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Abstract—We proposed a technique to identify road traffic
congestion levels from velocity of mobile sensors with high accuracy
and consistent with motorists’ judgments. The data collection utilized
a GPS device, a webcam, and an opinion survey. Human perceptions
were used to rate the traffic congestion levels into three levels: light,
heavy, and jam. Then the ratings and velocity were fed into a
decision tree learning model (J48). We successfully extracted vehicle
movement patterns to feed into the learning model using a sliding
windows technique. The parameters capturing the vehicle moving
patterns and the windows size were heuristically optimized.  The
model achieved accuracy as high as 99.68%. By implementing the
model on the existing traffic report systems, the reports will cover
comprehensive areas. The proposed method can be applied to any
parts of the world.

Keywords—intelligent transportation system (ITS), traffic
congestion level, human judgment, decision tree (J48), geographic
positioning system (GPS).

I. INTRODUCTION

RAFFIC reports in real-time are essential for congested and
overcrowded cities such as Bangkok or even in sparse and

remote areas during a long holiday period. Without these,
commuters might not choose the proper routes and could get
stuck in traffic for hours. Intelligent Transportation System
(ITS) with automated congestion estimation algorithms can
help produce such reports. Several initiatives from both
private and government entities have been proposed and
implemented to gather traffic data to feed the ITS. According
to our survey, most efforts focus on limited installation of
fixed sensors such as loop-coils and intelligent video cameras
with image processing capability. However, the costs of such
implementations are very high due to the high cost of the
devices, installation, and maintenance. Moreover, these fixed
sensors are vulnerable to extreme weather typical in certain
areas. Additionally, the installation of fixed sensors to cover
all roads in major cities is neither practical nor economically
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feasible. An alternative way to collect traffic data at a lower
cost with wider coverage is therefore needed.

Recently, mobile sensors or probe vehicles appeared as a
complementary solution to fixed sensors for increasing
coverage areas and accuracy without requiring expensive
infrastructure investment. Two popular types of mobile
sensors are GPS-based and cellular-based. GPS-based sensors
are sensors with GPS capability and cellular-based sensors are
sensors that use information from cellular networks as traffic
sensors.

Cellular-based sensors are low in cost due to the large
number of mobile phones and their associated infrastructures
already in service. According to recent statistics, the mobile
phone penetration rate in Thailand is expected to grow to 90%
in 2009 [1]. However, GPS-based sensors are far more
efficient to pinpoint vehicle locations; thus they can provide
highly accurate vehicle movement information.  Moreover,
recent mobile phones have integrated GPS capability, such as
the popular Apple iPhone and several other “smart” phones.

In this paper, we explored a model that can automatically
classify traffic congestion levels for traffic reports.  The model
can be further implemented in the system that combines
advantages of GPS-based sensors, in that they are highly
accurate, and of cellular-based sensors, in that they are highly
available. This model combined with mobile sensors can
generate traffic reports that cover virtually all of the areas that
vehicles and mobile networks can reach.

This paper is organized as follows:  In Section II, we
describe related works concerning traffic congestion reports.
The methodology of the research is presented in Section III.
The parameters optimization is demonstrated in Section IV.
Section V provides results and evaluations, and Section VI
offers a conclusion and the possibilities of future work.

II. RELATED WORKS

Congestion level estimation techniques for various types of
collected data are our most related field. Traffic data could be
gathered automatically from two major types of sensors: fixed
sensor and mobile sensor. The study in [2] applied a neural
network technique to the collected data using mobile phones.
It used Cell Dwell Time (CDT), the time that a mobile phone
attaches to a mobile phone service antenna, which provides
rough journey speed. Our work employed another machine
learning technique that better fit with the characteristics of the
data.  The use of GPS data would provide more precise traffic
information than that roughly provided by CDT.  The studies
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in [3] and [4] estimated congestion levels using data from
traffic cameras by applying fuzzy logic and hidden Markov
model, respectively. Our work applied decision tree (J48)
technique on mobile sensors.  Using data collected from
mobile sensors would cover far greater traffic ranges. The
algorithm would learn over moving patterns of a vehicle.
Sliding window technique with fixed window size was also
used. The works of [5], [6] and [7] also investigated various
alternative techniques related to our work.

In some countries, for example, as in the studies of [8] and
[9], found out that the main parameters used to define traffic
congestion levels are time, speed, volume, service level, and
the cycles of traffic signals at which the motorists have to
wait. Our work focused only on the interpretation of vehicle
velocity since our work aimed to determine the congestion
levels with a minimal set of parameters. Other physical road
conditions, such as the number of lanes, obstacles on the road,
etc., were not taken into account in this experiment. We
assumed that the vehicle velocity was already a product of
these factors and can be collected by almost all types of
sensors. This made the model easier, broader and more
versatile to be used.  The congestion levels that we studied
were limited to three levels: light, heavy and jam, which was
sufficient and appropriate according to the study of [10].
After we successfully derived the congestion classification
model, the GPS data were planned to be collected through
mobile phones attached to or embedded with GPS device.  The
data would be sent through the existing data network, such as
GPRS, EDGE, and so on.  The next section described the
methodology of the research.

III. METHODOLOGY

A. Collection of Empirical Data

The traffic data were collected from several highly
congested roads in Bangkok, e.g., Sukhumvit, Silom, and
Sathorn. A notebook connected to a USB GPS device was
used to collect date, time, latitude, longitude, and vehicle
velocity from GPS’s GPRMC sentences. We captured images
of road traffic conditions by a video camera mounted on a test
vehicle’s dash board. Our vehicle passed through overcrowded
urban areas approximately 30 kilometers within 3 hours.In our
experiment, we gathered the congestion levels from 11
subjects with as much as 10 years of driving experience each.
They watched a 3-hour video clip of road survey and rated the
congestion levels into three levels: light, heavy, and jam,
which were represented by the scales 3, 2 and 1 respectively.
The judged congestion levels were then synchronized with the
velocity collected by the GPS device.The voted congestion
ratings for a particular time were sometimes highly diverse.
Therefore the concluded congestion levels from 11 subjects
were calculated using a simple majority vote. It also makes
sense that the congestion levels exhibit nominal/ordinal
characteristics rather than interval/ratio scale characteristics.
From the data gathered, we observed that the vehicle
velocities fluctuated wildly and were also non-uniform. The
fluctuations of the instantaneous vehicle velocities made it
difficult to extract consistent features of the vehicle moving

patterns. To alleviate this oscillation, the traffic data was
treated before feeding into a learning algorithm, i.e., decision
tree model, which will be explained in detail in the next
section.

B.  Data Preparation

We minimized a set of attributes by concentrating only on
the vehicle velocity and the moving pattern of a vehicle, from
which we can infer different levels of congestion. Then, we
applied three steps to prepare the data: 1) smoothening out
instantaneous velocity, 2) extracting moving patterns of a
vehicle using sliding windows technique, and 3) balancing the
distribution of sampling data on each congestion level. Next,
we will explain each procedure in details.

1) Smoothening Out Instantaneous Velocity

Instantaneous vehicle velocity from the GPS data usually
fluctuated widely, as shown in Fig. 1. The dotted and the thick
line represent the instantaneous velocity and moving average
velocity respectively. This fluctuation made it difficult for the
learning algorithm to determine the pattern and classify the
congestion level, as in [11], [13], and [14]. Therefore, we
needed to smoothen out the fluctuation of instantaneous
velocity. We applied a moving average algorithm by
averaging the previous ξ instantaneous velocities which we
will refer to as the resolution of moving average. The moving
average equation is shown in Eq. 1. MVt represents the
moving average velocity at time t. In our experiment, ξ was set
to 3. The optimization of ξ will be discussed in details in
Section IV.

1t

ti iV

tMV (1)

Fig. 1 Instantaneous velocity vs. moving average velocity
(ξ= 3)

2) Extracting Vehicle’s Moving Patterns
When the instantaneous velocity fluctuated less from the

smoothening algorithm, it was easier to investigate vehicle’s
moving patterns.  We successfully extracted moving patterns
that were practical to be efficiently learned by the learning
algorithm, which can be explained as follows. Our previous
work suggested that we can use velocity to estimate
congestion levels. Hoever, we cannot say that only a single
value of a vehicle’s velocity at a moment can be used to
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accurately determine the congestion level. In a real driving
situation, a single value of an instantaneous velocity can be
reported at varying congestion levels. For example, a vehicle
needs to slow down for turning or stopping for a traffic light.
In this condition, the traffic might be light but the velocity is
relatively low, as per [13] and [14].After carefully
investigating the data, we succesfully mimicked humans’
judgements on congestion levels based on moving patterns of
a vehicle which was derived from the historical data. Sliding
windows, a technique that could satisfy such moving pattern
extraction, was employed. We applied fixed sliding windows
of size δ to capture moving patterns of a vehicle from the
vehicle velocity. In our experiment, δ was set to 3, which
means that we captured the moving patterns by a set of three
consecutive moving average velocities. The moving pattern at
time t with δ equals to 3 includes three consecutive samples of
moving average velocity at time t (MVt), and two priori
moving average velocities at time t-1 (MVt-1), and t-2 (MVt-2).
The optimization of δ will be discussed in Section IV. We also
introduced a new attribute to represent the average velocity of
each sliding window (each moving pattern), called AMVt.

Fig. 2 The visualization of parameter relations

1 (2)

)2(

)1(
(3)

Fig. 2 illustrates how to calculate the moving average at
time t from instantaneous velocity, and how to extract the
vehicle’s moving patterns. Let λ represent the number of
continuous instantaneous velocities needed to capture a
moving pattern. Let Δ represent the time span of those set of
instantaneous velocities. Thus, λ and Δ can be calculated by
the value of δ and ξ as shown in Eq. 2 and Eq. 3 respectively.
The value of τ is the time interval for capturing vehicle’s
moving patterns. In our experiment, τ was set to 1 minute.In
Eq. 3, for ξ=3 and δ=3, the number of data needed to form a
sliding window (λ) was 5, representing the number of
instantaneous velocities needed to calculate the AMVt. Thus,
the time span needed to extract moving patterns (Δ) was 4
minutes, representing the time span of each sliding window.
The values of δ and ξ can be varied so that the moving patterns
extracted that were fed to the learning algorithm were
optimized. The optimization process is explained in Section
IV.

3) Balancing Class Distributions

In our experiment, we captured vehicle’s moving patterns
every minute from 13:00 to 15:45. There were then a total of
166 instances in our universal data set. Since the calculations
of MVt and AMVt depend on the previous cascading
calculations, the first four instances (λ-1) were omitted.
Therefore, there were 162 instances: 52 instances were in the
class of jam traffic, 74 instances were in the class of heavy
traffic, and only 36 instances were in the class of light traffic.
Class imbalance may cause inferior accuracy in data mining
learners, as [12]. Generally, classification models tend to
predict the majority class if class imbalance exists. In this
case, the class of heavy traffic was the majority class while the
minority classes, the classes of light and jam traffic, were also
highly important. Therefore, we needed to balance the class
distributions to avoid the problem. By this step, we applied a
simple technique to alleviate the problem of class imbalance
by applying a technique that was similar to the technique of
finding a least common multiple number. The result of class
balancing yielded 448 instances with 156 instances on class
jam, 148 instances on class heavy, and 144 instances on class
light. Then, this data set was used to train the classification
model, for which we explain the details in the next section.

C. Data Classification

The preprocessed data set was used to train and evaluate the
classification model. Since we prior set δ and ξ to 3, our data
set consisted of five attributes. The first three attributes were
MV3t-2, MV3t-1, and MV3t, which were three consecutive
moving average velocities that represented the moving pattern.
The fourth attribute was AMV3t, which was the average
velocity of the corresponding moving pattern. The last
attribute was Level, which was the congestion level judged by
human ratings. We chose the J48 algorithm, a well-known
decision tree algorithm in the WEKA version 3.6.1 system, to
generate a decision tree model to classify the Level. The goal
attribute of the model was set to Level. The test option was set
to 10-fold cross-validation. Fig. 3 shows steps of generation
and evaluation of the classification model of our
experiment.After training of the classification model, the
derived decision tree is show in Fig. 4. The decision tree’s root
node is AMV3t attribute. This means that the average of the
moving average velocity is the most important factor to
determine the level of road traffic congestion. The result
shows a promising technique of determining congestion with
an overall accuracy of 91.29%.

Fig. 3 Knowledge flow of our experiment
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Fig. 4 The derived J48 decision tree (δ = 3, ξ = 3)

IV. PARAMETERS OPTIMIZATION FOR SLIDING WINDOWS

In the previous experiment, the ξ and δ were set to 3, which
provided a promising model with an overall accuracy of
91.29%.  The values of the ξ and δ can be varied to obtain a
better model with higher accuracy. In this section, we
conducted experiments to find the optimal values of ξ and δ.
We divided the optimization process into two steps: 1) the
optimization of the resolution of moving average (ξ),   and 2)
the optimization of the window size (δ). Each procedure is
elucidated as follows.

1) The optimization of the resolution of moving average (ξ)

In this step, to find out the optimal resolution of moving
average or the number of instantaneous velocities used to
calculate an instance of the moving average, we repeatedly
trained the models in the experiment by fixing the window
size (δ) to 3 as the previous experiment and varying the
resolutions of moving average. The value of ξ was adjusted
from 2 to 8; and then the accuracy of the trained models was
used as the measure to decide the best model.

We applied three steps to prepare the data. Firstly, the
instantaneous velocities were smoothened to lessen fluctuation
and make it easier to extract moving patterns. In this step, the
MVt with δ = 3 and ξ ranging from 2 to 8 were calculated.
Secondly, we extracted the vehicle’s moving patterns. Three
consecutive instances of the moving average of each one
minute (MVt-2, MVt-1, and MVt) were captured to make a
sliding window of the size 3. AMVt was computed to
represent the average velocity of each sliding window. A
moving pattern was extracted by a set of MVt-2, MVt-1, MVt,
and AMVt.

Thirdly, we balanced the class distribution. Since the
calculations of MVt and AMVt depended on the previous
cascading calculations, some instances (λ-1 instances) at the
beginning of the data set were omitted. In this experiment, the
maximum value of ξ was set to 8, requiring 7 instances to be
computed, as per Eq. 2. Therefore, we began extracting the
vehicle’s moving patterns from the ninth minute and omitting
the first nine instances.  Thus, there were 157 instances, from
a total of 166 instances; 52 instances were in the class of jam
traffic, 69 instances were in the class of heavy traffic, and only
36 instances were in the class of light traffic. After we
balanced the classes, the training data consisted of 631
instances; 208 instances were in the class jam, 207 instances
were in the class heavy, and 216 instances were in the class
light.

The preprocessed data set was fed into a J48 algorithm. The
data set contained five data columns: MVt-2, MVt-1, MVt,

AMVt, and Level (congestion level). The goal attribute of the
model was set to Level. The test option was set to 10-fold
cross-validation. The results of the classification models are
show in Fig. 5.

Fig. 5 The model accuracy (δ = 3, 2 ≤ ξ ≤ 8)

In Fig. 5, for the resolutions of moving average lower than
5, the models’ accuracy tends to increase when the value of ξ
increases. The model accuracy reaches the highest level when
ξ is set to 5, and then falls off. This may occur when the data
is over smoothening. Fig. 6 shows comparisons of the moving
average velocity on various resolutions.

Fig. 6 Moving average velocity on various resolutions

Fig. 6 shows that the moving average velocity with ξ = 7, is
over smoothening, while the moving average velocity with ξ =
5 synchronizes to the users’ opinions on congestion levels.
From the experimental results above, we finally conclude that
the optimal resolution of moving average is 5, which yields
accuracy as high as 99.68%.It is to be noted that the accuracy
of the model with ξ = 3 and δ = 3 was higher than the previous
experiment result (99.68% vs. 91.29%). This is because the
preprocessed data sets were different. On account of the
cascading calculation, the first four instances in the previous
experiment and the first nine instances in this experiment were
removed. Five instances following the fourth instance were
rated as heavy. As mentioned in the previous section, noise
may occur in the class heavy; the model can achieve a higher
accuracy by removing the noise.
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2) The optimization of the windows size (δ)

In this step, to find out the optimal number of moving
average instances to form the appropriate window size (δ), we
repeatedly trained the models in the experiments by fixing the
resolution of moving average (ξ) just derived from the
previous step to 5 and varying the windows size (δ).  The
value of δ was adjusted ranging from 2 to 8; and then the
accuracy of each trained model was used as the measure to
compare for the best model.

To make it comparable with the results on previous step, the
same data smoothening and class balancing technique were
used.  In the step of extracting vehicle’s moving patterns,
AMVt, current MVt, and a set of consecutive MVt varying on
the window sizes were captured for the model training. Table I
shows the sets of attributes used in this experiment.

TABLE I
EXAMPLE SETS OF ATTRIBUTES OF EACH WINDOW SIZE

Window
Size (δ)

Sets of Selected Attributes

2 MVt-1, MVt, AMV2t, Level
3 MVt-2, MVt-1, MVt, AMV3t, Level
4 MVt-3, MVt-2, MVt-1, MVt, AMV4t, Level
5 MVt-4, MVt-3, MVt-2, MVt-1, MVt, AMV5t, Level
6 MVt-5, MVt-4, MVt-3, MVt-2, MVt-1, MVt, AMV6t, Level
7 MVt-6, MVt-5, MVt-4, MVt-3, MVt-2, MVt-1, MVt, AMV7t,

Level
8 MVt-7,  MVt-6, MVt-5, MVt-4, MVt-3, MVt-2, MVt-1, MVt,

AMV8t, Level

After successfully extracting the vehicle’s moving patterns,
those sets of attributes were fed into a J48 algorithm. Goal
attribute of the model was set to Level. The test option was set
to 10-fold cross-validation. The results of the classification
models are shown in Fig. 7.

Fig. 7 The model accuracy ( ξ = 5, 2 ≤ δ ≤ 8 )

From the graph showing in Fig. 7, the model accuracy
increases when the value of δ increases from 2 to 3. The
model reaches the highest accuracy when δ was set to 3. The
dotted line extended from the solid line represents the
experimental results from which training data set contained
missing values. These missing values occurred because of the
incomputable of MVt and AMVt at the beginning of the data
set, requiring at least ξ instances of vehicle velocity. In this
experiment, we began extracting the vehicle’s moving patterns
from the ninth minute, as in the previous experiment, with ξ =
5 and δ = 7 where the AMVt was unavailable. In this
experiment, 11 instances of the instantaneous velocity were
required to be computed, as Eq. 2, whereas there were only 10
points of the instantaneous velocities available on the ninth

minute. In this case, AMVt with ξ = 5 and δ = 7 was treated as
missing values and replaced by ‘?’ in the data set. The
occurrence of missing values in the training data set can create
a bias on the decision tree model. Therefore, we finally
concluded that the optimal window size is 3 which yielded
accuracy as high as 99.68%.

V. RESULTS AND EVALUATIONS

A. Classification Model

By the two steps of the optimization, we successfully found
that the optimal resolution of moving average (ξ) is 5 and the
optimal window size (δ) is 3. The derived decision tree model
achieved an overall accuracy as high as 99.68%. The
optimized decision tree model is visualized in Fig. 8. Size of
our decision tree is 107 nodes, 54 of which are leaf nodes. The
time taken to build the model was approximately 0.09
seconds. Decision tree’s root node is the MVt attribute. It
means that the moving average velocity is the most important
factor to determine the level of road traffic congestion. AMVt

is also another highly important factor to determine the level
of road traffic congestion as shown in the previous and the
optimized decision tree.

Fig. 8 The optimized J48 decision tree (δ = 3, ξ = 5)

B. Performance Evaluations

The optimized decision tree model achieved an overall
accuracy of 99.68% with a root mean square error of 0.0368,
and a precision and a true positive rate on each class ranging
from 0.990 to 1.000, which was very high. False positive rate
(FP Rate) ranged from 0.000 to 0.005, which was very low
indicating a good model. Table II shows the optimized
classifier’s performance for each class in detail.

TABLE II
THE OPTIMIZED CLASSIFIER’S PERFORMANCE

Class TP Rate FP Rate Precision
Jam (1) 1 0.005 0.99

Heavy (2) 0.99 0 1
Light (3) 1 0 1
Average 0.997 0.002 0.997

From Table II, the highest TP Rate is 1.000 on the class Jam
and Light. It means that when the road traffic congestion level
is light or jam, our optimized classifier correctly classify the
traffic will 100%. The lowest TP Rate is 0.99 in the Heavy
class. It can be interpreted that when the road traffic
congestion level is heavy, our classifier will correctly classify
the traffic 99%. The result of the optimized model evaluation
is showed by a confusion matrix in Table III.
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TABLE III
THE CONFUSION MATRIX OF THE OPTIMIZED MODEL

Predicted Congestion Level

Jam Heavy Light

Jam 208 0 0

Heavy 2 205 0
Instances

Congestion Level
Light 0 0 216

The number 2 in the confusion matrix, as per Table III, is
the result of misclassification on the heavy traffic class,
representing the only 2 instances of heavy class which the
optimized model misclassified as jam traffic.

VI. CONCLUSION

In this study, we investigated an alternative technique to
automatically classify the road traffic congestion levels that
was highly consistent with road users’ judgments. The
technique minimally required data from GPS devices, which
can be collected from participants through mobile data
networks. Vehicle velocity can be used to determine the
congestion level but the instantaneous velocity fluctuated
widely. We smoothened out the oscillated instantaneous
velocity by averaging it with historical velocities, which was
called moving average velocity. We applied a sliding windows
technique to capture the consecutive moving average
velocities, which was called a moving pattern. We derived a
new attribute, AMV3t, which represents the average velocity
of the corresponding moving pattern.  Parameters δ and ξ were
set to 3. The moving patterns were captured every minute.
Then road users’ judgments and related information were
learned utilizing a decision tree model (J48). The evaluations
revealed that the decision tree model achieved an overall
accuracy as high as 91.29% with a precision as high as 96.6%.
The root mean square error was only 0.2171.

The model was optimized.  The experiments revealed that
the optimal resolution of moving average (ξ) was 5 and the
optimal window size (δ) was 3. The evaluations revealed that
the optimized decision tree model achieved an overall
accuracy of 99.68% with a precision as high as 100%. The
root mean square error was only 0.0368.

There are several opportunities for future research.  For
example, evaluations of the model against other data sets from
various road types or vehicles could minimize the chance of
the over fitting problem. Moreover, the model can be
implemented in the real world.  We plan to integrate such a
model into the existing ITS system in Bangkok. The
technique will also be extended so as to cover the whole
country if possible.
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