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Abstract—Quality control charts are very effective in detecting 
out of control signals but when a control chart signals an out of 
control condition of the process mean, searching for a special cause 
in the vicinity of the signal time would not always lead to prompt 
identification of the source(s) of the out of control condition as the 
change point in the process parameter(s) is usually different from the 
signal time. It is very important to manufacturer to determine at what 
point and which parameters in the past caused the signal. Early 
warning of process change would expedite the search for the special 
causes and enhance quality at lower cost. In this paper the quality 
variables under investigation are assumed to follow a multivariate 
normal distribution with known means and variance-covariance 
matrix and the process means after one step change remain at the new 
level until the special cause is being identified and removed, also it is 
supposed that only one variable could be changed at the same time. 
This research applies artificial neural network (ANN) to identify the 
time the change occurred and the parameter which caused the change 
or shift. The performance of the approach was assessed through a 
computer simulation experiment. The results show that neural 
network performs effectively and equally well for the whole shift 
magnitude which has been considered. 

Keywords—Artificial neural network, change point estimation, 
monte carlo simulation, multivariate exponentially weighted moving 
average 

I.INTRODUCTION 
T has been proven that quality control charts are very 
effective in detecting out of control signals. If a control 

chart signals a change in the process parameter, examining the 
process for special causes only at the time of the signal may 
be ineffective. Identifying the time of the parameter change 
will substantially assist the signal diagnostics procedure since 
it makes the search for special causes more efficient and 
corrective measures can be implemented sooner. According to 
the following literature review, it is well known that when a 
control chart signals an out of control condition, searching for 
a special cause in the vicinity of the signal time would not 
always lead to prompt identification of the source(s) of the out 
of control condition as the change point in the process 
parameter(s) is usually different from the signal time.  
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In univariate environment several researchers including 
Samuel et al. [1], Samuel and Pignatiello  [1],[2], Hawkins 
and Qiu [3], Perry et al. [4],[5], Ghazanfari et al. [6], and 
Noorossana et al. [7] have investigated change point 
estimation in the presence of different change types such as 
step, linear trend, and monotonic changes.  

But, when several characteristics of a manufactured 
component are to be monitored simultaneously identifying the 
change point by itself would not effectively lead to the source 
of disturbance. In other words, in multivariate environment, 
effective root cause analysis requires not only the 
identification of the change point but also the knowledge on 
the variable(s) leading to the change in the process 
parameters. Nedumaran et al. [8] referred to or discussed? 
issue of change point identification for χ2 control chart, when 
several quality characteristics are to be monitored 
simultaneously. They used maximum likelihood estimator to 
estimate a step change shift in a mean vector when 
observations follow a multivariate normal distribution. Several 
authors including Montgomery [9], Wade and Woodall [10], 
Hawkins [11], Hayter and Tusi [12], Kourti and MacGregor 
[13], Nottingham et al. [14], Niaki and Abbasi [15], Guh [16], 
and Hawnrg [17],[18],[19] have investigated issues related to 
the diagnostic analysis in multivariate environment. Bersimis 
et al. [20] provides a comprehensive literature review on the 
multivariate control charts along with different diagnostic 
analyses to identify variable(s) associated with the out of 
control condition. 

This paper focuses on MEWMA charts and how to identify 
out of control signals. It describes how neural network may be 
used to identify the step change point in the process mean 
vector. Next section describes MEWMA procedure and section 
three provides ANN architecture to detect the change point, 
and identify which parameters have caused the change and in 
both parts the performance of the approach is assessed by 
using Monte Carlo simulation, finally the conclusions are 
provided. 

 
II.THE MEWMA PROCEDURE 

 
The MEWMA chart was introduced by Lowry, Woodall, 

Champ and  Rigdon [21]. They suppose that we observe X1, 
X2 . . . in the univariate case i.e. when p = 1. The univariate 
EWMA chart is based on these values:  

             zi = rX i + (1 - r ) z i-1                             (1) 

I
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i = 1 , 2 , . . . , where Z0 = µ0 = 0 and 0 < r ≤ 1. If X1, X2 ... 
Xi… are iid N (0, σ2) random variables, then the mean of Zi, is 
0 and the variance is  

           σ 2z i =  
r

r
−2

 [1-(1-r)2i] σ 2     i = 1, 2, …                        (2) 

Thus, when the control value of the mean is 0, the control     
limits of the EWMA chart are often set at ±LσZi , here L and r 
are the parameters of the chart. In the multivariate case, 
according to Lowry, Woodall, Champ and Rigdon [21] a 
natural extension is to define the vectors of EWMA's , 

             
            Z i = RX i + (1 - R) Z i-1   i = 1, 2, …                    (3) 
 
where Zo = 0 and R = diag(r1, r2, . . . , r p ) , 0 < r ≤ l ,  

j = 1 , 2 , . . . ,p. The MEWMA chart gives an out of control 
signal as soon as: 

iii i
T zΣz z

12 −′=  > L                            (4) 

 Where L (>0) is chosen to achieve a specified in control 
ARL and Σzi , is the covariance matrix of Zi  . If there is no a 
priori reason to weight past observations differently for the p 
quality characteristics being monitored, thenr 1 = r 2 = . . . = rp 
= r. If the variables being monitored are not of equal 
importance and the desired ARL performance is such that the 
ARL should not be a function of λ, then the method of 
Hawkins [11] is recommended. Another possibility, proposed 
by Lowry, Woodall, Champ and , Rigdon [21] is to use a 
different matrix in (3) to calculate the quadratic form of the 
MEWMA chart.  

If r1 = r2 = . . . = rp = r, then the MEWMA vectors can be 
written as:  

                       Zi = rXi + (1 - r)Zi-1, i = 1, 2, . . .              (5) 
         ∑ 2z i = 

r
r
−2

[1-(1-r)2i] ∑ 2                            (6)                                                        

Analogous to the situation in the univariate case, the 
MEWMA chart is equivalent to Hotelling's χ2 chart if r =1. 
As MacGregor and Harris [22] pointed out for the univariate 
case, using the exact variance of the EWMA statistic leads to 
a natural fast initial response for the EWMA chart. Thus initial 
out of control conditions are detected more quickly. This is 
also true for the MEWMA chart. Because, however, it may be 
more likely that the process will stay in control for a while and 
then shifts out of control, we will assume for a chart design 
and in our ARL comparisons that the asymptotic (as i → ∞) 
covariance matrix, that is:  

                 ∑ 2z i = 
r

r
−2

 ∑ 2                                   (7) 

used to calculate the MEWMA statistic in (6) unless 
otherwise indicated.  

A. Multivariate Process Model 
Suppose that a multivariate process is monitored by means 

of a MEWMA control chart on p important quality 
characteristics. Let Xij =( Xij1 , Xij2 , ..., Xijp )́  be a p vector 
which represents the p characteristics on the jth observation (j 
= 1, 2, ..., n) in the ith subgroup of size n. Suppose further that 

when the process is in control, the Xij ’s are independent and 
identically distributed and follow a p variate normal 
distribution with mean vector µο and covariance matrix Σο.  
that   Xij ’s are iid N p (µο, Σο ) , when the process is in 
control. Then                                                                    

∑
=

=
n

j
iji x

n
X

1

1                                    (8)  

When the ith subgroup is observed, the statistic (4) is used. 
We will assume that, when the multivariate process means 
changes, there has been a step change from its in control value 
of µ= µο to an unknown value µ = µ1 where  
µο ≠ µ1. If the statistic of MEWMA exceeds L, we may 
conclude that the step-change in the process mean has 
occurred at some unknown time τ where 0 ≤ τ ≤ T-1. Hence, it 
follows that the subgroup averages X 1 , X 2 , ..., Xτ  came 
from the in control process and the subgroup averages Xτ+1  , 
Xτ+2 , ..., X T from the out of control process. We further 
assume that there is no change in the covariance structure and 
that the process means remain at the new level µ1 until the 
special cause has been identified and removed. This is  the 
same method used by Nedumaran et al. [8] for χ2 control chart 
that is used here for MEWMA control chart.  

 
III.IDENTIFYING THE PARAMETER WHICH CAUSE THE SIGNAL 

BY ARTIFICIAL NEURAL NETWORK 
Artificial neural network is an approach to information 

processing that does not require algorithm or rule 
development. The three essential features of a neural 
computing network are the computing units, the connections 
between the computing units, and the training algorithm used 
to find values of the network parameters. The application of 
neural networks involves selecting feature vectors, 
establishing the network architecture choosing the activation 
function and training. The selection of feature vector in a 
crucial training affects the neural network. The feature vector 
must be able to help classifying shifts. Although many 
classical approaches and diagnostic analyses have been 
proposed in the literature for process control and disturbance 
interpretation in multivariate settings, relatively few studies 
have discussed the issue of signal detection and disturbance 
interpretation simultaneously. Guh [16] proposes a neural 
network based model that is capable of monitoring and 
performing diagnostic analyses in a bivariate process 
simultaneously. A step change in the mean vector and a 
known constant variance-covariance matrix are the two major 
assumptions of the model. Furthermore, Hwarng [17],[18],19] 
introduces a neural network model for detecting out of control 
conditions and simultaneously diagnosing the source of a step 
shift in the mean of a bivariate normal process. Moreover, 
Guh and Shiue [23] propose a decision tree-based model 
which is capable of detecting mean shift in a P variate normal 
process and at the same time helps to identify the variable(s) 
responsible for the out of control condition. Although different 
authors including Nishina [24], Nedumaran et al. [8] , Sullivan 
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and Woodall [25], Li et al. [26], Hawkins and Zamba [27] 
have proposed procedures for identifying change point when a 
step change occurs in the mean of a multivariate process, but 
no one has pointed simultaneous identification of a change 
point and diagnostic analysis in multivariate settings, except 
Atashgar and Noorosana [28] whose research propose a model 
based on neural networks which detect an out of control 
condition, and estimate the linear change point in the process 
mean  and performing diagnostic analysis to identify the 
variable (s) responsible for the out of control condition. They 
assume that the vector of observations follow a bivariate 
normal distribution with known variance-covariance matrix 
and the covariance matrix is unaffected by the disturbance. 

To the best of our knowledge, no one has addressed 
simultaneous use of multivariate control chart and neural 
networks for identification of a step change point. In the 
previous research of Ahmadzadeh [29] multivariate control 
chart and neural network is used simultaneously and the result 
is compared with maximum likelihood estimation (MLE) 
approach which was used only for detecting the change 
point.In this paper we assume that the vector of observations 
follow a five normal variable distribution with known 
variance-covariance matrix and the covariance matrix is 
unaffected by the disturbance. We consider simultaneous use 
of multivariate control chart and neural networks for detection 
and identification of a step change point also diagnostic 
analysis regarding identification of variable which has caused 
the disturbance, in multivariate settings. Then two phases are 
considered. At the first stage we will find the change point and 
at the next phase we diagnose the variable which has caused 
the change, in both phases we use MEWMA control chart for 
detecting out of control condition 

A.  Phase One: Identifying Change Point 
The neural network adopted in this study is a three-layer, 

fully connected, feed-forward network with a back 
propagation training algorithm that has been successfully 
applied to various classification problems. The neural network 
architecture including an input layer with n nodes, a hidden 
layer with 40 nodes, and an output layer with n nodes. (n = 
size of observation until MEWMA gives out the control 
signal). The activation function is important in the training 
stage. The one most extensively applied in back propagation 
algorithm is the tangent-sigmoid transfer function with output 
values in the interval [-1 , 1]. Cheng [30] claimed that the 
tangent sigmoid transfer function effectively detects process 
changes in every direction. The tangent sigmoid function is 
used herein as the activation function in the hidden layer while 
linear function is for the output layer. The input vectors are 
presented to the network and propagated forward to yield the 
output. While Training, the weights and biases are iteratively 
modified according to the difference between the target and 
generated outputs. The Mean Square Error (MSE) associated 
with the output layer is propagated backward through the 
network, by modifying the weights. The popularity of the 

gradient descent search method is based more on its simplicity 
rather than its search power. The training is terminated when 
the MSE of the difference of two successive iterations is 
within a predetermined tolerance 0.001 or when 100 epochs 
had been performed. When the MEWMA control chart gives 
signals for a sample which is out of control, the sample data 
are collected as input data to the trained network. In this stage 
it is assumed that the generating data has five variable normal 
distribution with mean (0,0,0,0,0) , unit variances and a 
correlation coefficient of 0.5 . The values of (X1, X2 ,X3, X4 
,X5) are the observations, the values (Z1 , Z2, Z3 , Z4 , Z5) 
correspond to the MEWMA vector in (3) with   
r =0.1, and the values of T2 were obtained using (2). The 
values of L=14.74 were obtained using simulation to provide 
in control ARL's of 200, and we train and test the network 
with T2 estimator of MEWMA. In the training stage Mont 
Carlo simulation is used, for example generation of 100 five 
variate normal values with mean µ0 for first class, and creating 
shift magnitude of λ at observation 100 and generating again 
100 five variate normal data with mean µ1 as the second class. 
To start the training stage some transformation has been done 
on the raw data. First we calculate the mean of five 
consequent data to smooth data and consider it as Xi 
(i=1…200) then we put 10 consequent Xi as input vector. 
Output data for the first class are 0 and for the second class are 
1. This work has been done hundred times for each shift 
magnitude all over the training phase. Seven shifts of 
magnitude λ = 0.25, 0.5, 1, 1.5, 2, 2.5 and 3.0 were 
considered. As soon as the input vector is passed through the 
trained network, the output activation at each output is 
examined against a pre specified decision interval to yield a 
transference output 0 or l. The performance of the proposed 
network was tested using Monte Carlo simulation. The 
observations were assumed to come from a N p (µ0, σ0) 
distribution when the process is in control. Although only one 
process dimension, namely p = 5 was considered there is no 
difference regarding result for multi dimensional parameters. 
One hundred subgroups of size n = 1 were generated 
randomly from the in-control distribution. If the MEWMA 
statistic for any of these subgroups exceeded L, all data from 
that subgroup were discarded and replaced with new ones. 
The new MEWMA statistic was then recomputed and 
compared with L. This procedure was repeated, as required, 
until 100 subgroups from the in control process had MEWMA 
statistics that did not exceed L. Thus, the MEWMA control 
chart did not issue any false alarms. Starting with subgroup 
101, the simulated process mean was changed from µ0 to µ1 
by introducing a shift of magnitude λ within the in control 
mean where subgroups were then generated from the out of 
control process until a subgroup’s MEWMA statistic exceeded 
its L, that is, until the control chart issued a genuine alarm 
signal. The change point estimation was then calculated 
following that genuine alarm signal, using the aforementioned 
method. This set of data is considered as input vector to the 
network to test the network. The output of the network 
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concludes a vector of 0 and 1, if our network has a good 
training it must include a series of 0 and 1, that is shown 
where 0 is changed to 1 is, where the change or shift in mean 
occurs. This procedure was then replicated 10,000 times, and 
the average of those 10,000 change point estimates its 
standard error. Seven shifts of magnitude λ = 0.25, 0.5, 1, 1.5, 
2, 2.5 and 3.0 are considered. The results of this simulation 
study are presented in the following Tables. In Table I we 
show the time at which the MEWMA control chart is expected 
to issue a genuine signal of a change in the process mean. 
Also results show that NN1 averages are in fact close to the 
actual change point of t = 100 for all shift magnitudes and for 
all dimensions considered. Thus, on average, our proposed 
network change point estimate is close to the actual time of 
change regardless of the values of the shift magnitude and 
process dimension. For example Table I shows, when p = 5 
and λ = 1, the MEWMA control chart on average will signal 
the change in the process mean on subgroup 108.68 when the 
actual change occurred after the 100th subgroup.That is, the 
control chart on average signals the change 8.68 subgroups 
after the actual change. However  NN1 will on average detect 
the change in the process mean on subgroup 101.88 , it means 
1.88 subgroup after the actual time of the change neural 
network can detect the change. Thus, seeking special causes at 
the time of the signal might be futile.  Instead if they should 
search for special causes around the time it happened to 
appropriately conclude, the special cause. Results show that 
the neural network change point estimates around the actual 
change point will not depend on the shift magnitude and for 
all shift magnitude is approximately up to two subgroups after 
the actual change point. Results show that MEWMA will 
signal the shift magnitudes greater than one and will detect all 
shift magnitudes.  

B. Phase Two: Identifying the Parameter Which Has 
Caused The Signal 

This phase considers several assumptions. First it assumes 
no change in the covariance structure and the process means 
when change remains at the new level of µ1 during the period 
of identifying the change point Not new, repeated. Further it 
assume that only one variable mean is changed in the study 
period. The neural network adopted in this phase is a multi 
layer perceptrons (MLP) with two-layer, fully connected, 
feed-forward network with a back propagation training 
algorithm. The neural network architecture includes an input 
layer with N*N*100 = 5*500 nodes, a first hidden layer with 
20 nodes, second hidden layer with 5 nodes to cover 5 
variables. The output layer has N*N*100 nodes, N = the 
number of variables. The activation function for the first layer 
is linear and for the second layer is tangent-sigmoid.Again 
training is terminated when the MSE of the difference of two 
successive iterations is within a predetermined tolerance 0.001 
or when 100 epochs had been performed. 

• Step 1:Training   
This step assumes that the change point (CP) is available 

from the previous phase. So the distance between CP and the 

signal of MEWMA control chart is known. It ensures that only 
the mean of one variable has been changed. The training stage 
considers a matrix with the dimension of N*(N*100) as an 
input and another matrix with the       

TABLE  I 
EXPECTED TIME OF A SIGNAL WITH MEWMA=τ , AVERAGE OF CHANGE POINT 

ESTIMATES BY NN1 , STANDARD ERROR FOR τ ,  P=5 , τ=100 

 

 

Fig. 1 Expected time of a signal with MEWMA , Average of change 
point estimates By NN1 10000 time simulation for τ = 100 and p = 5 

 
Same dimensions as the out put N is the number of 

variables (parameters), set here at N=5. Then we assume a 
matrix of 5*100 for each variable, so that, for first variable it 
means we have a matrix of 5 rows and 100 columns , in which 
the first array (variable mean’s) changed as an input matrix, 
and we put the first array of the output matrix equal to 1 in the 
training stage and the another rows equal to 0, also for second 
variable changed as an input matrix, we put the second array 
of the output matrix equal to 1 and the another rows equal to 
0, and so on until the fifth variable. It means, in the training 
stage our network can learn and identify which variables 
(parameters) has been changed. 

• Step 2:Testing 
This step builds upon the results of the first phase namely 

the CP. We transfer the fault data to the train network of the 
first step. Because in the training step our network learn to 
identify which variable mean’s has been changed then when 
face with the fault data it can diagnose which variable mean’s 
has been changed (we have the mean of the unchanged data). 
We do this for 10,000 times to decrease the error and find 

λ 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 

τ 172.63 124.25 112.80 108.68 105.30 103.86 103.08 102.5

NN1 101.91 101.92 101.91 101.88 101.18 100.79 100.76 100.8

Std 0.38 0.30 0.18 0.11 0.04 0.03 0.02 0.02 
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mean error of our experiment. We can do it for every 
dimension of variables. 

Results show that the NN will identify the variable 
(parameter) for which the mean has changed causing the 
signal in MEWMA control chart. Also diagnosing the variable 
is done independent of the magnitude of the shift.  NN1 ,in 
first phase, will detect the change point very soon after it 
happens, for all shift magnitudes. NN2 in phase two 
determines which variable has caused the change. Table II 
shows that for λ=1 the design NN2 identifies the first variable’s 
mean alteration with probability of 97.5% and the diagnostic 
error for the 2nd and 5th variables are 2% and 0.5% 
respectively. Also for λ=3 the diagnosis  is 100% correct 
which shows that the net work performs very well. In all the 
following Tables P is number of variables, τ is time of the 
change point. Changing mean of the first to five variables the 
result is the same and the NN2 identifies the variables   causing 
the change. Table III to Table XI demonstrate this point. 

IV.CONCLUSIONS 
In this paper two approaches were proposed for identifying 

the time of a step change and identifying the variable of 
causing the change in a multivariate production process mean 
vector. First phase is designing a neural network, NN1, to 
identify the time of the change point and phase two applies 
another neural network, NN2, to diagnose the variable whose 
mean has changed. The described methods show how the 
MEWMA control charts can be used in conjunction with NN. 
When a MEWMA control chart signals a change in the process 
mean, a search for special causes responsible for the change 
can be made to determine when exactly the actual change has 
taken place. This is especially true when there is only a small 
change in the process mean since the average run length can 
be quite large you did not show that this is covered well. The 
simulation studies showed that given a change in the process 
mean vector, the network in first phase performed effectively 
in detecting the actual change point and in phase two the 
network performed very well in detecting the actual variable 
responsible for the change for all shifts magnitude. Also 
results show that the network in phase one will detect the time 
of a change point for all shift magnitudes up to two subgroups 
after the actual change point. The network in phase two 
diagnoses the responsible variable(s) for the change with 
probability of at least 96% and max error in detecting other 
variable is about 2% in this example. Ultimately, the results 
show that two proposed networks performs effectively well in 
detecting the shifts. 

 
 
 
 
 
 
 
 
 
 
 
 

TABLE II 
RESULT OF DESIGN NN2 WHEN FIRST VARIABLE MEAN CHANGED FOR P=5 , 

τ=100 

TABLE III 
RESULT OF DESIGN NN2 WHEN  SECOND VARIABLE MEAN CHANGED FOR P=5, 

τ=100 

TABLE IV 
 RESULT OF DESIGN NN2 WHEN THIRD VARIABLE MEAN CHANGED FOR P=5 , 

τ=100 

TABLE V 
RESULT OF DESIGN NN2 WHEN FORTH VARIABLE MEAN CHANGED FOR P=5 , 

τ=100 

 
 
 
 
 
 
 
 
 
 
 

λ 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 

1st  97% 99% 100% 97.50% 100% 98% 100% 100% 

2nd   0 0 0 2% 0 1% 0 0 

3rd   1% 0 0 0 0 0 0 0 

4th   2% 0 0 0 0 0 0 0 

5th    0 1% 0 0.5% 0 1% 0 0 

λ 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 

1st  0 0 1% 0 1% 0 1% 0 

2nd   100% 100% 99% 98% 98% 100% 99% 100% 

3rd   0 0 0 0 0 0 0 0 

4th   0 0 0 0 1% 0 0 0 

5th    0 0 0 2% 0 0 0 0 

λ 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 

1st  0 0 1% 0 1% 2% 0 0 

2nd  0 0 0 2% 0 1% 0 0 

3rd  100% 100% 99% 97% 98% 96% 100% 99% 

4th  0 0 0 0 1% 1% 0 1% 

5th   0 0 0 1% 0 1% 0 0 

λ 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 

1st  1% 0 0 1% 0 2% 0 0 

2nd  0 0 0 2% 0 1% 0 0 

3rd  1% 0 0 0 0 0 0 0 

4th  98% 99% 100% 96.5% 100% 96% 100% 100% 

5th   0 1% 0 0.5% 0 1% 0 0 
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TABLE VI 

RESULT OF DESIGN NN2 WHEN  FIFTH VARIABLE MEAN CHANGED FOR P=5 , 
τ=100 
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λ 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 

1st  0 0 0 0 0 1% 0 0 

2nd   1% 0 1% 1% 0 0 1% 0 

3rd   1% 0 0 1% 0 0 0 0 

4th   2% 0 0 0 0 1% 0 0 

5th   96% 100% 99% 98% 100% 98% 99% 100% 


