
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

211

Abstract—Although achieving zero-defect software release is

practically impossible, software industries should take maximum
care to detect defects/bugs well ahead in time allowing only bare
minimums to creep into released version. This is a clear indicator of
time playing an important role in the bug detection. In addition to
this, software quality is the major factor in software engineering
process. Moreover, early detection can be achieved only through
static code analysis as opposed to conventional testing.
BugCatcher.Net is a static analysis tool, which detects bugs in .NET®
languages through MSIL (Microsoft Intermediate Language)
inspection. The tool utilizes a Parser based on Finite State Automata
to carry out bug detection. After being detected, bugs need to be
corrected immediately. BugCatcher.Net facilitates correction, by
proposing a corrective solution for reported warnings/bugs to end
users with minimum side effects. Moreover, the tool is also capable
of analyzing the bug trend of a program under inspection.

Keywords—Dependence, Early solution, Finite State Automata,
Grammar, Late solution, Parser State Transition Diagram, Static
Program Analysis.

I. INTRODUCTION
UGS can be defined as a path through the code when gets
executed causes either a run-time exception or an

incorrect result with certain input values. However, unlikely
an error, bug occurs due to specific inputs which developers
didn’t try at the time of developing whereas error occurs
irrespective of inputs. As .NET® languages are gifted with
managed execution environment [3], there are mechanisms to
handle runtime exceptions. However, handling such errors at
runtime offers little advantage. In addition, the effort needed
to get rid of a bug increases with the time a bug spends in a
software product. Hence, it is most crucial to detect them as
early as possible. As discussed in previous paper [1], the static
analysis techniques used for early detection generally try to
identify the pattern associated with the bugs to find out all the
occurrences all over the code base unlike testing. Usually,
meeting unrealistic deadlines and insufficient testing time
account for significant number of hidden bugs in the software
released. However, at the very root level, the main cause of
bug occurrence can be either the grammar of the programming

Sheetal Chavan is with Philips Electronics India Ltd., Bangalore-560045,
India (phone: +91 80 4189 1644; fax: +91 80 4189 1000; e-mail:
sheetal.chavan@philips.com).

Dr. P. J. Kulkarni is with Walchand College of Engineering and
Technology, Sangli, India (e-mail: pjk_walchand@rediffmail.com).

Vivek Shanbhag was with Philips Electronics India Ltd. He is now with
IIIT Bangalore (e-mail: vivek.shanbhag@gmail.com).

language itself or the violation of dependencies. These causes
are discussed briefly in section III. There are various tools
available to detect bugs statically in different language source
code. Section II gives brief information about these tools.
Whereas rest of the paper is organized as follows. Section III
describes the bug detection approach and section IV presents
strategies used for proposing corrective solutions to the end
users. The bug trend analysis carried out to propose overall
solution is discussed in detail in section V. Results obtained
and analysis performed are given in sections VI and VII
respectively. Finally, section VIII presents future extensions
and makes conclusion of the work done.

II. RELATED WORK
There are ample amount of bug detectors available for C

and C++. One of these is LCLint, which reports
inconsistencies between a program and its specification [4].
Further, the ASTLog tool [5], which looks for syntactically
suspicious code patterns, has been extended into the PREfast
tool [6] & is used extensively within Microsoft as a bug
pattern detector.

Several detection tools for Java language also exist. One of
the useful tools is PMD [7], which checks for patterns in the
abstract syntax trees of parsed Java source files. Another tool,
FindBugs [2] uses a series of ad-hoc techniques designed to
balance precision, efficiency, and usability. One of the main
techniques FindBugs uses is to match source code
syntactically to known suspicious programming practice, in a
manner similar to ASTLog. In some cases, FindBugs also uses
dataflow analysis to check for bugs. JLint [8], like FindBugs,
analyzes Java byte-code, performing syntactic checks and
dataflow analysis. JLint also includes an inter-procedural,
inter-file component to find deadlocks by building a lock
graph and ensuring that there are never any cycles in the
graph. Further, Bandera [9] is a verification tool based on
model checking and abstraction. To use Bandera, the
programmer annotates the source with specifications
describing what should be checked, or no specifications if the
programmer only wants to verify some standard
synchronization properties.

There are various static analysis tools available for .NET®
languages also. FxCop is one of the tools which analyzes
managed code assemblies (code that targets the .NET®
Framework common language runtime) and reports
information about the assemblies, such as possible design,
localization, performance, and security improvements [10].

BugCatcher.Net: Detecting Bugs and Proposing
Corrective Solutions

Sheetal Chavan, P. J. Kulkarni, and Vivek Shanbhag

B

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

212

Many of the issues concern violations of the programming and
design rules set forth in the Design Guidelines for Class
Library Developers. Another tool, StyleCop provided by
Microsoft® ensures that C# code incorporates style and
consistency rules. StyleCop is very beneficial in conducting
code reviews [11]. Further, CodeIt.Right offers the means to
correct violations in C# and Visual Basic code automatically
[12]. It carries out static code analysis with configurable rule
sets to find code issues. This is one of the tools, which is used
to ensure that code written conforms to the best coding
guidelines, thus helping in writing quality code.

Resharper is yet another tool provided by JetBrains, which
analyzes and highlights errors in C# code (up to C# 3.0) while
typing itself, without having to compile the code first [13]. It
also helps to solve problems instantly, by suggesting quick
fixes for most errors. User can analyze code both in a current
file and throughout the entire solution. Finally, NStatic [14]
can detect errors like complex expressions (including function
calls) that evaluate to constants; assignment to a variable is
same as current value, redundant parameter, infinite loops, etc.
Nevertheless, NStatic only supports C# as it is source code
dependent.

Out of the tools that are discussed here, Findbugs serves as
motivation of our work of finding similar bugs in .NET®
source.

III. CAUSES OF BUG OCCURRENCE

A. Programming Language Grammar

As mentioned earlier, the grammar of any programming
language can also be a potential source of bugs. This grammar
can be well described by a context-free grammar. A context-
free grammar (G) [15] can be formally defined as a 4-tuple:

G = (V, Σ, R, S) (1)
where V is a finite set of non-terminal characters or variables.
They represent different types of phrase or clause in the
sentence. Σ is a finite set of terminals, disjoint with V, which
make up the actual content of the sentence. R is a relation
from V to (V U Σ)* such that any w є (V U Σ)*: (S, w) є R. S
is the start variable, used to represent the whole sentence (or
program). It must be an element of V.

Some of the bugs arise from flaws in the grammar of the
programming language or some are introduced due to wrong
concatenation of non-terminals (symbols).

1) Wrong Concatenation of Non-terminals
One such bug, which results from wrong concatenation of

non-terminals, is ‘Floating-Point Equality’, where a check is
made to see if two floating-point values are equal.
Corresponding grammar rules are given below.

Equality expression: Operand (Equality operator) Operand
Equality Operator: = = | !=
Operand: Literal | Identifier
Idenitifier: predefined-type.Identifier
predefined-type: bool | byte | char | decimal | double | float

| int | long | object | sbyte | short | string | uint | ulong | ushort
Here, if equality expression is used with operands of type

float/double then result will always be false due to floating-
point truncation. Moreover, if this expression is used as a
condition to take some decisions for following particular path
in a program then always one particular path will be executed.

2) Flaws
Any programming language grammar may have some or

other flaw due to time and space constraints that are imposed
on compilers. At some places grammar is too vague such that
it can’t specify certain conditions like the bug pattern which
arises from a flaw in the grammar rule – ‘Useless control
flow’, where control flow continues onto the same place i.e.,
to the same or following line regardless of whether or not the
branch is taken.

public void Method(){
 int var = 3; if (var = 2) ;
 }
An erroneous grammar rule is
 If statement: if expression then statement
This rule allows null statement also to pass in then-part of

an if-expression. Hence, to correct this, rule should have been
as follows:

If statement: if expression then statement other than null
Here grammar rule becomes general and is not able to put

specific condition in if statement.

B. Violation of Dependencies

Another major cause of bugs can be violation of
dependencies, control or data. Most of the bugs result from
violation of some dependency in a program.

One of the bug patterns is ‘Dead Parameter’, where a
parameter is overwritten in a very first instruction in a method
ignoring the actual value passed to the method.

public int mName(int x){
x = 3; return x;
}
If accepting a parameter/argument in a method locally is

considered as a ‘Read Operation’, and then if the parameter
read is written in a very first instruction in a method, Write-
After-Read (WAR) dependency is found, which results in
dead parameter bug. Thus instead if first instruction is read,
i.e., in first instruction the value passed to this method is
copied to some local variable and after this parameter is
written then it will be Read-After-Read (RAR) dependency,
which will not result in a bug. It clearly shows that Dead
Parameter is a result of violation of Read-After-Read
dependency.

Another such pattern is ‘Redundant Null-check’, where a
value of reference type is checked against null after it's
dereference.

public Car addCar(Car c2) {
 Car temp=new Car("");
 c2.desc = "Bolero";
 if(c2!=null)
 Console.WriteLine("stmt");
}
In above code snippet, variable ‘c2’ of user-defined type

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

213

‘Car’ is checked against null after it is de-referenced/used.
Therefore if its value is null, a runtime null de-reference
exception will occur at its first de-reference itself or otherwise
second null-check is redundant. That means if statement here
is not the expected one. As if-statement is an example of
control dependency, it clearly shows that this bug is a result of
violation of control dependency.

IV. BUG DETECTION APPROACH
First the stream of bytes constituting a program is

transformed into the corresponding sequence of machine
instructions and after that based on this machine code
representation, static or dynamic analysis is carried out to
extract out the properties and function of the program.

A. Disassembling

In the first step, code is disassembled to recover symbolic
representation of program’s machine code instructions from
its binary representation. In Microsoft .NET® framework, it is
carried out through the program ILDASM (IL Disassembler).

B. Code Analysis

Code analysis is the second step. It takes a program as input
and tries to analyze the behavior of the program [16]. Based
on the program’s machine code, which is extracted in first
step, code sequences that are known to be deviant (or code
sequences that violate a given specification of permitted
behavior) are identified. The analysis techniques that the tool
uses are given in Fig. 1.

In addition to analysis techniques, the parser used plays a

significant role in bug detection. BugCatcher.Net uses a
parser based on Finite State Automata (FSA).

Code analyzing parser can be represented as a Finite State
Automaton (FSA) [17],

A= (Q, Σ, δ, q0, F) (2)
Where Q is the set of states, Σ is input symbols, δ transition

function, q0 is the start state, and F is the set of accepting
states. In case of our parser, Σ is different program
instructions/statements.

Each of the bugs has a pattern associated with which can be
represented by a state transition diagram.

 For instance, the parser state transition diagram for bug
pattern ‘Floating-point equality’ is shown in Fig. 2.

The corresponding code snippet is given below:
float firstVar = 1.3f, secondVar = 1.3f;
if(firstVar == secondVar){ ……..}
 In this example, if condition will never get satisfied due to

floating-point truncation. Thus when ‘==’ operator is used,
our FSA-based parser enters in state 1 and when the two
operands used for equality operator are floating-point then
parser enters into state 2. Finally, if such a floating-point
equality operation is used to take some decisions in a
condition then third state is reached and this confirms the
existence of bug.

 In Fig. 2, the dotted lines represent the normal non-buggy
path while solid lines represent the buggy one. Hence, if after
parsing the code under inspection, it follows the buggy path of
parser state transition diagram then there is a potential of
finding a bug.

 Many such detectors are devised for known bug patterns
[1]. Some of them are very simple to handle and require
simple analysis strategies like linear code scan, stack based or
inspection of only class structure and inheritance hierarchy;
while some are very tricky, which need complex analysis
techniques like data flow and control flow. ‘Floating-Point
Equality’ was comparatively simple pattern; the next section
will discuss one of the complex patterns called ‘dereferencing
the return value of a method call without checking’.

 Sometimes the return value from a method is used in the
source code without checking against null. If called method
returns a value, which is not guaranteed to be non-null, and if
this value is used in caller without null-checking, then
definitely there is a possibility of getting runtime exception.
The detector used for this bug pattern, ‘Method Return
Value Checker’, determines if, a function returns a value, that
value is tested before using. Use of a value can be defined as
passing it as a parameter to a function, using it in a
calculation, de-referencing or overwriting with some other
value before testing [18].

 Testing a return value means that some control flow
decision relies on the value. The checker does a data-flow
analysis on the variable holding the returned value only to the
point of determining if the value is used before being tested.
The checker simply identifies the original variable; the

Fig. 1 Analysis Techniques

2

3 1 = =/ !=
Statement

Assignment/
Condition

Assignment/
Condition

Equality
Expression

Using
Expression

FloatingPoint
Operands

Fig. 2 Parser State Transition Diagram

Analysis Techniques

Warnings

Disassembled
MSIL

MSIL Source
Program

C#
Compiler

.NET
Disassembler

Linear
Code

Stack-
Based

Control
Flow

Class
Structure &
Inheritance

Data
Flow

IL

Bug

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

214

returned value is stored into and determines the next use of
that variable. If the variable during its next use is an operand
to a comparison in a control flow decision then the return
value is deemed to be tested before being used. If the variable
is used in any way before being used in a control flow
decision then the value is deemed to be used before being
tested.

 The pattern associated with it is can be well understood by
the parser state transition diagram given in Fig. 3.

The checker keeps track of those methods, which return an

object of type user-defined type (user defined class). In
addition, for each call, those callers are recorded which use
the return value without checking against null. Thus, if an
instance where a method returns a reference of user-defined
type is found and that return reference is used without being
checked in the caller then the warning is reported to the user.

V. PROPOSING BUG CORRECTIVE SOLUTIONS
For proposing a solution, the user-program should be

changed in such a way that the changed program-version does
not pass through the states of corresponding Parser State
Transition diagram (PSTD) in given order i.e. it is required
to break the chain in PSTD. There are two options to achieve
this.

1. Change such that program does not pass through any of
the states before it enters the final concluding state of the
PSTD.

Suppose that there are N states in a PSTD. Then propose a
change C for program P corresponding to a state S as follows

C(P) = ChangeSi(P) i = 1,…., N-1. (3)
2. Alter the execution order in which program passes

through the PSTD states such that changed order is not able to
produce the bug. Impose the execution order O out of total 2N

orders for program P, as follows:

O(P) = Orderi(P) (4)
Where i = 1,….., 2N and i є {Bugs-free Orders}

 Out of the two options above, first option was chosen as
second has extra processing overhead. In addition, there is an
extraneous overhead of finding out bugs-free orders.

 In state based solution approach, a decision is taken about
which state to handle. The options available are as follows:

a. By default, take care of immediately previous state in a
parser state transition representation of a bug pattern.

b. Determine a state, which needs to be taken care of using
the technique based on computing dependence. In this
technique, dependence of previous and previous to previous
states is calculated and then the solution which has minimum
possible dependence is proposed. Following section gives the
information about how to calculate the dependence of
solutions.

A. Calculating Dependence

The technique used for calculating dependence is call based
and hence it has method level granularity. If proposed solution
indicates that change has to be incorporated in a method M,
then set of possible impacted methods includes any method,
which directly call M, and any method, which is directly
called by M.

 A method Ma directly calls method Mb, if call to method
Mb is directly figured out in body of the method Mb.

 Let MCalling(Mi) be the set of methods which directly call
method Mi and MCalled(Mi) be the set of methods which are
directly called by Mi. Thus the set DM(Mi) of dependent
methods can be given by

DM(Mi) = MCalling(Mi) U MCalled(Mi) (5)
 Although only the methods, which are direct dependent,

are considered, set can also be formed iteratively. Thus, the
same process is repeated for the methods which are called by
and which are calling, method Mi.

 In case of method return value checker, usually corrective
solution proposed, requires change to be done in parameters.
Hence, for null dereference checker, granularity is
parameter/variable level.

 Let MUsing(Pi) be the set of methods which use value of
parameter/variable Pi, MPassing(Pi) be the set of methods which
pass Pi to other methods and MReturning(Pi) is the set of methods
which return Pi. Thus the set DM(Pi) of dependent methods on
parameter Pi is given by

DM(Pi) = MUsing(Pi) U MPassing(Pi) U MReturning(Pi) (6)
 Thus, the solution whose |DM| (number of dependent

methods) is minimal is preferred. While computing
dependences of a particular proposed corrective solution, the
tool considers structural changes also.

B. Structural Changes

These changes can be any of the following: Addition,
Modification or Deletion of a programming element.
Moreover, the solution, which introduces minimal structural
changes, is preferred.

 Thus above approach is followed to ensure that the

Normal flow
without bug
Buggy flow

MethodReturns
Value

CallToMethod

Checking
ReturnValue

UseOfReturn
Value

Initialize

Compute

CheckingValueToB
eReturned

ComputeValidRet
urnValue

Returning
Value

Fig. 3 Parser State Transition Diagram for dereferencing of return
value without checking

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

215

solution presented to the end-user, has minimal side effects.

C. Providing Early Solution

According to well-known saying, “Prevention is always
better than cure”, waiting for a bug to cripple in software will
not be advisable. To avoid such situation, BugCatcher.Net
tries to provide a solution to end-user as soon as sufficient
confidence or enough confirmation is obtained about
occurrence of a bug. Such a solution is referred as an ‘Early
Solution’.

 Next section highlights our concept of confirmation of a
bug.

1) Likelihood and Confirmation of a Bug
The occurrence of a bug gets confirmed as the program

passes through all the states in corresponding parser state
transition diagram (PSTD) in the same order. e.g., for method
return value checker, whenever any program under inspection
has some method, which returns a user-defined type then it,
enters in a first state of PSTD. However, only finding such
method is not sufficient to conclude that program contains the
bug. Instead this method should be called somewhere in the
code and not even this, its return value should get used in
subsequent code chunk.

 Thus at first state in PSTD, there is a likelihood of finding
a bug. Moreover, this likelihood gets confirmed as one
traverse through the entire PSTD in same sequence.
Therefore, at final state in each PSTD, there is 100%
confirmation of existence of a bug in user program.

 Likelihood of a bug can be expressed in terms of equations
as follows.

 Let N be the total number of states in a PSTD, which are
needed to be followed to ensure the existence of a bug B and
M be the current state. Then likelihood of occurrence of a bug
B, at state M can be given by

Likelihood(B)M = (100 / N) * M, (7)
Where M = 1, …, N

2) Approach
For providing an early solution, the option of handling

immediately previous state is followed. e.g., whenever it is
observed that the user is trying to use/de-reference a value of
user-defined/reference type without checking it against null,
the user is intimated about future potential bug by giving
him/her the solution immediately, without waiting for 100%
confirmation of the existence of bug.

D. Providing Late Solution

The solution, which is determined after the bug has
occurred in the software, is termed as a ‘Late Solution’. This
solution is based on dependence calculation technique.

 Intuitively taking care of immediately previous state in a
PSTD is appropriate solution, as it limits the impact of the
proposed change to produce any other type of bugs or if put in
other words, it limits the side-effects of proposed solution.
Nevertheless, in some cases like method return value checker,
this approach may not help. There can be a better solution

lying in some other state of state transition representation.
Hence, the technique based on computing dependences to
determine which state to handle is used for late solutions.

 Finally, after inspecting whole user program, the user is
equipped with overall solution, which is able to make most of
the program bugs-free. Next section reveals about overall
solution provided.

VI. PROPOSING OVERALL STRATEGIC SOLUTION
 Initially an attempt is made to understand the program

behavior. Then after equipped with whole information about
program, our tool detects some potential bugs. The result of
the tool can be used to summarize the bug-trend which helps
in arriving at a conclusion about the type of bug towards the
program is more prone to. Then this conclusion can be used to
provide ‘overall strategic solution’ to end user. Following
section describes about strategic solution derived.

 The tool gives different types of warnings to user. The
overall strategic solution provided is based on following
heuristic:

 The solution is based on the type of bug, which appears for
more number of times in the output.

 Let N be the total number of warnings shown by the tool
and M be the number of different types of warnings. Then
B(Pi) is the set of warnings obtained as a result of running the
tool on program Pi, which is represented as follows:

B(Pi) = BType1(Pi) U BType2(Pi) U ………U BTypeM(Pi) (8)
Σ j = 1,…, M (BTypej(Pi)) = N

 Then the overall solution is based on the bug type
Solution(Pi) => BTypej(Pi), | BTypej(Pi)| > N/M (9)

VII. RESULTS
BugCatcher.Net is tested against Philips PmsMip(Philips

Medical Systems Medical Imaging Platform) and also on
different open source projects taken from SourceForge.net
[21] site.

TABLE I
RESULTS

Project/Module No. of Warnings Reported

Philips PmsMip 4297

ITextSharp [22] 1497

Airplaneawar [23] 2

SharpDevelop [24] 46

EulerSharp [25] 19

VNC Viewer [26] 58

SWAT [27] 302

Quartz.Net [28] 310

Nayatel [29] 37

NeuronDotNet [30] 0

TemplateEngine[31] 3

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

216

VIII. ANALYSIS

A. Comparison with Existing Tools

 The results obtained with this tool are compared with
FxCop [10], StyleCop [11] and CodeIT.Right [12] open
source freeware static analysis tools for .NET® languages.
These tools are compared based on the type of bugs they are
capable of detecting. Table II depicts the results of this
comparison.

TABLE II
COMPARISON

Bug Pattern BugCat-
cher.Net

Fx-
Cop

Style-
Cop

CodeIT.Ri
ght

Dead Parameter Yes Yes No No
Dereferencing of

Result of
ReadLine() without

Checking

Yes No No No

Redundant Interface Yes No Yes No
Questionable

Boolean
Assignment

Yes No Yes No

Useless Control
Flow Yes No No No

Null Dereference Yes No No No
Return Null
Reference Yes No No No

Bad Reminder Yes No No No
Masking of a Super

class Field Yes No No No

Redundant
Nullcheck Yes No No No

Floating Point
Euality Yes No No No

Equality to NaN Yes Yes No No

B. Distribution of Bugs over Modules

The distribution of bugs reported by the tool is studied over
different software modules to identify those modules, which
are more error-prone. This helps in focusing efforts on such
modules and achieving better quality software. It is often
found that the distribution of errors/faults across software
modules is always skewed that is a small number of modules
accounts for most of the faults. This behavior is better
modeled by Weibull Distribution [19] given below.

1) Weibull Distribution
The physicist Waloddi Weibull developed it, which helps in

finding distribution of faults over software modules. It is
based on the Pareto principle, which says that 20% of
population owns 80% of wealth [20]. The cumulative
distribution function (CDF) of the Pareto distribution can be
defined as,

P(x) = 1- ((γ/ x)β) (γ > 0, β > 0). (10)

 The CDF of the Weibull distribution can be formally

defined as
P(x) = 1- exp(- (x/γ)β) (γ > 0, β > 0). (11)

The results are tested against Weibull distribution and it is
observed that the warnings/potential bugs that the tool
reported are also distributed accordingly. The experimental
studies are performed on Philips PmsMip project.

Table III gives the number of bugs found in various
modules because of running our tool. Fig. 4 shows the
percentage of the accumulated number of potential bugs when
the modules are ordered by decreasing number of faults.

TABLE III

BUG DISTRIBUTION

PMSMIP MODULE TOTAL BUGS

FIELDSERVICE 0

PROCESSINGSERVICE 3

CONNECTIVITY 34

APPLICATIONS 109

PUBLIC 120

TOOLS 180

DATABASE 275

SERVICES 461

BASE 606

TESTS 1144

VIEWING 1365

Fig. 4 Cumulative Plot of Weibull Distribution for Philips code-base

C. False Positive Rate

It gives the ratio of number of non-relevant items to total
retrieved items, which is given by following expression:

 (12)
 In case of our tool, false positive represents a warning

reported to user, which is not a real bug. Hence, false positive
rate can be given by following expression:

 (13)
 Fig. 5 gives the plot of false positive rate against number of

warnings or errors inspected for false positives in PmsMip

 |{Non-relevant items}|

 |{ Retrieved items}|
False Positive Rate ═

 |{Buggy Warnings}|

|{ Inspected Warnings}|
False Positive Rate ═

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

217

codebase.

Fig. 5 Cumulative Plot of False Positive Rate Analysis

D. Precision

It gives the ratio of relevant items to the retrieved items:

(14)

 In our case, precision can be expressed as follows:

(15)

Fig. 6 Precision

E. Warning Density

It is measured as the number of warnings per size of
Software Component being measured, (typically expressed in
KLOC). KLOC is thousand lines of code and number of
warnings represents the total number of potential warnings
found while testing a tool against a particular software
component.

 This is similar to Defect density, one of the software
quality metrics. It is useful in identifying defect prone
components of software and in tracking the quality of
software by measuring the percentage of defect reduction.

(16)

Fig. 7 Warning Density

Fig. 7 gives the plot of warning density against KLOC

found in PmsMip.

IX. CONCLUSION AND FUTURE WORK
BugCatcher.Net uses its own FSA-based parser, which

helps in carrying out abstractions needed for analyzing
program behavior statically in just one parse throughout the
entire code. Further, the tool exhibits many useful features
like capability of finding bugs by simply inspecting program
code without its execution, prioritization of warnings reported,
and ability to highlight the buggy source code without using
source files and comparatively lower false positive rate;
approximately about 45% or alternatively higher precision.
Not only this, it is able to propose a solution to end user with
minimal possible side effects. Moreover, tool can distinguish
between definite and suspicious occurrence of a bug.

 However, due to some assumptions and abstractions made
while modeling the program behavior, in some cases there are
few chances of incorrect modeling. Hence, some work should
be done to perform more abstractions that are sophisticated.
Further, the detectors have been implemented for some known
bug-patterns. The implementation should be extended to
detect remaining classes of bugs. In addition, a plug-in can be
developed to allow end users to write their custom detectors.
Moreover, the bug trend analyzing capability can be extended
further to forecast the most likely bug-pattern.

REFERENCES
[1] V. Channakeshava, S. Chavan, and V. Shanbhag, “Bug Detection

through Static Analysis of MSIL”, ACTA Press, Proceedings of
Software Engineering and Applications, 2008.

[2] D. Hovemeyer and W. Pugh, Finding Bugs Is Easy, Companion of the
19th Ann. ACM SIGPLAN Conf. Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA ’04), Oct. 2004.

[3] Introduction to IL Assembly Language - The Code Project - _NET,
http://www.codeproject.com/KB/msil/ilassembly.aspx

[4] David Evans, John Guttag, James Horning, Yang Meng Tan, LCLint: a
tool for using specifications to check code, Proceedings of the 2nd

Warning Density =
Total Number of Warnings

Size of Software Component
(In KLOC)

Precision
 | {Positive Warnings} ∩ {Inspected Warnings}|

 |{ Inspected Warnings}|
=

Precision
 |{ Retrieved items}| =

 | {Relevant items} ∩ {Retrieved items}|

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:2, 2010

218

ACM SIGSOFT symposium on Foundations of software engineering, p.
87-96, December 06-09, 1994, New Orleans, Louisiana, United States.

[5] Roger F. Crew, ASTLOG: A language for examining abstract syntax
trees, USENIX Conference on Domain Specific Languages, Santa
Barbara, 1997.

[6] PREfast, http://research.microsoft.com/specncheck/docs/pincus.ppt
[7] PMD, http://pmd.sourceforge.net/, 2003.
[8] JLint, http://artho.com/jlint
[9] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu,

Robby, H. Zheng, Bandera: Extracting Finite-state Models from Java
Source Code, Proceedings of the 22nd International Conf. on Software
Engineering, pages 439–448, Limerick Ireland, June 2000.

[10] FxCop: Microsoft MSDN library, http://www.got dotnet.com
/team/fxcop/

[11] StyleCop: Microsoft MSDN library, http://code.
msdn.Microsoft.com/sourceanalysis, http://blogs.msdn.com
/sourceanalysis

[12] CodeITRight, http://submain.com/?nav=products.cir.
[13] Resharper, www.JetBrains.com/resharper/
[14] NStatic, http://wesnerm.blogs.com/net_undocumented/

2006/02/nstatic_walkthr.html
[15] http://en.wikipedia.org/wiki/Context-free grammar.
[16] Giovanni Vigna, Reliable Software Group, University of California,

Santa Barbara, Static disassembly and code analysis.
[17] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to Automata

Theory, Langauges and Computation, second edition, Pearson
Education.

[18] Chadd C. Williams, Jeffrey K. Hollingsworth, Automatic Mining of
Source Code Repositories to Improve Bug Finding Techniques, IEEE
transactions on software Engineering, vol. 31, no. 6, June 2005.

[19] Hongyu Zhang, On the Distribution of Software Faults, IEEE
Transactions on Software Engineering, Vol. 34, No. 2, March 2008.

[20] Norman E. Fenton, Niclas Ohisson, Quantitative Analysis of Faults and
Failures in a Complex Software System, IEEE Transactions on Software
Engineering, Vol. 26, No. 8, August 2000.

[21] SourceForge, http://sourceforge.net/
[22] ItextSahrp, http://sourceforge.net/projects/itextsharp/
[23] Airplanewar, http://sourceforge.net/projects/airplane war/
[24] SharpDevelop, http://sourceforge.net/projects/sharp develop/
[25] EulerSharp, http://sourceforge.net/projects/eulersharp/
[26] VNCViewer, http://sourceforge.net/projects/vncviewer
[27] SWAT (Simple Web Automation Toolkit), http://source

forge.net/projects/ulti-swat/
[28] Quartz.net(Quartz Enterprise Scheduler.NET), http://source

forge.net/projects/quartznet/
[29] Nayatel, http://sourceforge.net/projects/nayatelids/
[30] NeuronDotNet, http://sourceforge.net/projects/neuron dotnet/
[31] TemplateEngine, http://sourceforge.net/projects/easy template/

