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Abstract—Although achieving zero-defect software release is 

practically impossible, software industries should take maximum 
care to detect defects/bugs well ahead in time allowing only bare 
minimums to creep into released version. This is a clear indicator of 
time playing an important role in the bug detection. In addition to 
this, software quality is the major factor in software engineering 
process. Moreover, early detection can be achieved only through 
static code analysis as opposed to conventional testing. 
BugCatcher.Net is a static analysis tool, which detects bugs in .NET® 
languages through MSIL (Microsoft Intermediate Language) 
inspection. The tool utilizes a Parser based on Finite State Automata 
to carry out bug detection. After being detected, bugs need to be 
corrected immediately. BugCatcher.Net facilitates correction, by 
proposing a corrective solution for reported warnings/bugs to end 
users with minimum side effects. Moreover, the tool is also capable 
of analyzing the bug trend of a program under inspection. 
 

Keywords—Dependence, Early solution, Finite State Automata, 
Grammar, Late solution, Parser State Transition Diagram, Static 
Program Analysis.  

I. INTRODUCTION 
UGS can be defined as a path through the code when gets 
executed causes either a run-time exception or an 

incorrect result with certain input values. However, unlikely 
an error, bug occurs due to specific inputs which developers 
didn’t try at the time of developing whereas error occurs 
irrespective of inputs. As .NET® languages are gifted with 
managed execution environment [3], there are mechanisms to 
handle runtime exceptions. However, handling such errors at 
runtime offers little advantage. In addition, the effort needed 
to get rid of a bug increases with the time a bug spends in a 
software product. Hence, it is most crucial to detect them as 
early as possible. As discussed in previous paper [1], the static 
analysis techniques used for early detection generally try to 
identify the pattern associated with the bugs to find out all the 
occurrences all over the code base unlike testing. Usually, 
meeting unrealistic deadlines and insufficient testing time 
account for significant number of hidden bugs in the software 
released. However, at the very root level, the main cause of 
bug occurrence can be either the grammar of the programming 
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language itself or the violation of dependencies. These causes 
are discussed briefly in section III.  There are various tools 
available to detect bugs statically in different language source 
code. Section II gives brief information about these tools. 
Whereas rest of the paper is organized as follows. Section III 
describes the bug detection approach and section IV presents 
strategies used for proposing corrective solutions to the end 
users. The bug trend analysis carried out to propose overall 
solution is discussed in detail in section V. Results obtained 
and analysis performed are given in sections VI and VII 
respectively. Finally, section VIII presents future extensions 
and makes conclusion of the work done. 

II. RELATED WORK 
There are ample amount of bug detectors available for C 

and C++. One of these is LCLint, which reports 
inconsistencies between a program and its specification [4]. 
Further, the ASTLog tool [5], which looks for syntactically 
suspicious code patterns, has been extended into the PREfast 
tool [6] & is used extensively within Microsoft as a bug 
pattern detector. 

Several detection tools for Java language also exist. One of 
the useful tools is PMD [7], which checks for patterns in the 
abstract syntax trees of parsed Java source files. Another tool, 
FindBugs [2] uses a series of ad-hoc techniques designed to 
balance precision, efficiency, and usability. One of the main 
techniques FindBugs uses is to match source code 
syntactically to known suspicious programming practice, in a 
manner similar to ASTLog. In some cases, FindBugs also uses 
dataflow analysis to check for bugs. JLint [8], like FindBugs, 
analyzes Java byte-code, performing syntactic checks and 
dataflow analysis. JLint also includes an inter-procedural, 
inter-file component to find deadlocks by building a lock 
graph and ensuring that there are never any cycles in the 
graph. Further, Bandera [9] is a verification tool based on 
model checking and abstraction. To use Bandera, the 
programmer annotates the source with specifications 
describing what should be checked, or no specifications if the 
programmer only wants to verify some standard 
synchronization properties.  

There are various static analysis tools available for .NET® 
languages also. FxCop is one of the tools which analyzes 
managed code assemblies (code that targets the .NET® 
Framework common language runtime) and reports 
information about the assemblies, such as possible design, 
localization, performance, and security improvements [10]. 
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Many of the issues concern violations of the programming and 
design rules set forth in the Design Guidelines for Class 
Library Developers. Another tool, StyleCop provided by 
Microsoft® ensures that C# code incorporates style and 
consistency rules. StyleCop is very beneficial in conducting 
code reviews [11].  Further, CodeIt.Right offers the means to 
correct violations in C# and Visual Basic code automatically 
[12]. It carries out static code analysis with configurable rule 
sets to find code issues. This is one of the tools, which is used 
to ensure that code written conforms to the best coding 
guidelines, thus helping in writing quality code.  

Resharper is yet another tool provided by JetBrains, which 
analyzes and highlights errors in C# code (up to C# 3.0) while 
typing itself, without having to compile the code first [13]. It 
also helps to solve problems instantly, by suggesting quick 
fixes for most errors. User can analyze code both in a current 
file and throughout the entire solution. Finally, NStatic [14] 
can detect errors like complex expressions (including function 
calls) that evaluate to constants; assignment to a variable is 
same as current value, redundant parameter, infinite loops, etc. 
Nevertheless, NStatic only supports C# as it is source code 
dependent.  

Out of the tools that are discussed here, Findbugs serves as 
motivation of our work of finding similar bugs in .NET® 
source. 

III. CAUSES OF BUG OCCURRENCE 

A. Programming Language Grammar 

As mentioned earlier, the grammar of any programming 
language can also be a potential source of bugs. This grammar 
can be well described by a context-free grammar. A context-
free grammar (G) [15] can be formally defined as a 4-tuple: 

G = (V, Σ, R, S)                                        (1) 
where V is a finite set of non-terminal characters or variables. 
They represent different types of phrase or clause in the 
sentence. Σ is a finite set of terminals, disjoint with V, which 
make up the actual content of the sentence. R is a relation 
from V to (V U Σ)* such that any w є (V U Σ)*: (S, w) є R. S 
is the start variable, used to represent the whole sentence (or 
program). It must be an element of V. 

Some of the bugs arise from flaws in the grammar of the 
programming language or some are introduced due to wrong 
concatenation of non-terminals (symbols).  

1) Wrong Concatenation of Non-terminals 
One such bug, which results from wrong concatenation of 

non-terminals, is ‘Floating-Point Equality’, where a check is 
made to see if two floating-point values are equal. 
Corresponding grammar rules are given below. 

Equality expression: Operand (Equality operator) Operand 
Equality Operator: = = | != 
Operand: Literal | Identifier  
Idenitifier: predefined-type.Identifier 
predefined-type: bool |  byte | char | decimal | double | float 

| int | long | object | sbyte | short | string | uint | ulong | ushort 
Here, if equality expression is used with operands of type 

float/double then result will always be false due to floating-
point truncation. Moreover, if this expression is used as a 
condition to take some decisions for following particular path 
in a program then always one particular path will be executed.  

2) Flaws 
Any programming language grammar may have some or 

other flaw due to time and space constraints that are imposed 
on compilers. At some places grammar is too vague such that 
it can’t specify certain conditions like the bug pattern which 
arises from a flaw in the grammar rule – ‘Useless control 
flow’, where control flow continues onto the same place i.e., 
to the same or following line regardless of whether or not the 
branch is taken.  

public void Method(){ 
         int var = 3; if (var = 2) ; 
   } 
An erroneous grammar rule is 
 If statement: if expression then statement 
This rule allows null statement also to pass in then-part of 

an if-expression. Hence, to correct this, rule should have been 
as follows: 

If statement: if expression then statement other than null 
Here grammar rule becomes general and is not able to put 

specific condition in if statement. 

B. Violation of Dependencies 

Another major cause of bugs can be violation of 
dependencies, control or data. Most of the bugs result from 
violation of some dependency in a program.  

One of the bug patterns is ‘Dead Parameter’, where a 
parameter is overwritten in a very first instruction in a method 
ignoring the actual value passed to the method.  

public int mName(int x){ 
x = 3; return x; 
} 
If accepting a parameter/argument in a method locally is 

considered as a ‘Read Operation’, and then if the parameter 
read is written in a very first instruction in a method, Write-
After-Read (WAR) dependency is found, which results in 
dead parameter bug. Thus instead if first instruction is read, 
i.e., in first instruction the value passed to this method is 
copied to some local variable and after this parameter is 
written then it will be Read-After-Read (RAR) dependency, 
which will not result in a bug. It clearly shows that Dead 
Parameter is a result of violation of Read-After-Read 
dependency. 

Another such pattern is ‘Redundant Null-check’, where a 
value of reference type is checked against null after it's 
dereference. 

public Car addCar(Car c2) { 
  Car temp=new Car(""); 
  c2.desc = "Bolero"; 
  if(c2!=null) 
   Console.WriteLine("stmt"); 
} 
In above code snippet, variable ‘c2’ of user-defined type 
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‘Car’ is checked against null after it is de-referenced/used. 
Therefore if its value is null, a runtime null de-reference 
exception will occur at its first de-reference itself or otherwise 
second null-check is redundant. That means if statement here 
is not the expected one. As if-statement is an example of 
control dependency, it clearly shows that this bug is a result of 
violation of control dependency. 

IV. BUG DETECTION APPROACH 
First the stream of bytes constituting a program is 

transformed into the corresponding sequence of machine 
instructions and after that based on this machine code 
representation, static or dynamic analysis is carried out to 
extract out the properties and function of the program.  

A. Disassembling 

In the first step, code is disassembled to recover symbolic 
representation of program’s machine code instructions from 
its binary representation. In Microsoft .NET® framework, it is 
carried out through the program ILDASM (IL Disassembler).  

B. Code Analysis 

Code analysis is the second step. It takes a program as input 
and tries to analyze the behavior of the program [16]. Based 
on the program’s machine code, which is extracted in first 
step, code sequences that are known to be deviant (or code 
sequences that violate a given specification of permitted 
behavior) are identified. The analysis techniques that the tool 
uses are given in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In addition to analysis techniques, the parser used plays a 

significant role in bug detection.  BugCatcher.Net uses a 
parser based on Finite State Automata (FSA). 

Code analyzing parser can be represented as a Finite State 
Automaton (FSA) [17], 

A= (Q, Σ, δ, q0, F)                                  (2) 
Where Q is the set of states, Σ is input symbols, δ transition 

function, q0 is the start state, and F is the set of accepting 
states. In case of our parser, Σ is different program 
instructions/statements. 

Each of the bugs has a pattern associated with which can be 
represented by a state transition diagram.  

 For instance, the parser state transition diagram for bug 
pattern ‘Floating-point equality’ is shown in Fig. 2.  

 
 
 
 
 
 
 
 
 
 
 
The corresponding code snippet is given below: 
float firstVar = 1.3f, secondVar = 1.3f; 
if(firstVar == secondVar){  ……..} 
 In this example, if condition will never get satisfied due to 

floating-point truncation. Thus when ‘==’ operator is used, 
our FSA-based parser enters in state 1 and when the two 
operands used for equality operator are floating-point then 
parser enters into state 2. Finally, if such a floating-point 
equality operation is used to take some decisions in a 
condition then third state is reached and this confirms the 
existence of bug. 

 In Fig. 2, the dotted lines represent the normal non-buggy 
path while solid lines represent the buggy one. Hence, if after 
parsing the code under inspection, it follows the buggy path of 
parser state transition diagram then there is a potential of 
finding a bug.  

 Many such detectors are devised for known bug patterns 
[1]. Some of them are very simple to handle and require 
simple analysis strategies like linear code scan, stack based or 
inspection of only class structure and inheritance hierarchy; 
while some are very tricky, which need complex analysis 
techniques like data flow and control flow. ‘Floating-Point 
Equality’ was comparatively simple pattern; the next section 
will discuss one of the complex patterns called ‘dereferencing 
the return value of a method call without checking’.  

 Sometimes the return value from a method is used in the 
source code without checking against null. If called method 
returns a value, which is not guaranteed to be non-null, and if 
this value is used in caller without null-checking, then 
definitely there is a possibility of getting runtime exception. 
The detector used for this bug pattern, ‘Method Return 
Value Checker’, determines if, a function returns a value, that 
value is tested before using. Use of a value can be defined as 
passing it as a parameter to a function, using it in a 
calculation, de-referencing or overwriting with some other 
value before testing [18].  

 Testing a return value means that some control flow 
decision relies on the value. The checker does a data-flow 
analysis on the variable holding the returned value only to the 
point of determining if the value is used before being tested. 
The checker simply identifies the original variable; the 
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returned value is stored into and determines the next use of 
that variable. If the variable during its next use is an operand 
to a comparison in a control flow decision then the return 
value is deemed to be tested before being used. If the variable 
is used in any way before being used in a control flow 
decision then the value is deemed to be used before being 
tested.  

 The pattern associated with it is can be well understood by 
the parser state transition diagram given in Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The checker keeps track of those methods, which return an 

object of type user-defined type (user defined class). In 
addition, for each call, those callers are recorded which use 
the return value without checking against null. Thus, if an 
instance where a method returns a reference of user-defined 
type is found and that return reference is used without being 
checked in the caller then the warning is reported to the user. 

V. PROPOSING BUG CORRECTIVE SOLUTIONS 
For proposing a solution, the user-program should be 

changed in such a way that the changed program-version does 
not pass through the states of corresponding Parser State 
Transition diagram (PSTD) in given order i.e. it is required 
to break the chain in PSTD. There are two options to achieve 
this. 

1. Change such that program does not pass through any of 
the states before it enters the final concluding state of the 
PSTD. 

Suppose that there are N states in a PSTD. Then propose a 
change C for program P corresponding to a state S as follows 

C(P) = ChangeSi(P)  i = 1,…., N-1.                 (3) 
2. Alter the execution order in which program passes 

through the PSTD states such that changed order is not able to 
produce the bug. Impose the execution order O out of total 2N 

orders for program P, as follows: 

O(P) = Orderi(P)                                    (4) 
Where  i = 1,….., 2N and i є {Bugs-free Orders} 

 Out of the two options above, first option was chosen as 
second has extra processing overhead. In addition, there is an 
extraneous overhead of finding out bugs-free orders.  

 In state based solution approach, a decision is taken about 
which state to handle. The options available are as follows: 

a. By default, take care of immediately previous state in a 
parser state transition representation of a bug pattern. 

b. Determine a state, which needs to be taken care of using 
the technique based on computing dependence. In this 
technique, dependence of previous and previous to previous 
states is calculated and then the solution which has minimum 
possible dependence is proposed. Following section gives the 
information about how to calculate the dependence of 
solutions. 

A. Calculating Dependence 

The technique used for calculating dependence is call based 
and hence it has method level granularity. If proposed solution 
indicates that change has to be incorporated in a method M, 
then set of possible impacted methods includes any method, 
which directly call M, and any method, which is directly 
called by M. 

 A method Ma directly calls method Mb, if call to method 
Mb is directly figured out in body of the method Mb. 

 Let MCalling(Mi) be the set of methods which directly call 
method Mi and MCalled(Mi) be the set of methods which are 
directly called by Mi. Thus the set DM(Mi) of dependent 
methods can be given by 

DM(Mi) = MCalling(Mi) U MCalled(Mi)                   (5) 
 Although only the methods, which are direct dependent, 

are considered, set can also be formed iteratively. Thus, the 
same process is repeated for the methods which are called by 
and which are calling, method Mi. 

 In case of method return value checker, usually corrective 
solution proposed, requires change to be done in parameters. 
Hence, for null dereference checker, granularity is 
parameter/variable level. 

 Let MUsing(Pi) be the set of methods which use value of 
parameter/variable Pi, MPassing(Pi) be the set of methods which 
pass Pi to other methods and MReturning(Pi) is the set of methods 
which return Pi. Thus the set DM(Pi) of dependent methods on 
parameter Pi is given by 

DM(Pi) = MUsing(Pi) U MPassing(Pi) U MReturning(Pi)         (6) 
 Thus, the solution whose |DM| (number of dependent 

methods) is minimal is preferred. While computing 
dependences of a particular proposed corrective solution, the 
tool considers structural changes also. 

B. Structural Changes 

These changes can be any of the following: Addition, 
Modification or Deletion of a programming element. 
Moreover, the solution, which introduces minimal structural 
changes, is preferred.  

 Thus above approach is followed to ensure that the 
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solution presented to the end-user, has minimal side effects. 

C. Providing Early Solution 

According to well-known saying, “Prevention is always 
better than cure”, waiting for a bug to cripple in software will 
not be advisable. To avoid such situation, BugCatcher.Net 
tries to provide a solution to end-user as soon as sufficient 
confidence or enough confirmation is obtained about 
occurrence of a bug. Such a solution is referred as an ‘Early 
Solution’. 

 Next section highlights our concept of confirmation of a 
bug. 

1) Likelihood and Confirmation of a Bug 
The occurrence of a bug gets confirmed as the program 

passes through all the states in corresponding parser state 
transition diagram (PSTD) in the same order. e.g., for method 
return value checker, whenever any program under inspection 
has some method, which returns a user-defined type then it, 
enters in a first state of PSTD. However, only finding such 
method is not sufficient to conclude that program contains the 
bug. Instead this method should be called somewhere in the 
code and not even this, its return value should get used in 
subsequent code chunk. 

 Thus at first state in PSTD, there is a likelihood of finding 
a bug. Moreover, this likelihood gets confirmed as one 
traverse through the entire PSTD in same sequence. 
Therefore, at final state in each PSTD, there is 100% 
confirmation of existence of a bug in user program. 

 Likelihood of a bug can be expressed in terms of equations 
as follows. 

 Let N be the total number of states in a PSTD, which are 
needed to be followed to ensure the existence of a bug B and 
M be the current state. Then likelihood of occurrence of a bug 
B, at state M can be given by 

Likelihood(B)M = (100 / N) * M,                        (7) 
Where M = 1, …, N 

 
2) Approach 
For providing an early solution, the option of handling 

immediately previous state is followed.  e.g., whenever it is 
observed that the user is trying to use/de-reference a value of 
user-defined/reference type without checking it against null, 
the user is intimated about future potential bug by giving 
him/her the solution immediately, without waiting for 100% 
confirmation of the existence of bug. 

D. Providing Late Solution 

The solution, which is determined after the bug has 
occurred in the software, is termed as a ‘Late Solution’. This 
solution is based on dependence calculation technique.  

 Intuitively taking care of immediately previous state in a 
PSTD is appropriate solution, as it limits the impact of the 
proposed change to produce any other type of bugs or if put in 
other words, it limits the side-effects of proposed solution. 
Nevertheless, in some cases like method return value checker, 
this approach may not help. There can be a better solution 

lying in some other state of state transition representation. 
Hence, the technique based on computing dependences to 
determine which state to handle is used for late solutions. 

 Finally, after inspecting whole user program, the user is 
equipped with overall solution, which is able to make most of 
the program bugs-free. Next section reveals about overall 
solution provided. 

VI. PROPOSING OVERALL STRATEGIC SOLUTION 
 Initially an attempt is made to understand the program 

behavior. Then after equipped with whole information about 
program, our tool detects some potential bugs. The result of 
the tool can be used to summarize the bug-trend which helps 
in arriving at a conclusion about the type of bug towards the 
program is more prone to. Then this conclusion can be used to 
provide ‘overall strategic solution’ to end user. Following 
section describes about strategic solution derived. 

 The tool gives different types of warnings to user. The 
overall strategic solution provided is based on following 
heuristic: 

 The solution is based on the type of bug, which appears for 
more number of times in the output. 

 Let N be the total number of warnings shown by the tool 
and M be the number of different types of warnings. Then 
B(Pi) is the set of warnings obtained as a result of running the 
tool on program Pi, which is represented as follows: 

B(Pi) = BType1(Pi) U BType2(Pi) U ………U BTypeM(Pi)   (8) 
Σ j = 1,…, M (BTypej(Pi)) = N 

 Then the overall solution is based on the bug type 
Solution(Pi) => BTypej(Pi), | BTypej(Pi)| > N/M                (9) 

 

VII. RESULTS 
BugCatcher.Net is tested against Philips PmsMip(Philips 

Medical Systems Medical Imaging Platform) and also on 
different open source projects taken from SourceForge.net 
[21] site. 

TABLE I 
RESULTS 

Project/Module No. of Warnings Reported 

Philips PmsMip 4297 

ITextSharp [22] 1497 

Airplaneawar [23] 2 

SharpDevelop [24] 46 

EulerSharp [25] 19 

VNC Viewer [26] 58 

SWAT [27] 302 

Quartz.Net [28] 310 

Nayatel [29] 37 

NeuronDotNet [30] 0 

TemplateEngine[31] 3 
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VIII. ANALYSIS 

A. Comparison with Existing Tools 

 The results obtained with this tool are compared with 
FxCop [10], StyleCop [11] and CodeIT.Right [12] open 
source freeware static analysis tools for .NET® languages. 
These tools are compared based on the type of bugs they are 
capable of detecting. Table II depicts the results of this 
comparison. 

TABLE II 
COMPARISON 

Bug Pattern BugCat- 
cher.Net 

Fx-
Cop 

Style-
Cop 

CodeIT.Ri
ght 

Dead Parameter Yes Yes No No 
Dereferencing of 

Result of 
ReadLine() without 

Checking 

Yes No No No 

Redundant Interface Yes No Yes No 
Questionable 

Boolean 
Assignment 

Yes No Yes No 

Useless Control 
Flow Yes No No No 

Null Dereference Yes No No No 
Return Null 
Reference Yes No No No 

Bad Reminder Yes No No No 
Masking of a Super 

class Field Yes No No No 

Redundant 
Nullcheck Yes No No No 

Floating Point 
Euality Yes No No No 

Equality to NaN Yes Yes No No 

 

B. Distribution of Bugs over Modules 

The distribution of bugs reported by the tool is studied over 
different software modules to identify those modules, which 
are more error-prone. This helps in focusing efforts on such 
modules and achieving better quality software. It is often 
found that the distribution of errors/faults across software 
modules is always skewed that is a small number of modules 
accounts for most of the faults. This behavior is better 
modeled by Weibull Distribution [19] given below. 

1) Weibull Distribution 
The physicist Waloddi Weibull developed it, which helps in 

finding distribution of faults over software modules. It is 
based on the Pareto principle, which says that 20% of 
population owns 80% of wealth [20]. The cumulative 
distribution function (CDF) of the Pareto distribution can be 
defined as, 

P(x) = 1- (( γ/ x )β)           ( γ > 0, β > 0).                (10) 
 
 The CDF of the Weibull distribution can be formally 

defined as 
P(x) = 1- exp( - ( x/γ )β)           ( γ > 0, β > 0).            (11) 

  

The results are tested against Weibull distribution and it is 
observed that the warnings/potential bugs that the tool 
reported are also distributed accordingly. The experimental 
studies are performed on Philips PmsMip project. 

Table III gives the number of bugs found in various 
modules because of running our tool. Fig. 4 shows the 
percentage of the accumulated number of potential bugs when 
the modules are ordered by decreasing number of faults. 

 
TABLE III 

BUG DISTRIBUTION 

PMSMIP MODULE TOTAL BUGS 

FIELDSERVICE 0 

PROCESSINGSERVICE 3 

CONNECTIVITY 34 

APPLICATIONS 109 

PUBLIC 120 

TOOLS 180 

DATABASE 275 

SERVICES 461 

BASE 606 

TESTS 1144 

VIEWING 1365 

 

 
Fig. 4 Cumulative Plot of Weibull Distribution for Philips code-base 

 

C. False Positive Rate 

It gives the ratio of number of non-relevant items to total 
retrieved items, which is given by following expression: 

   (12) 
 In case of our tool, false positive represents a warning 

reported to user, which is not a real bug. Hence, false positive 
rate can be given by following expression: 

 
 
                                                                                         (13) 
 Fig. 5 gives the plot of false positive rate against number of 

warnings or errors inspected for false positives in PmsMip 

 |{Non-relevant items}|

 |{ Retrieved items}| 
False Positive Rate ═

 |{Buggy Warnings}|

|{ Inspected Warnings}|
False Positive Rate ═
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codebase.  

 
Fig. 5 Cumulative Plot of False Positive Rate Analysis 

 

D. Precision 

It gives the ratio of relevant items to the retrieved items: 
 
  

(14) 
 
 In our case, precision can be expressed as follows: 

 
 

 
(15) 

 
Fig. 6 Precision 

E. Warning Density 

It is measured as the number of warnings per size of 
Software Component being measured, (typically expressed in 
KLOC). KLOC is thousand lines of code and number of 
warnings represents the total number of potential warnings 
found while testing a tool against a particular software 
component.  

 This is similar to Defect density, one of the software 
quality metrics. It is useful in identifying defect prone 
components of software and in tracking the quality of 
software by measuring the percentage of defect reduction. 

 
 

 
 

(16) 
 

 
Fig. 7 Warning Density 

 
Fig. 7 gives the plot of warning density against KLOC 

found in PmsMip. 

IX. CONCLUSION AND FUTURE WORK 
BugCatcher.Net uses its own FSA-based parser, which 

helps in carrying out abstractions needed for analyzing 
program behavior statically in just one parse throughout the 
entire code. Further, the tool exhibits many useful features 
like capability of finding bugs by simply inspecting program 
code without its execution, prioritization of warnings reported, 
and ability to highlight the buggy source code without using 
source files and comparatively lower false positive rate; 
approximately about 45% or alternatively higher precision. 
Not only this, it is able to propose a solution to end user with 
minimal possible side effects. Moreover, tool can distinguish 
between definite and suspicious occurrence of a bug. 

 However, due to some assumptions and abstractions made 
while modeling the program behavior, in some cases there are 
few chances of incorrect modeling. Hence, some work should 
be done to perform more abstractions that are sophisticated. 
Further, the detectors have been implemented for some known 
bug-patterns. The implementation should be extended to 
detect remaining classes of bugs. In addition, a plug-in can be 
developed to allow end users to write their custom detectors.  
Moreover, the bug trend analyzing capability can be extended 
further to forecast the most likely bug-pattern. 
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