows
andx columns). Converting this to a column form is attera
of convenience, it can be done in either colummogr major
form, so long as it is done consistently for athgte images it
will not affect the outcome. The size of the rasglX; column
vector will depend on the size of the sample imadiethe
sample images arepixels across ang pixels tall, the column
vector will be of size * y) x 1. These original image sizes
must be remembered if one wishes to view the iieguigen
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faces, or projections of test images into face-spatis is to LM ) This function reshapes all 2D images of thairting
allow a normal image to be constructed from a colmector database into 1D column vectors. Then, it (As frizdole 1)
of image pixels. LeX™ be the mean of alk; (1 <=i <=K). puts these 1D column vectors in a row to conscmatrix.
This is the step to calculate an average faceeotitttabase. If

one were to reinterpret the vector as a normal @négvould FI’SE'T-EN'S
appear as one might expect, as shown in Fig. 1. Argument Train Databasd Path _of the
Path training
database
" ',
« o ol Rl Returns L A 2D matrix,
A A containing  all
. 1D image
” vectors.
Fig. 1 Addition of faces
Key Size column Suppose all Z
The next step is to calculate difference fatkssuch that vector images in the
Ui = X - X (whereX is mean) and form a matri%, such that training
U = [U; U,....Ug]. Our goal now is to generate the Eigen faces database
which is done by calculating the eigenvectors ot th have the same
covariance matrixtJU™ .This cannot be done directly as the size of PxQ. Sq
size of UUT is (x * y)*(x * y) which is very large. Clearly, the length of
doing these calculations on a resulting matrix to$ size is 1D
going to be taxing on all but the most specializadyance column vectorg
hardware. To avoid this problem, a trick from linatgebra is is PQ and 'T
applied[17-18]. The eigenvectors of tH8U' matrix can will be a PQxZ
actually be found by considering linear combinasiaf the 2D matrix.
eigenvectors of th&J'U matrix. This is extremely usefully

when one realizes that the size of thé&) matrix isK x K. For
practically all real world situationsK << (x*y). The We use Principle Component Analysis (PCA) [1][6] to
eigenvectors wj of this matrix can be readily fouhcbugh the determine the most discriminating features betwesmes of

following formula: faces. This function (function [m, A, Eigenfaces] =
EigenfaceCore(L) gets a 2D matrix, containing adlirting
Z|K=1U| Elj (12) image vectors and returns 3 outputs which are etetdafrom
T — training database. In the argument, L is a 2D matri
\//1—1' containing all 1D image vectors
WhereE; is thel™ value of thg™ eigenvector otJ™U and
Jj is the corresponding Eigen valuewfandE; . The linear “dd
algebra part of this trick is given below: Let thigenvectors iy e s -
of UU be E (1 <=j <= K) and the corresponding Eigen ... it

values bel; . Hence, we can write:

T _ 13
U U E] _/1] E] ( ) v e Faiden ]
Multiplying both the sides by: et i it
T - 14 T
UxU UE;=A,UE; (14) P
Thus, w = UE; is the | eigenvector of UU" with -
corresponding Eigen valug. The fact that the Eigen values
for theUUT andUU are the same (though if we were going to e[ i
calculate all of the Eigen values of th)™ matrix, we could Beaverm | & ][ e
get more values, the eigenvectors of théJ only represent
the most important subset of the Eigen values ef U’
matrix).

VI. PROCEDURE AND WORKING

. . Fig. 2. Train Data Base Selection
Function L = Create Database (TrainDatabasePath)

Align a set of face images as the training setfi@n L1 to Suppose all P images in the training database thavsame
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size ofMxN.

=i |

ol -

Fig. 3 Test Data Base Selection

So, the length of 1D column vectorsMs* N and'L" will be
aPQxZ 2Dmatrix where as m returnB{Qx1) Mean of the
training database Eigen face$*Qx(Z-1)) Eigen vectors of
the covariance matrix of the training databa&e - (P*QxZ)
Matrix of centered image vectors[15-16]. After cd#ting
mean we calculate deviation of each image from rtfean
value. The next step is to Sort and eliminate eigdues.

i i)

ol

Fig. 4. Assigning fields

All Eigen values of matrix A are sorted and tholsat tare
less than a specified threshold, are eliminatedth®aumber
of non-zero eigenvectors may be less than (Z-1)jpTh
Calculating the eigenvectors of covariance matr@ '
Eigenvectors of covariance matrix C (or

Recognition is done by Projecting centered imagevéttors
into face space All centered images are projectet i

Fhis procedure

facespace by multiplying in Eigenface basis. Ptejgc/ector
of each face would be its corresponding featur¢éovec

VII.

After the above detailed steps, the eventual stép éxtract
the PCA[1][6] features from test image. The cruxiaf work
lies in calculating Euclidean distances. Euclidehistances
between the projected test image and the projeatioall
centered training images are calculated. Moreoviee t
objective of the whole procedure remains to havaeirmim
distance with its corresponding image in the tragnilatabase.
The following figure illustrates the fore statedyst

I E-‘ allE

~ |l File

RESULTS ANDCONCLUSION

) Figure 2

o

Fie Edi View Insert Tecls Desbiop Windew Help
Deda k|RAN® |« |08

Test Image

Edt Wiew Insert Tooks Desktop ‘Window Help

"IDed& h &a20e e 0B

equilant imaga

Fig. 5. Output with assigned field

VIIL.

. Both the strength and weakness of PCA is thiatatnon-
parametric analysis. One only needs to make the®kussian
distributed data causes PCA to fail. In exponetial
distributed data the axes with the largest variadoenot
correspond to the underlying basis. There are nanpeters to
tweak and no coefficients to adjust based on ugeeréence -
the answer is unique and independent of the udes. Same
strength can also be viewed as a weakness. If nooeka-
priori some features of the structure of a systien it makes
sense to incorporate these assumptions into a paiam
algorithm - or an algorithm with selected paran®t€onsider
the recorded positions of a person on a ferris WhElee
probability distributions along the axes are apprately
Gaussian and thus PCA finds (p1, p2), however dhiswer
might not be optimal. The most concise form of disienal
reduction is to recognize that the phase (or aafgag the
ferris wheel) contains all dynamic information. Bhuthe
appropriate parametric algorithm is to first cortviee data to
the appropriately centered polar coordinates aad tompute
PCA. This prior non-linear transformation is sommets
termed a kernel transformation and the entire peanam
algorithm is termed kernel PCA. Other common kernel
transformations include Fourier and Gaussian tangtions.
is parametric because the user
incorporate prior knowledge of the structure in seéection of

LIMITATION OF USING PCA

must

— ., , . SO'Ca”e‘ijhe kernel but it is also more optimal in the setis& the
Eigenfaces") can be recovered from A's Eigenvector

structure is more concisely described. Sometimesagh the
assumptions themselves are too stringent. One reig¥ision
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situations where the principal components need bet
orthogonal. Furthermore, the distributions alongchea
dimension (xi) need not be Gaussian. The largasances do
not correspond to the meaningful axes; thus PCK.fdihis
less constrained set of problems is not trivial anly recently
has been solved adequately via Independent Componen
Analysis (ICA). The formulation is equivalent. Fiadmatrix P
where Y = PX such thatCY is diagonalized. However, it
abandons all assumptions except linearity, andnatte to find
axes that satisfy the most formal form of redungaeduction
— statistical independence. Mathematically ICA §ral basis
such that the joint probability distribution can fetorized
P(y;, ¥) = P(y,)P(y) for alli andj, i #j. The downside of ICA
is that it is a form of nonlinear optimization, niadx the
solution difficult to calculate in practice and potially not
unique. However ICA has been shown a very practcel
powerful algorithm for solving a whole new classpodblems.
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