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Abstract— Quantitative characterization of nonlinear directional
couplings between stochastic oscillators from data is considered. We
suggest coupling characteristics readily interpreted from a physical
viewpoint and their estimators. An expression for a statistical
significance level is derived analytically that allows reliable coupling
detection from a relatively short time series. Performance of the
technique is demonstrated in numerical experiments.

Keywords—Nonlinear time series analysis, directional couplings,
coupled oscillators.

I. INTRODUCTION

HE key questions emerging in analysis of a complex
system of any origin are whether interactions between its

elements exist and how to quantify them. In particular, an
architecture and strengths of couplings in an ensemble of
oscillators determine possibility of their synchronization, e.g.
[1]. Growing attention is currently paid to the detection and
characterization of directional couplings from data, e.g. [2],
[3], which is demanded in electronics [4], cardiology [5], [6],
[7], neurophysiology [8], [9], etc.

A fruitful technique to reveal couplings between two
oscillators is suggested in Ref. [2]. It is based on phase
dynamics modeling and applies in case of a long time series or
low noise level. Special corrections extending its applicability
to shorter time series (several dozens of basic periods) are
obtained in Ref. [3] and used to analyze complex processes
from neurophysiology [10] and climatology [11]. However,
the corrections apply only when a particular empirical phase
model is used, namely, for a particular low-order polynomial
in model equations. They are not suitable for other couplings.

Here, we suggest new quantitative characteristics of
directional couplings based on the same idea of phase
dynamics modeling and derive an analytic expression for a
statistical significance level at which couplings are detected.
The suggested estimators are suitable for couplings described
with an arbitrary order of nonlinearity and apply to relatively
short time series as illustrated in numerical experiments.
Moreover, they can be easily extended to analyze couplings in
ensembles oscillators.
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II.PREVIOUS CHARACTERISTICS

Phase dynamics of weakly coupled oscillators can be to a
good approximation described with a set of stochastic
differential equations [12]

),(),( tGdtd kjkkkk (1)

where jkjk ,2,1, , are phases of the oscillators, k  are

their natural frequencies, k  are independent zero-mean white

noises with autocorrelation functions (ACFs)
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characterize noise intensities.

The functions kG  are 2 -periodic with respect to both

arguments and describe both couplings between the oscillators
and their individual phase nonlinearities.

Let 2

k
 and kG  be reasonably small so that the

contribution of the respective terms in (1) to the phase
increment )()()( ttt kkk  is small in comparison

with the ``linear increment'' k , where a time interval  is of

the order of a basic oscillation period or greater. Then, one can
convert to difference equations via integration of Eq. (1) and
get
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where jkjk ,2,1, , )(tk are zero-mean noises, kF  are

trigonometric polynomials
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)},{,( ),(,,,, knmnmknmkkk wa  are vectors of their

coefficients, and k  are summation ranges, i.e. sets of pairs

(m, n) showing which monomials are contained in kF . The

terms with 1nm  can be induced by linear coupling of the
form 212 xk  or )( 1212 xxk  in the “original equations” of
the oscillators, while the terms with 2n  can be due to a
driving force which is quadratic with respect to the coordinate

of the driving oscillator, e.g. 2
212 xk . Various combinations

are also possible so that couplings in the phase dynamics
equations can be described with a set of monomials of
different orders with 0n . The strongest driving arises from
the “resonant terms”, i.e. that corresponding to the ratios

kjnm  in the equation for the kth oscillator phase.

However, non-resonant terms can be also significant.
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III. NEW CHARACTERISTICS

We introduce intensity of the coupling kj (i.e. from the

jth oscillator to the kth one) as follows. Let us consider
statistical properties of the phase increment k , i.e. the left-

hand side of Eq. (2), under the above conditions of weak
coupling, weak nonlinearity, and low noise level. Its mean

value is kkk w . Due to noise and driving from the

other oscillator, k  somewhat varies about the mean value

(phase modulation). Stationary probability distribution of the
wrapped phases )2mod,2mod( 21  is almost uniform

over the square )2,0[)2,0[  and monomials in kF  are

mutually orthogonal in this domain with the uniform weight
function. Therefore, taking expectation of squared values for
both sides of Eq. (2) gives
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where angle brackets stand for expectation and 2

k
 is variance

of the noise k . The terms with 0n  describe the driving

kj . We denote their sum as kjc  and call it “coupling
intensity”:
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The rest of the terms describe individual phase dynamics and
are denoted kb :
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Recalling kk w , one can see that the variance of the

phase increment
222

kkk
is determined by the

three terms:

.22

kk kjk cb (7)

The quantity kjc  can be normalized in different ways.

Thus, 2

kkjc  shows a portion of phase increment variance

induced by the driving kj . It is less than unity but may

almost reach it if individual phase nonlinearity and noise are
weak in comparison with the driving kj . kjc  depends on

the parameter  which is a time scale. Experience shows that it
is reasonable to take   equal to a basic oscillation [2], [3].

Everything is analogous for an ensemble consisting of more
than two oscillators. The only difference is that more terms
describing possible influences of different oscillators are
present in the right-hand side of Eq. (2).

IV. ESTIMATION FROM TIME SERIES

In data analysis, one has time series from two systems,
)}(),...,({ 111 xNtxtx , )}(),...,({ 212 xNtxtx , titi , where t  is

a  sampling interval and xN  is a time series length. Phase

dynamics equations are unknown, therefore, one cannot use
the formula (5) directly. It is necessary to get statistical
estimates of coupling characteristics. For that, one computes
time series of the oscillation phases )(),...,( 111 Ntt ,

)(),...,( 212 Ntt , see e.g. [1]. Further, an empirical phase

dynamics model is constructed and coupling characteristics
estimates are obtained from the estimates of the model
coefficients.

According to a traditional approach to empirical modeling,
one assumes that observed phase dynamics can be described
with equations (2) and functions (3) and selects some set of
monomials in (3) which is assumed large enough to describe
nonlinearities of the processes. Polynomial coefficients are

estimated by minimizing
tN

wS kkk
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Estimators of the noise variance and coefficients are denoted
with hats and read
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Coupling intensity estimators can be expressed via kâ

analogously to Eq. (5):
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The quantity kjĉ  is always non-negative. Even for

uncoupled oscillators, i.e. 0kjc , the estimator kjĉ  is

almost surely greater than zero. Thus, a reliable conclusion
about the presence of coupling cannot be made from the
relationship 0ˆ kjc . We suggest to make it only if kjĉ  is

significantly greater than zero. To get a quantitative criterion,
let us determine a distribution law for the estimator kjĉ  when

coupling and nonlinearity are absent, i.e. for a system (1) with

021 GG . In this case, estimators nmknmk ,,,,
ˆ,ˆ  are

statistically independent and identically distributed according
to Gaussian law with zero mean [3]. Let us denote their

variance 2
,, nmk  and recall that the sum of M independent

Gaussian random quantities with zero mean and unit variance

is distributed according to the 2  law with M degrees of

freedom. Then, the quantity
)0(,

2
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is distributed according to the 2 law with kM  degrees of

freedom, where kM  is the number of terms in the right-hand



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:4, 2011

546

side of (10). Variances 2
,, nmk  are a priori unknown, but their

estimators 2
,,ˆ nmk  are obtained in [3].

Thus, one gets a criterion to judge whether a conclusion
about the presence of the driving kj  is statistically

significant. Namely, if the quantity 2ˆ kj  computed from a

time series exceeds )%1(100 p -quantile of the 2  law with

kM  degrees of freedom, then one makes such a conclusion at

a significance level p, i.e. probability of a random erroneous
coupling detection is p. The less the value of p, the more
reliable the conclusion. In practice, one usually takes 05.0p

or 01.0p . Probability distribution function
kM

F
,2  for the

2  law with kM  degrees of freedom is tabulated so that one

can assess significance level at which 2ˆ kj  differs from zero

as )ˆ(1ˆ 2

,2 kjMkj
k

Fp .

In practice, it may be useful to compare intensities of the
driving kj  under different conditions. However, it is not

straightforward with the estimator kjĉ  since it is biased: Its

bias equals to the sum of variances 2
,, nmk  similarly to [3] and

may strongly differ for different noise levels. An unbiased
estimator can be derived as in [3] and reads
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To summarize, the suggested coupling estimators and the
formula for a significance level apply under the following
conditions.

1) Oscillation phases are well-defined.
2) Weak interdependence between simultaneous values of

the phases. This condition can be checked via estimating phase

synchronization indices
t

tntmi
nm e ))()((

,
21ˆ  and requiring

cnm,ˆ  for all knm ),( (m, n). The threshold value

45.0c  is found empirically.

3) ACF of the noises k  decays linearly from 1 to 0 over an

interval of time lags [0, ] and equals zero for greater lags.

This is because
t

t

k tdtt )()(  under the above conditions

of low noise level, weak nonlinearity, and weak coupling.

V.NUMERICAL SIMULATIONS

The technique is applied here to time series from
unidirectionally coupled van der Pol oscillators:
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where 2,1  are independent white noises. Parameters of the

oscillators: 2.0 , 05.11 , 5.02 , coupling is

described by the resonant quadratic term.
The equations are integrated with the Euler technique and

step 01.0h . The sampling interval is selected so to provide
about 10 data points per a basic oscillation period: 6.0t .
Accordingly, the value of  in coupling estimation is set equal
to t10 . For each value of coupling coefficient, an
ensemble of 100 time realizations is generated to assess the
performance of the suggested technique statistically. The
length of each time series is moderate and corresponds
approximately to 100 mean oscillation periods: 1000N .
Coupling characteristics are estimated from each time series in
an ensemble and either the presence of the driving kj is

inferred (a positive conclusion) or not (a negative one) at a
given significance level 05.0p . Positives 12 are correct

and positives 21 are false. The rate of positives is denoted

skjkj NQ , where kjQ is the number of time series in

an ensemble leading to positive conclusions. The suggested
estimators are regarded applicable if the rate of false positives

kj  does not exceed p up to acceptable variations. Also, it is

desirable for the technique to be sensitive, i.e. to give a
considerable rate of correct positives.

Coupling estimators are computed for the three model
functions (3):

1) “linear” coupling, i.e. the set of indices k  contains only

)1,1(, nm ;

2) quadratic nonlinearity is included, i.e. k contains (1,1),

(1,2), (2,1);
3) cubic nonlinearity is taken into account, i.e. k contains

the pairs (1,1), (1,2), (2,1), (1,3), (3,1).

The size of the set k is denoted k . The number of

degrees of freedom for the 2  law in testing for statistical

significance is then kkM 2 . 1 and 2  are the same.

The signals )(2,1 tx  are taken as observables. The phases are

computed via the Hilbert transform. Estimation results
demonstrating applicability of the technique are shown in
Fig.1. The rate of false positives does not exceed an acceptable

level (Fig.1, a) for any k . Probability to detect an existing

coupling rises with 12k  for 2k  (Fig.1,b) while couplings

are missed with 1k . The choice of unnecessary 3k

reduces sensitivity in comparison with 2k . Coupling

intensity estimator quadratically rises with coupling coefficient

for 1k (Fig.1,c) as expected according to (14).

Application of the suggested estimators to ensembles of
nonlinear stochastic oscillators and deterministically chaotic
systems can be found in [13].
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Fig. 1 Estimation results: a) the rates of false positives 21

(thick line for 1k , thin for 2k , dashed for 3k , dotted

for an acceptable error level); b) the rates of correct positives 12 ;

c) averaged coupling strength estimators

VI. CONCLUSION

New characteristics of directional couplings between
oscillators are suggested in this work along with their
estimators. They are based on the well-known idea of
empirical phase dynamics modeling but, in contrast to the
previously used quantities, make clear physical sense and are
suitable for an arbitrary coupling nonlinearity. To assure
reliability of coupling detection for relatively short time series
and noisy oscillators, an analytic expression for a statistical
significance level is derived. Criteria for practical applicability
of the technique include well-defined phases, low degree of
synchrony between the oscillators, moderate intensity and
certain correlation properties of the noises in their phase
dynamics. Performance of the technique is shown in numerical
experiments with exemplary oscillators and that suggests
possibility of its wide practical applications.
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