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Abstract—Based on the standard finite element method, a new 

finite element method which is known as nonlocal finite element 
method (NL-FEM) is numerically implemented in this article to 
study the nonlocal effects for solving 1D nonlocal elastic problem.  
An Eringen-type nonlocal elastic model is considered.  In this model, 
the constitutive stress-strain law is expressed interms of integral 
equation which governs the nonlocal material behavior.  The new 
NL-FEM is adopted in such a way that the postulated nonlocal elastic 
behavior of material is captured by a finite element endowed with a 
set of (cross-stiffness) element itself by the other elements in mesh.  
An example with their analytical solutions and the relevant numerical 
findings for various load and boundary conditions are presented and 
discussed in details.  It is observed from the numerical solutions that 
the torsional deformation angle decreases with increasing nonlocal 
nanoscale parameter.  It is also noted that the analytical solution fails 
to capture the nonlocal effect in some cases where numerical 
solutions handle those situation effectively which prove the 
reliability and effectiveness of numerical techniques. 
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I.  INTRODUCTION 

ECHANICAL behavior of materials or structures and 
their understanding on a smaller and smaller length 

scale (i.e. micro- and nano-scale) are important in the design 
of micro-electro-mechanical-systems (MEMS) and nano-
electro-mechanical-systems (NEMS). When the size of a body 
or a structure enters the micro- and nano-ranges, the material 
exhibits specific and interesting nonclassical mechanical, 
chemical, electrical properties etc. Due to the continuous 
reduction of device size into micro- and nano-scale in the 
present decade, the classical continuum theory is unable to 
predict the increasingly prominence of size effects [1]-[3] 
because it is a scale free theory. There are typically three 
approaches in the study of size effects in nanomechanics, i.e. 
experiment, numerical atomic-scale simulation and scale-
dependent continuum mechanics method. Because control 
experiments in nanoscale are frequently very difficult and 
numerical atomic-scale simulations are highly computationally 
expensive, the scale-dependent continuum mechanics methods 
have been widely used not only due to its simplicity but also 
its possibility of deriving accurate analytical solutions.  Based 
on the physical bases and constitutive aspects, the 
fundamental works on nonlocal elasticity which is a scale-
dependent continuum mechanics model were done in a few 
papers [4]-[7]. Further improvements on nonlocal elasticity 
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were presented in [8]-[13]. Nonlocal elasticity model of 
Eringen [11], [12] and his associate [13] is developed based 
on the assumption that the stress tensor at a point in an elastic 
continuum not only depends on the strain at that point but also 
depends on strains at all other points in the body. 
Consequently in the constitutive relation of a nonlocal theory 
Hooke’s law (for local theory) is replaced by integration. 

As the constitutive relation is of the integral form, the 
subsequent integro-partial differential equations interms of 
displacement field in the nonlocal elasticity are extremely 
difficult to solve. Under certain conditions using Green’s 
function with a certain approximation errors, Eringen [14] has 
transformed the integral from into differential constitutive 
relation. Although this differential constitutive relation has 
been extensively used in [15]-[19] to study the mechanical 
properties of nanomaterial or nanostructure, the exact nonlocal 
boundary effects presented by the integration of kernel 
function in the integral formulations are not perfectly matched 
or transformed in the differential form which is a weak point 
of approximations. For this purpose, based on the standard 
finite element method, Polizzotto [20] has extended the 
classical principles of local theory for the nonlocal theory and 
this technique offers a fundamental base for nonlocal finite 
element method. 

Although, research on transverse bending, buckling, 
vibration, wave propagation etc. is aplenty, few studies on 
torsional behaviors are found at present. Because torsional 
static is common for NEMS and some other nano-devices, 
their effects and behavior should not be discounted. In this 
paper, the torsional statics of circular nanostructures in the 
presence of combined distributed torque and fixed external 
end torque is investigated based on the nonlocal finite element 
method of Polizzotto [20]. In addition, the corresponding 
nonlocal equation of motion is also derived based on the 
differential constitutive relation [14]. To illustrate the 
accuracy of the present method, the obtained results are 
compared with those predicted by the analytical solutions. 

II. MATHEMATICAL FORMULATIONS 
A. Constitutive Relation 
According to Eringen and co-worker [21], [22], the 

nonlocal theory differs from the local one only for the stress-
strain constitutive relation. Based on this assumption, they 
developed a simplified elastic theory for linear homogeneous 
isotropic continua and the stress-strain relation for such a 
continuum is indeed assumed in the form: 

 
 ( ) ( )ˆ: V= ∀ ∈σ x D ε x x

                                               
 (1)        
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where V  is the domain; x  is a vector in this domain; D  is 
the elastic moduli fourth-order tensor of isotropic local 
elasticity; ( )σ x  is the second-order tensor representing the 

stress field at x ; ( )ε̂ x  is the second-order strain tensor 
representing the nonlocal strain field at x . It is noted that the 
nonlocal strain at the field point x  is the sum of the strain 
arising at x  itself and the strain at x  induced by strain arising 
at all ′ ≠x x  in V . In general, the second contribution can be 
expressed interms of integral which governs the nonlocal 
behavior of the material in the constitutive relation. According 
to Eringen [23] and Altan [24], the nonlocal strain, 
namely ( )ε̂ x , is assumed in the form: 
 

 ( ) ( ) ( ) ( )1 2

V

ˆ dVζ ζ α ′ ′ ′= + ∫ε x ε x x,x ε x
                              

 (2) 

 
In “(2)” the nonlocal elastic material can be physically 

interpreted as a two-phase elastic material; namely, phase 1 
material (of volume fraction 1ζ ) complying with local 
elasticity and phase 2 material (of volume fraction 2ζ ) 
complying with nonlocal elasticity; 1ζ  and 2ζ  are the 
positive material constants with 1 2 1ζ ζ+ = . It is also noted 

that the attenuation or kernel function ( ),α ′x x  is defined by 

the ratio τ′−x x  with nonlocal parameter 0e a
L

τ =  where 0e  

is a material constant, a  is an internal characteristic length 
such as lattice parameter, granular distance while L  is an 
external characteristic length. The attenuation or kernel 
function has the properties that it decays rapidly and the 
nonlocal effect vanishes when the two elements are too far 
from each other with respect to the influence distance ′−x x . 
In the limit of local (classical) material, namely for 0τ → , the 
attenuation or kernel function has to become a Dirac delta 
function so that the nonlocal elasticity approach recovers to 
the classical model. To ensure this condition, it is sufficient to 
impose a normalized condition. 

 
 ( )

V
α , , τ 1dV

∞

′ ′ =∫ x x  (3) 

 
in which V∞  is the infinite domain embedding , if V  is finite. 

B. NL-FEM Procedure 
In general, the standard finite element method (FEM) 

discretizes a structure into finite, countable elements within 
the physical domain. It converts a differential equation system 
into a system of algebraic equations with finite degrees of 
freedom (DOFs) instead of infinite degree of freedom.  Let the 
domain V  be discretized into eN  finite elements, according 
to Polizzotto [20], the global stiffness matrix can be expressed 
as [25]. 

 K̂U = F                                                                             (4) 
 
where 
 

 

e

e

N

1 2
1

N

1

ˆ loc nonloc
n nm

n
loc T loc
n n n m
nonloc T nonloc
nm n nm m

T
n n

n

C C
C C

C

ζ ζ
=

=

⎫
⎡ ⎤= + ⎪⎣ ⎦⎪

⎪= ⎪
⎬= ⎪
⎪

= ⎪
⎪⎭

∑

∑

K K K

K k
K k

F f

                                       (5a-d) 

 
with 
 

 ( ) ( )
n

loc T
n n n

V

dV= ∫k B x DB x                                                  (6) 

 ( ) ( ) ( ), ,
n m

nonloc T
nm n m

V V

dV dVα τ′ ′ ′= ∫ ∫k x x B x DB x                     (7) 

 ( ) ( ) ( ) ( )
( )n t n

T T
n n

V S

dV dS= +∫ ∫f N x b x N x t x                          (8) 

and U  is the global displacement vector. As the nonlocal 
strain at the field point x  has two parts, the n-th contribution 
of the total strain energy with “local elastic” part (of volume 
fraction 1ζ ) whose stiffness matrix is given by matrix loc

nk  
and a “nonlocal elastic” part (of volume fraction 2ζ ) whose 

stiffness matrix is given by the set of element matrices nonloc
nmk . 

The later set includes the direct- or self-stiffness matrix (i.e. 
nonloc
nmk  for n m= ) and as many indirect- or cross-stiffness 

matrices (i.e. nonloc
nmk  for n m≠ ) as many elements are in the 

adopted mesh. The main difference between the standard 
FEM and NL-FEM is only the construction of nonlocal 
element stiffness nonloc

nmk and each nonloc
nmk  represents the 

“nonlocal effects” of the m-th element on the n-th one. 
In Fig. 1, the evaluation of nonloc

nmk  is presented for single 
DOFs with 2 nodes per element and three Gauss sampling 
points are used for numerical integrations. Introducing a 
natural coordinate system, say [ ]0,1ξ ∈  and using the 

coordinate transformation with ( )ξJ , the Jacobian matrix 

(analogous relations holding for [ ]0,1ξ ′∈ ), “(7)” can be 
written as 

 

 ( )( ) ( )( )
1 1

11

0 0

det detnonloc
nm A d dξ ξ ξ ξ⎡ ⎤ ⎡ ⎤′ ′ ′ ′= ⎣ ⎦ ⎣ ⎦∫ ∫k J J              (9) 

 
where the following relations hold 
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( ) ( )( ) ( ) ( ){ }
( ) ( )
( ) ( )

( )( )
( )( )

11 ,

:
:

det
det

T
n m

n n

m m

A

dV dx d
dV dx d

α ξ ξ τ ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

⎫′ ′ ′= − ⎪
⎪⎡ ⎤= ⎣ ⎦ ⎪⎪′ ′ ′⎡ ⎤= ⎬⎣ ⎦
⎪= = ⎪
⎪′ ′ ′ ′= =
⎪⎭

x x B DB

B B x
B B x

J
J

                 (10) 

 
and ( ) ( )( ),α ξ ξ τ′ ′−x x which indicates the value of 

attenuation or kernel function pertinent to points ξ  and ξ ′  in 
the natural coordinate system of elements #n  and #m  
respectively, has to be computed considering the Euclidean 
distance between these points in the absolute coordinate 
system ′−x x . 

By applying the Gauss quadrature rule for numerical 
integration, “(9)” finally yields 

 

 ( ) ( )
3 3

1 1

nonloc T
nm l n i m j i j r

i j

w wξ ξ
= =

′ ′= Φ Φ∑∑k B DB                      (11) 

 
with 
 

 
( ) ( )( )

( )( ) ( )( )
,

det det

l j i

r j i

α ξ ξ τ

ξ ξ

⎫′Φ = − ⎪
⎬

′Φ = ⎪⎭

x x

J J
                                     (11a,b) 

 
In which: ( ) ( )( ),j iα ξ ξ τ′ −x x  is the attenuation or kernel 

function associated to the modified Gauss points with 
Cartesian coordinates x and ′x ; and i jw w  are the modified 
Gauss weights. The readers are referred to a complete survey 
on NL-FEM reported by Pasino et al. [20]. 

 
Fig. 1 Evaluation of the nonlocal global stiffness matrix: element 
global DOF numbers for two elements # n  and #m  in the mesh 

III.  ANALYTICAL SOLUTION 
Consider a nanorod/tube with length L  and subjected to a 

combined distributed torque ( )T x  and fixed end torque 0T   is 
shown in Fig. 2. 

 

Fig. 2 Torsion of a fixed-free nanorod, where line AB  is deformed 
to AC , with angle of twist θ  and shear strain γ  

 
The rod/tube is made of a nonlocal homogenous linear 

elastic material whose constitutive behavior compiles with the 
Eringen model given in Section 2.1. The variation of the strain 
energy of the system is given by 

 

 
0

0

L
L r

r r

V

T
U dV T dx

x
θ

θ θδ σ δγ δθ δθ
∂⎛ ⎞= = −⎡ ⎤ ⎜ ⎟⎣ ⎦ ∂⎝ ⎠∫ ∫                    (12) 

 
with 
 

 0 0;r r

A

dT r dA r
dxθ θ
θσ γ= =∫                                            (13a,b) 

 
where rT θ  is called the stress resultant or torque.  In the 

presence of twisting moment ( )T x  and an end torque 0T , the 
variation of work done by this combined load is given by 
 

 ( )0 0
0

L
LW T T x dxδ δθ δθ= +⎡ ⎤⎣ ⎦ ∫                                            (14) 

Based on the assumption of nonlocal elasticity, the nonlocal 
stress tensor at a point x   can be expressed as a result of the 
weighted average of the contributions of the stress field within 
the continuum in the following expression (see [10],[12],[13] 
for detail) 

 

 ( ) ( ) ( ) ( ),
V

dVα ′ ′ ′ ′= ∫σ x x x σ x x                                         (15) 

 
where ( )σ x  and ( )′σ x  are the nonlocal and classical stress, 
respectively. The weight is specified by a nonlocal modulus 

( ),α ′x x  which depends on a dimensionless nanoscale τ . 
According to Eringen [14], a differential form of the nonlocal 
constitutive relation (“(15)”) for a one-dimensional elastic thin 
structure can be expressed as 
 

 ( )
2

2
0 02

r
r r

d de a G Gr
dxdx

θ
θ θ

σ θσ σ γ′− = = =                          (16) 
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where rθσ  and rθσ ′  are the nonlocal and classical shear 
stresses of structure respectively; and x  is the axial 
coordinate. For static equilibrium, the variational principle 
requires that 
 

 ( ) 0U Wδ − =                                                                  (17) 
 

Substituting Uδ  and Wδ  from “(12)” and “(13)” into 
“(17)” and integrating by parts, and collecting the co-efficient 
of δθ , the following equation of motion interms of torque is 
obtained. 
 

 ( ) 0rT
T x

x
θ∂

+ =
∂

                                                              (18) 

 
The boundary conditions are 

 
 0 or 0 at 0,rT T x Lθ θ= = =                                          (19a,b) 

 
and the corresponding stress resultant is obtained as 
 

 ( )
2

2
0 2

r
r

d T
T e a GJ

xdx
θ

θ
θ∂

− =
∂

                                             (20) 

 
where 2

0

A

J r dA= ∫  is the polar second moment of area. Again 

combining “(18)” and “(20)”, the nonlocal equation of motion 
can be expressed interms of deformation angle δθ  as 
 

 ( )
2 2

2
02 2

TGJ T e a
x x
θ∂ ∂

= − +
∂ ∂

                                              (21) 

in dimensionless forms, “(21)” can also be written as 

 
2 2

2
2 2

TT
x x
θ τ∂ ∂

= − +
∂ ∂

                                                         (22) 

 
and the boundary conditions, “(19a,b)” become 
 

 0 or 0 at 0, 1rT T xθ θ= = =                                          (23a,b) 
 

where 
 

 
2

0
0 ; ;

T L TL xT T x
GJ GJ L

= = =                                           (24a-c) 

IV.  EXAMPLE OF FIXED-FIXED NANORODS/NANOTUBES 
For a fully fixed nanorod, the boundary conditions are 
 

 
0 1

0; 0
x x

θ θ
= =

= =                                                       (25a,b) 

 
 
 

A. When the Distributed Load ( ) 1T x =  

Substituting 1T =  into “(22)” and solving using the 
boundary conditions in “(25a,b)” yield 

 

 ( )
( )2

2

x x
xθ

−
=                                                              (26) 

 
which is independent of nonlocal nanoscale τ . Similarly, if 
T x= , the solution of “(22)” can be written in the form 
 

 ( )
( )3

6

x x
xθ

−
=                                                              (27) 

 
which is also independent of nonlocal nanoscale τ . Here the 
corresponding NL-FEM solution is obtained by applying a 
kernel function 
 

 ( )
2

2

1, , exp
x x

LL
α τ

τπτ

⎛ ⎞′−
⎜ ⎟′ = −
⎜ ⎟
⎝ ⎠

x x                                 (28) 

 
The NL-FEM solutions with corresponding classical 

solutions (“(26)” and “(27)”) are shown in Fig.3 (a,b) for 
1T =  and T x=  respectively. It is clear from the Fig. 3 (a) 

and Fig. 3 (b) that the analytical solutions underestimate the 
angular deflection in the presence of nonlocal parameter and 
12.3%  and 14.45%  increment for NL-FEM are observed 
form the Fig. 3 (a) at 0.5x =  and Fig. 3 (b) at about 0.57x =  
respectively. 

 
Fig. 3 (a) Angular deformation for a fixed-fixed nanorod for 0.1τ =  

and 1T =  

 
Fig. 3 (b) Angular deformation for a fixed-fixed nanorod for 0.1τ =  

and T x=  
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B. When the Distributed Load 2T x=  

Substituting 2T x=  into “(22)” and solving using the 
boundary conditions in “(25a,b)” yield 

 

 ( ) ( )
4

2 2

12 12
x xx x xθ τ

⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠
                                       (29) 

 
And the relation (“(29)”) with corresponding NL-FEM 
solution is presented in Fig.4. Fig.4 illustrates that the 
analytical solution declines the maximum angular deflection 
6.3%  while NL-FEM solution increases 16%  at 
about 0.63x = . 

 
Fig. 4 Angular deformation for a fixed-fixed nanorod for 0.1τ =  

and ( ) 2T x x=  

C. When the Distributed Load ( ) ( )sinT x x=  

Substituting ( ) ( )sinT x x=  into “(22)” and solving using 
the boundary conditions in “(25a,b)” yield 

 
 ( ) ( ) ( )( )21 sin 0.841470985x x xθ τ= + −                         (30) 

 
The effect of nonlocal nanoscale on angular deflection for 

the analytical solution (“(30)”) with corresponding NL-FEM 
solution for 0.1τ =  is presented in Fig.5. It is observed from 
the Fig.5 that the maximum rotation occurs at about 

0.57x = and analytical solution increased the maximum 
rotation is about 0.99%  while the numerical solution is 
about12.67% . 

 
Fig. 5 Angular deformation for a fixed-fixed nanorod for 0.1τ =  

and ( )sinT x=  

D. When the Distributed Load ( )sinT n xπ=  

Substituting ( )sinT n xπ=  into Eq. (22) and solving using 
the boundary conditions in Eq. (25a,b) yield 

 

 ( ) ( )( ) ( )
( )

2
2

sin
1

n x
x n

n

π
θ πτ

π
= +                                          (31) 

 
It is clear from “(31)” that the maximum rotation occurs 

when ( )sin 1n xπ = . For 1n = , the maximum occurs at 
0.5x = . The analytical solution (“(31)”) with corresponding 

NL-FEM solution for 0.1τ =  and 1n =  is presented in Fig. 6. 
Again, Fig. 6 demonstrates that the angular deflection 
increases with increasing nonlocal effect in both cases. It is 
also noted that 8.98%  increment is found for the analytical 
solution while the numerical solution is about13.5% . 

 
Fig. 6 Angular deformation for a fixed-fixed nanorod for 0.1τ =  

and ( )sinT xπ=  

V. EXAMPLE OF FIXED-FREE NANOROD/NANOTUBE WITHOUT 
END TORQUE 

For a fixed-free nanorod/nanotube with distributed torque 
( ( )T x ), the boundary conditions are 

 

 
0

1

0; 0
x

xx
θθ

=
=

∂
= =

∂
                                                    (32a,b) 
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A. When the Distributed Load 1T =  

Substituting 1T =  into “(22)” and solving using the 
boundary conditions in “(32a,b)” yield 

 

 ( )
2

2
xx xθ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
                                                            (33) 

 
Which is independent of nonlocal nanoscale τ . The 

analytical solution (“(33)”) with corresponding NL-FEM 
solution for 0.1τ =  is presented in Fig. 7 (a). Similarly result, 
for T x=  and 0.1τ =  is also presented in Fig. 7 (b). From 
the Fig. 7 (a) and Fig. 7 (b), it can be seen that the NL-FEM 
solutions increase the rotation 4.58%  and 3.24%  at 1x =  

for 1T =  and T x=  respectively. 

 
Fig. 7 (a) Angular deformation for a fixed-free nanorod for 0.1τ =  

and 1T =  

 
Fig. 7 (b) Angular deformation for a fixed-free nanorod for 0.1τ =  

and T x=  

B. When the Distributed Load 2T x=  

Substituting 2T x=  into “(22)” and solving using the 
boundary conditions in “(32a,b)” yield 

 

 ( ) ( )
4

2 22
3 12
x xx x xθ τ

⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠
                                      (34) 

 
The analytical solution (“(34)”) with corresponding NL-

FEM solution for 0.1τ =  is present in Fig.8. From the Fig. 8, 
it is clear that the analytical solution reduces the rotation about 

4.16%  while the NL-FEM solution increases the rotation 
2.52%  at 1x = . 

 
Fig. 8 Angular deformation for a fixed-free nanorod for 0.1τ =  and 

2T x=  

C. When the Distributed Load ( )sinT x=  

Substituting ( )sinT x=  into “(22)” and solving using the 
boundary conditions in “(32a,b)” yield 

 
 ( ) ( ) ( )( )21 sin 0.540302306x x xθ τ= + −                         (35) 

 
The analytical solution “(35)” with corresponding NL-FEM 

solution is presented in Fig. 9. From the Fig. 9, it is seen that 
both the solutions enhance the angular deflection in the 
presence of nonlocal nanoscale τ  and 0.99%  and 3.5%  
enhancement are observed for analytical solution and NL-
FEM solution respectively at 1x = . 

 
Fig. 9 Angular deformation for a fixed-free nanorod for 0.1τ =  and 

( )sinT x=  

D. When the Distributed Load ( )sinT n xπ=  

Substituting ( )sinT n xπ=  into “(22)” and solving using 
the boundary conditions in “(32a,b)” yield 

 

 ( ) ( )( ) ( )
( )

( )2
2

sin 1
1

nn x x
x n

nn

π
θ πτ

ππ

⎛ ⎞−
⎜ ⎟= + −
⎜ ⎟
⎝ ⎠

 (36) 
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The analytical solution (“(36)”) with corresponding NL-
FEM solution for 0.1τ =   and 1n =  is presented in Fig. 10. It 
is observed from the Fig.10 that the analytical solution 
increased the maximum rotation is about 9.87%  while the 
numerical solution is about 5.84% . 

 
Fig. 10 Angular deformation for a fixed-free nanorod for 0.1τ =  and 

( )sinT n xπ=  

VI.  EXAMPLE OF FIXED-FREE NANOROD/NANOTUBE 
WITHOUT DISTRIBUTED LOAD 

For a Fixed-Free nanorod/nanotube with end torque ( 0T ), 
the boundary conditions are 

 
 00 1

0; rx x
T Tθθ

= =
= =                                                        (37) 

 
According to Peddieson et al. [21], any beam/column which 

does not acted by the distributed load is governed by the local 
equation which is scale free. So, the classical result in this 
case is given by 

 
 ( ) 0x T xθ =                                                                      (38) 

 
By applying the kernel function “(28)”, the NL-FEM 

solution and corresponding classical solution for  0.1τ =  is 
shown in Fig.11. From the Fig. 11 it is clear that the NL-FEM 
solution increases the rotation about 5.54%  at 1x = . 

 
Fig. 11 Angular deformation for a fixed-free nanorod for 1 0.5ζ = , 

0.1τ = , and 0 1T =  

 

VII. CONCLUSION 
Based on the NL-FEM method, the torsional static for 

circular nanostructures of 1D nonlocal homogeneous linear 
elastic material is investigated in the presence of combined 
distributed torque and fixed end torque. Besides, the nonlocal 
equation of motion and boundary conditions are derived by 
means of variational principle and differential constitutive 
relation of Eringen. The NL-FEM solution for various end 
constrains with their corresponding analytical solutions are 
derived and discussed in details. It is observed that the NL-
FEM solution is consistent and a nonlocal nanoscale is found 
to induce increases in angular rotation which clearly prove the 
reliability and effectiveness of numerical techniques. 
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