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Existence of Solution for Four-Point Boundary
Value Problems of Second-Order Impulsive

Differential Equations (II)
Li Ge

Abstract—In this paper, we study the existence of solution of
the four-point boundary value problem for second-order differential
equations with impulses by using leray-Schauder theory:⎧⎨
⎩

x′′(t) = f(t, x(t), x′(t)), t ∈ [0, 1], t �= tk, k = 1, 2,
···

, m
Δx(tk) = Ik(x(tk)), k = 1, 2,

···
, m

Δx′(tk) = Ik(x(tk), x′(tk)), k = 1, 2,
···

, m
x′(0) = αx′(ξ), x(1) = βx(η),

(E)
where 0 < ξ ≤ η < 1, α ≥ 0, β ≥ 0 and α �= 1, β �= 1, also
αβ = 0 implies α �= β, f ∈ C[J × R2, R], Ik ∈ C[R, R], Ik ∈
C[R2, R], J = [0, 1]. We also give a corresponding example to
demonstrate our results.

Keywords—impulsive differential equations, impulsive integral-
differential equation, boundary value problems

I. INTRODUCTION

THe theory of impulsive differential equations is emerging
as an important area of investigation since it is much

richer than the corresponding theory of concerning equations
without impulses. Recently, some existence results concern-
ing the boundary value problems of impulsive differential
equations have been obtained ([1-3]). However, there are
few papers about multi-point boundary value problems of
differential equations with impulses. Recently, Sun [4] proved
the existence of solutions for the three-point boundary value
problem for second-order differential equations with impulses:⎧⎪⎨
⎪⎩
x′′(t) = f(t, x(t), x′(t)), t ∈ [0, 1], t �= tk, k = 1, 2,··· ,m
Δx(tk) = Ik(x(tk)), k = 1, 2,··· ,m
Δx′(tk) = Ik(x(tk), x′(tk)), k = 1, 2,··· ,m
x(0) = 0, x(1) = αx(η).

Motivated by the work of Sun [4], Ge [5] studied the exis-
tence of solution of the four-point boundary value problem for
second-order impulsive differential equations with boundary
value:x(0) = αx(ξ), x(1) = βx(η). In the paper, we study
the existence of solution for BVP(E).

Consider the following second order impulsive differential
equations⎧⎪⎨
⎪⎩
x′′(t) = f(t, x(t), x′(t)), t ∈ [0, 1], t �= tk, k = 1, 2,··· ,m
Δx(tk) = Ik(x(tk)), k = 1, 2,··· ,m
Δx′(tk) = Ik(x(tk), x′(tk)), k = 1, 2,··· ,m
x′(0) = αx′(ξ), x(1) = βx(η),

(E)
where f ∈ C[J × R2, R], J = [0, 1], 0 < t1 < t2 < · · · <
tm < 1, Ik ∈ C[R,R], Ik ∈ C[R × R,R], Δx(tk) =
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x(t+k ) − x(t−k ) = x(tk + 0) − x(tk − 0), Δx′(tk) = x′(tk +
0) − x′(tk − 0).

Let PC[J,R] = {x : J → R|x(t) is continuous at
t �= tk and left continuous at t = tk, and x(t+k ) exists for
k = 1, 2,··· ,m}, and PC1[J,R] = {x ∈ PC[J,R]|x′(t)
is continuous at t �= tk and x′(t+k ), x′(t−k ) exists for k =
1, 2,··· ,m}. It is easy to prove that PC[J,R] is a Banach
space with norm ‖x‖PC = supt∈J |x(t)|, PC1[J,R] is also
a Banach space with norm ‖x‖PC1 = max{‖x‖PC , ‖x

′‖PC}.
We also use the space L1[0, 1], and denote the norm in L1[0, 1]
by ‖ · ‖1.

For x ∈ PC1[J,R], by virtue of the mean value theorem
([6]), we know that the left derivation x′−(tk) exists and
x′−(tk) = x′(t−k ). In (E) and what follows, it is understood
that x′(tk) = x′(t−k ). So, for x ∈ PC1[J,R], we have
x′ ∈ PC[J,R].

Let J0 = [0, t1], J1 = (t1, t2],··· , Jm−1 =
(tm−1, tm], Jm = (tm, 1], J ′ = J \ {t1, t2,··· , tm}, A map
x ∈ PC1[J,R] ∩ C2[J ′, R] is called a solution of BVP(E) if
it satisfies all equations of (E).

Throughout this paper, we assume that 0 < ξ ≤ η < 1, α ≥
0, β ≥ 0 and α �= 1, β �= 1, also αβ = 0 implies α �= β.
Furthermore, for convenience sake, we set Λ2 = (1−α)(1−β).

II. PRELIMINARY LEMMAS

Lemma 2.1 ([3]) H ⊂ PC1[J,R] is a relatively compact
set if and only if both x(t) and x′(t) are uniformly bounded
on J and equicontinuous on every Jk(k = 1, 2,··· ,m) for any
x ∈ H .

Lemma 2.2 ([3]) If x ∈ PC1[J,R] ∩ C2[J ′, R] satisfies
x′′ = f(t, x(t), x′(t)), t �= tk, k = 1, 2,··· ,m, then

x′(t) = x′(0) +

∫ t

0

f(s, x(s), x′(s))ds

+
∑

0<tk<t

(x′(t+k ) − x′(tk)), ∀t ∈ J, (1)

x(t) = x(0) + x′(0)t+

∫ t

0

(t− s)f(s, x(s), x′(s))ds

+
∑

0<tk<t

(x(t+k ) − x(tk))

+
∑

0<tk<t

(x′(t+k ) − x′(tk))(t− tk), ∀t ∈ J. (2)
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Lemma 2.3 let x ∈ PC1[J,R] ∩ C2[J ′, R] is a solution
of BVP(E), if and only if x ∈ PC1[J,R] is a solution of the
following impulsive integral-differential equations:

x′(t) = x′(0) +

∫ t

0

f(s, x(s), x′(s))ds

+
∑

0<tk<t

Ik(x(tk), x′(tk)). (3)

x(t) = x(0) + x′(0)t+

∫ t

0

(t− s)f(s, x(s), x′(s))ds

+
∑

0<tk<t

Ik(x(tk), x′(tk))(t − tk)

+
∑

0<tk<t

Ik(x(tk)), (4)

where

x(0) =
α(βη − 1)

Λ2
[

∫ ξ

0

f(s, x(s), x′(s))ds

+
∑

0<tk<ξ

Ik(x(tk), x′(tk))]

+
β

1 − β
[

∑
0<tk<η

Ik(x(tk))

+

∫ η

0

(η − s)f(s, x(s), x′(s))ds

+
∑

0<tk<η

(η − tk)Ik(x(tk), x′(tk))]

−
1

1 − β
[

m∑
k=1

Ik(x(tk))

+

∫ 1

0

(1 − s)f(s, x(s), x′(s))ds

+

m∑
k=1

(1 − tk)Ik(x(tk), x′(tk))], (5)

and

x′(0) =
α

1 − α
[

∫ ξ

0

f(s, x(s), x′(s))ds

+
∑

0<tk<ξ

Ik(x(tk), x′(tk))]. (6)

Proof If x(t) is a solution of BVP(E), then

x(t) = x(0) + x′(0)t+

∫ t

0

(t− s)f(s, x(s), x′(s))ds

+
∑

0<tk<t

(x(t+k ) − x(tk))

+
∑

0<tk<t

(x′(t+k ) − x′(tk))(t− tk), ∀t ∈ J.

In view of x′(0) = αx′(ξ), x(1) = βx(η), we easily obtain
(5) and (6). The combination of (1), (2), (5) and (6), yields
(3) and (4).

On the other hand, assume that x ∈ PC1[J,R] is a solution
of Eqs (3) and (4). It is clear that x′(0) = αx′(ξ), x(1) =

βx(η), Δx(tk) = Ik(x(tk)). By performing differentiation of
(4) twice, we get

x′(t) = x′(0) +

∫ t

0

f(s, x(s), x′(s))ds

+
∑

0<tk<t

Ik(x(tk), x′(tk)), t �= tk,

and
x′′(t) = f(t, x(t), x′(t)), t �= tk,

which implies x ∈ C2[J ′, R] and Δx′(tk) =
Ik(x(tk), x′(tk)). Therefore x ∈ PC1[J,R] ∩ C2[J ′, R]
and x is a solution of BVP(E).

OperatorA : PC1[J,R] → PC1[J,R] is defined as follows:

(Ax)(t) = x(0) + x′(0)t+

∫ t

0

(t− s)f(s, x(s), x′(s))ds

+
∑

0<tk<t

Ik(x(tk))

+
∑

0<tk<t

Ik(x(tk), x′(tk))(t− tk), ∀t ∈ J, (7)

where x(0) and x′(0) are defined by (5) and (6), respec-
tively.

Lemma 2.4 Operator A is a completely continuous one
mapping PC1[J,R] into PC1[J,R].

Proof By (3), we get

(Ax)′(t) = x′(0)t+

∫ t

0

f(s, x(s), x′(s))ds

+
∑

0<tk<t

Ik(x(tk)), (8)

where x′(0) is defined by (6).
From (7) and (8), it is easy to see that A is continuous

operator from PC1[J,R] into PC1[J,R]. Let S be a bounded
set of PC1[J,R], then A(S) ⊂ PC1[J,R] is bounded and
the elements of A(S) and their derivatives are all uniformly
bounded on J and equicontinuous on each Jk(k = 1, 2,··· ,m).
Therefore, A(S) is a relatively compact set of PC1[J,R] by
Lemma 2.1. So, operator A is completely continuous.

Lemma 2.5 ([7]) Let X be a real normed linear space
and T : X → X be a compact operator. Suppose that Ω =⋃

λ∈(0,1) Ωλ is a bounded set, where Ωλ = {x ∈ X |x =
λTx}, then the equation x = λTx has at least a solution
when λ = 1.

III. EXISTENCE RESULTS FOR BVP(E)

In this section, we will prove existence results for BVP(E)
in following cases:

(i) α > 1, β > 1, βη < 1.
(ii) 0 ≤ α < 1, β > 1, βη > 1.
(iii) α > 1, 0 ≤ β < 1.
(iv) α > 1, β > 1, βη > 1.
(v) 0 ≤ α < 1, β > 1, βη < 1.
(vi) 0 ≤ α < 1, 0 ≤ β < 1.
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Theorem 3.1 Let f : [0, 1] × R2 → R be a continuous
function, Ik ∈ C[R,R], Ik ∈ C[R ×R,R]. Assume that
(H1) There exist functions p, q, r in L1[0, 1], such that for
all (x, y) ∈ R2, t ∈ [0, 1]

|f(t, x, y)| ≤ p(t)|x| + q(t)|y| + r(t). (9)

(H2) There exist constants 0 ≤ βk < 1, Mk ≥ 0 satisfying
|Ik(x)| ≤Mk for any ∀x ∈ R, and

lim|x|+|y|→∞

|Ik(x, y)|

|x| + |y|
= βk, k = 1, 2,··· ,m. (10)

(H3) There exist constants α, β, η satisfying (i).
Then BVP(E) has at least one solution in PC1[J,R] ∩
C2[J ′, R] provided that

‖p‖1 + ‖q‖1 +
m∑

k=1

2βk <
Λ2

β(2α− 1 − η)
. (11)

Proof We will verify that the set of all possible solution
of the family of equations:⎧⎪⎨

⎪⎩
x′′(t) = λf(t, x(t), x′(t)), t �= tk, k = 1, 2,··· ,m
Δx(tk) = λIk(x(tk)), k = 1, 2,··· ,m
Δx′(tk) = λIk(x(tk), x′(tk)), k = 1, 2,··· ,m
x′(0) = αx′(ξ), x(1) = βx(η),

(Eλ)
is prior bounded in PC1[J,R] ∩ C2[J ′, R] by a constant
independent of λ ∈ (0, 1).

If x ∈ PC1[J,R]∩C2[J ′, R], with x′(0) = αx′(ξ), x(1) =
βx(η), from x(t) = x(0) +

∫ t

0
x′(s)ds+

∑
0<tk<t Ik(x(tk)),

we have

|x(t)| ≤ |x(0)| +

∫ 1

0

|x′(s)|ds+

m∑
k=1

Mk. (12)

From (3) and (6), we get

x′(t) = x′(0)+

∫ t

0

f(s, x(s), x′(s))ds+
∑

0<tk<t

Ik(x(tk), x′(tk)).

That is

|x′(t)| ≤
α

α− 1

[∫ ξ

0

|f(s, x(s), x′(s))|ds

+
∑

0<tk<ξ

|Ik(x(tk), x′(tk))|

]

+

∫ t

0

|f(s, x(s), x′(s))|ds

+
∑

0<tk<t

|Ik(x(tk), x′(tk))|

≤
2α− 1

α− 1

[∫ 1

0

|f(s, x(s), x′(s))|ds

+

m∑
k=1

|Ik(x(tk), x′(tk))|

]
. (13)

The combination of (4), (5), and (12), yields

|x(t)| ≤
α(1 − βη)

Λ2

[∫ ξ

0

|f(s, x(s), x′(s))|ds

+
∑

0<tk<ξ

|Ik(x(tk), x′(tk))|

]

+
β

β − 1

[∫ η

0

(η − s)|f(s, x(s), x′(s))|ds

+
∑

0<tk<η

(η − tk)|Ik(x(tk), x′(tk))|

+
∑

0<tk<η

|Ik(x(tk))|

]

+
1

β − 1

[∫ 1

0

(1 − s)|f(s, x(s), x′(s))|ds

+

m∑
k=1

(1 − tk)|Ik(x(tk), x′(tk))| +

m∑
k=1

|Ik(x(tk))|

]

+

∫ 1

0

|x′(s)|ds+

m∑
k=1

|Ik(x(tk))|

≤
α(1 − βη)

Λ2

[∫ ξ

0

|f(s, x(s), x′(s))|ds

+
∑

0<tk<ξ

|Ik(x(tk), x′(tk))|

]

+
β

β − 1

[∫ η

0

η|f(s, x(s), x′(s))|ds

+
∑

0<tk<η

η|Ik(x(tk), x′(tk))|

+
∑

0<tk<η

|Ik(x(tk))|

]
+

1

β − 1

[∫ 1

0

|f(s, x(s), x′(s))|ds

+
m∑

k=1

|Ik(x(tk), x′(tk))| +
m∑

k=1

|Ik(x(tk))|

]

+
2α− 1

α− 1

[∫ 1

0

|f(s, x(s), x′(s))|ds

+

m∑
k=1

|Ik(x(tk), x′(tk))|

]
+

m∑
k=1

|Ik(x(tk))|

≤

[
α(1 − βη)

Λ2
+

βη

β − 1
+

1

β − 1
+

2α

α− 1

]

(

∫ 1

0

|f(s, x(s), x′(s))|ds +

m∑
k=1

|Ik(x(tk), x′(tk))|)

+

[
β

β − 1
+

1

β − 1
+ 1

]
m∑

k=1

|Ik(x(tk))|

≤
β(2α− η − 1)

Λ2

[∫ 1

0

|f(s, x(s), x′(s))|ds
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+

m∑
k=1

|Ik(x(tk), x′(tk))|

]

+
2β

β − 1

m∑
k=1

|Ik(x(tk))|. (14)

By (11), set ‖p‖1 + ‖q‖1 +
∑m

k=1 2βk = M , then exists
ε0 > 0, such that

mε <
1

4
[

Λ2

β(2α− 1 − η)
−M ], ∀ε < ε0.

From (10), we know exists an M(ε) for any ε defined
above such that |x| + |x′| ≥ M(ε), |Ik(x(tk), x′(tk))| ≤
(βk + ε)(|x| + |x′|). Now, we assume that |x′(t)| is un-
bounded, that is there exists some λ ∈ (0, 1) such that
|x′| > max{M(ε),M2}, where

M2 =

[
1 −

β(2α− η − 1)

Λ2
(‖p‖1 +

m∑
k=1

(βk + ε))

]

·

[
1 −

2α− 1

α− 1
(‖q‖1 +

m∑
k=1

(βk + ε))

]

·(M21 +M22)

[
1 −

β(2α− η − 1)

Λ2
(‖p‖1

+

m∑
k=1

(βk + ε)) −
2α− 1

α− 1
(‖q‖1 +

m∑
k=1

(βk + ε))

]−1

,

where

M21 =
β(2α− 1)(2α− η − 1)

Λ2(α − 1)
‖r‖1

[
‖q‖1 +

m∑
k=1

(βk + ε)

]

·

[
1 −

β(2α− η − 1)

Λ2
(‖p‖1 +

m∑
k=1

(βk + ε)

]−1

·

[
1 −

2α− 1

α− 1
(‖q‖1 +

m∑
k=1

(βk + ε))

]−1

,

M22 =

[
2β

β − 1

m∑
k=1

Mk +
β(2α− η − 1)

Λ2
‖r‖1

]

·

[
1 −

β(2α− η − 1)

Λ2
(‖p‖1 +

m∑
k=1

(βk + ε))

]−1

.

Hence

|x′(t)| ≤
2α− 1

α− 1

[
‖p‖1|x| + ‖q‖1|x

′| + ‖r‖1

+
m∑

k=1

(βk + ε)(|x| + |x′|)

]

=
2α− 1

α− 1

[
‖q‖1 +

m∑
k=1

(βk + ε)

]
|x′| +

2α− 1

α− 1

·

[
‖p‖1 +

m∑
k=1

(βk + ε)

]
|x| +

2α− 1

α− 1
‖r‖1.(15)

and

|x(t)| ≤
β(2α− η − 1)

Λ2

[
‖p‖1|x| + ‖q‖1|x

′| + ‖r‖1

+

m∑
k=1

(βk + ε)(|x| + |x′|)

]
+

2β

β − 1

m∑
k=1

Mk

=
β(2α− η − 1)

Λ2

[
‖p‖1 +

m∑
k=1

(βk + ε)

]
|x|

+
β(2α− η − 1)

Λ2

[
‖q‖1 +

m∑
k=1

(βk + ε)

]
|x′|

+
β(2α− η − 1)

Λ2
‖r‖1 +

2β

β − 1

m∑
k=1

Mk. (16)

The combination of (15) and (16), yields

|x′(t)| ≤
(2α− 1)[‖p‖1 +

∑m
k=1(βk + ε)]

α− 1 − (2α− 1)[‖q‖1 +
∑m

k=1(βk + ε)]
|x|

+
(2α− 1)‖r‖1

d
, (17)

where d = α− 1 − (2α− 1)[‖q‖1 +
∑m

k=1(βk + ε)], and

|x(t)| ≤

[
1 −

β(2α− η − 1)

Λ2
(‖p‖1 +

m∑
k=1

(βk + ε))

]

·

[
1 −

2α− 1

α− 1
(‖q‖1 +

m∑
k=1

(βk + ε))

]

·(M21 +M22)

[
1 −

β(2α− η − 1)

Λ2
(‖p‖1

+

m∑
k=1

(βk + ε)) −
2α− 1

α− 1
(‖q‖1 +

m∑
k=1

(βk + ε))

]−1

.

It lead to ‖x‖PC ≤M2 for any λ ∈ (0, 1), a contradiction.
It is now immediate from (17), that ‖x′‖PC is also bounded,
so is ‖x′‖PC1 . This completes the proof.

By using the same method as the proof of Theorem 3.1, we
can show that the following Theorem 3.2 - Theorem 3.6 hold.

Theorem 3.2 Let f : [0, 1] × R2 → R be a continuous
function, Ik ∈ C[R,R], Ik ∈ C[R × R,R]. Assume that the
conditions (H1) and (H2) of Theorem 3.1 are satisfied and
(H4) There exist constants α, β, η satisfying (ii). Then
BVP(E) has at least one solution in PC1[J,R] ∩ C2[J ′, R]
provided that

‖p‖1 + ‖q‖1 +

m∑
k=1

2βk <
−Λ2

βη + β − 2α
.

Theorem 3.3 Let f : [0, 1] × R2 → R be a continuous
function, Ik ∈ C[R,R], Ik ∈ C[R × R,R]. Assume that the
conditions (H1) and (H2) of Theorem 3.1 are satisfied and
(H5) There exist constants α, β, η satisfying (iii).
Then BVP(E) has at least one solution in PC1[J,R] ∩
C2[J ′, R] provided that

‖p‖1 + ‖q‖1 +

m∑
k=1

2βk <
−Λ2

4α− βη − 2αβ − 2 + β
.
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Theorem 3.4 Let f : [0, 1] × R2 → R be a continuous
function, Ik ∈ C[R,R], Ik ∈ C[R × R,R]. Assume that the
conditions (H1) and (H2) of Theorem 3.1 are satisfied and
(H6) There exist constants α, β, η satisfying (iv).
Then BVP(E) has at least one solution in PC1[J,R] ∩
C2[J ′, R] provided that

‖p‖1 + ‖q‖1 +

m∑
k=1

2βk <
Λ2

2αβη + 2αβ − βη − 2α− β
.

Theorem 3.5 Let f : [0, 1] × R2 → R be a continuous
function, Ik ∈ C[R,R], Ik ∈ C[R × R,R]. Assume that the
conditions (H1) and (H2) of Theorem 3.1 are satisfied and
(H7) There exist constants α, β, η satisfying (v).
Then BVP(E) has at least one solution in PC1[J,R] ∩
C2[J ′, R] provided that

‖p‖1 + ‖q‖1 +

m∑
k=1

2βk <
−Λ2

β(η + 1 − 2αβ)
.

Theorem 3.6 Let f : [0, 1] × R2 → R be a continuous
function, Ik ∈ C[R,R], Ik ∈ C[R × R,R]. Assume that the
conditions (H1) and (H2) of Theorem 3.1 are satisfied and
(H8) There exist constants α, β, η satisfying (vi).
Then BVP(E) has at least one solution in PC1[J,R] ∩
C2[J ′, R] provided that

‖p‖1 + ‖q‖1 +

m∑
k=1

2βk <
Λ2

βη + 2 − 2αβη − β
.

Example Consider the BVP:⎧⎪⎪⎨
⎪⎪⎩
x′′(t) = 1

30x(t) + 1
40x

′(t) + 3 ln(1 + t2), t �= 1
2 ,

Δx(1
2 ) = cos2 x(1

2 ),
Δx′(1

2 ) = 1
40 [x(1

2 ) − x′(1
2 )],

x′(0) = 2x′(ξ), x(1) = 3
2x(

1
3 ),

(E′)

where f ∈ C[J ×R2, R], I1 ∈ C[R,R], I1 ∈ C[R2, R].

Note that m = 1, t1 = 1
2 , α = 2, ξ ∈ (0, 1

3 ), β = 3
2 , η =

1
3 .

Furthermore

|f(t, x, y)| ≤
1

30
|x| +

1

40
|y| + 3 ln(1 + t2),

|I1(x)| = | cos2 x| ≤ 1,

|I1(x, y)| ≤
1

40
(|x| + |y|), ∀t ∈ J, x, y ∈ R.

Therefore

Λ2

β(2α− 1 − η)
=

1

8
, β1 =

1

40
, ‖p‖1+‖q‖1+2β1 =

13

120
<

1

8
.

Hence from Theorem 3.1, there exists a solution x ∈
PC1[J,R] ∩C2[J ′, R] to (E′), where (J ′ = [0, 1

2 )
⋃

(1
2 , 1)]).
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