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Delay-Distribution-Dependent Stability Criteria for
BAM Neural Networks with Time-Varying Delays

Abstract—This paper is concerned with the delay-distribution-
dependent stability criteria for bidirectional associative memory
(BAM) neural networks with time-varying delays. Based on the
Lyapunov-Krasovskii functional and stochastic analysis approach,
a delay-probability-distribution-dependent sufficient condition is de-
rived to achieve the globally asymptotically mean square stable of
the considered BAM neural networks. The criteria are formulated in
terms of a set of linear matrix inequalities (LMIs), which can be
checked efficiently by use of some standard numerical packages. Fi-
nally, a numerical example and its simulation is given to demonstrate
the usefulness and effectiveness of the proposed results.

Keywords—BAM neural networks, Probabilistic time-varying de-
lays, Stability criteria.

I. INTRODUCTION

IN the past few decades, dynamical behavior of neural
networks has been studied much in science and technology

area, such as signal processing, parallel computing, optimiza-
tion problems, and so on [1], [2]. This led to significant
attention on stability analysis of various kind of neural network
models such as Hopfield neural networks, cellular neural
networks, Cohen-Grossberg neural networks, and BAM neural
networks [3]–[4]. As is well known that BAM is a type of
recurrent neural network which was introduced by Kosko in
1988 [5] for their potential application in pattern recogni-
tion, solving optimization problems, and automatic control
engineering. Therefore, stability of BAM neural networks has
attracted attention in the recent time [6]-[8].

On the other hand, time delays are commonly encountered
in various physical, engineering and neural based systems
which cause the poor performance and instability of dynamic
systems. Many existing works investigated about neural net-
works with deterministic time-delay, but at the same time,
latest literatures are concerned with neural networks with
stochastic time-delay. For example, if some values of the delay
are very large but the probabilities of its occurrence are very
small. In this case, we do not get less conservative results
when only the information of variation range of the time delay
is considered. Thus, the stability analysis of dynamic neural
networks with random time-delay deserves to receive much
attention and has been studied in recent years [9]-[12]. The
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authors in [9] addressed the problem of delay-distribution-
dependent state estimation for discrete-time stochastic neural
networks with random delay. Similarly, other authors have
also proposed the delay-distribution-dependent stability of
stochastic discrete-time neural networks with randomly mixed
time-varying delays in [10]. To the best of our knowledge,
none have worked on the issue of stability criteria for BAM
neural networks with time-delays in the leakage term and
probabilistic time-varying delays, till now.

Motivated by the above discussion, the main objective
of this paper is to propose the delay-distribution-deepened
stability criteria for BAM neural networks with probabilis-
tic time-varying delay functions by using a combination of
Lyapunov-Krasovskii functional, stochastic stability theory,
Jenson’s inequality and free-weighting matrices. A delay-
dependent criteria is expressed in terms of LMIs. Finally a
numerical example is given to show the effectiveness and
significance of the proposed criterion.
Notations: Rn and R

n×n denote the n-dimensional Euclidean
space and the set of all n × n real matrices respectively.
The superscript T denotes the transposition and the notation
X ≥ Y (similarly, X > Y ), where X and Y are symmetric
matrices, means that X−Y is positive semi-definite (similarly,
positive definite). ‖ · ‖ is the Euclidean norm in R

n. Pr{α}
means the occurrence probability of the event α. E{x} and
E{x|y} , respectively, mean the expectation of the stochastic
variable x and the expectation of the stochastic variable x
conditional on the stochastic variable y. diag{· · · } stands
for a block diagonal matrix. The notation ∗ always denotes
the symmetric block in one symmetric matrix. λmin(·) and
λmax(·) denote the minimum and maximum eigenvalues of a
given matrix.

II. PROBLEM DESCRIPTION AND PRELIMINARIES

The delayed BAM neural networks can be described as
follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u̇i(t) = −aiui(t) +

∑m
j=1 b

1
ij f̃j(vj(t))

+
∑m

j=1 b
2
ij f̃j(vj(t− τ(t))) + Ii, i = 1, · · · , n,

v̇j(t) = −cjvj(t) +
∑n

i=1 d
1
ij g̃i(ui(t))

+
∑n

i=1 d
2
ij g̃i(ui(t− σ(t))) + Jj , j = 1, · · · ,m,

(1)

or be rewritten in the following vector-matrix form:{
u̇(t) = −Au(t) +B1f̃(v(t)) +B2f̃(v(t− τ(t))) + I,

v̇(t) = −Cv(t) +D1g̃(u(t)) +D2g̃(u(t− σ(t))) + J,
(2)

where u(t) = [u1(t), u2(t), · · · , un(t)]T ∈ R
n, v(t) =

[v1(t), v2(t), · · · , vn(t)]T ∈ R
m are neuron state vectors,
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A = diag{a1, · · · , an, } > 0, C = diag{c1, · · · , cn, } > 0
are diagonal matrices with positive entries ai > 0 and
ci > 0, B1 and D1 are the connection weight matri-
ces, B2 and D2 are the delayed connection weight ma-
trices, f̃(v(t)) = [f̃1(v1(t)), · · · , f̃m(vm(t))]T , g̃(u(t)) =
[g̃1(u1(t), · · · , g̃n(un(t)]T denote neuron activation functions,
I = [I1, I2, · · · , In]T and
J = [J1, J2, · · · , Jm]T are external inputs, and τ(t) and σ(t)
are time-varying delays and satisfy

0 ≤ τ(t) ≤ τ, 0 ≤ σ(t) ≤ σ,

where τ and σ are positive constants.
The initial condition of the system (2) are assumed to be

u(s) = φ(s) s ∈ [−τ, 0],
v(s) = ψ(s) s ∈ [−σ, 0].

Assumption 2.1 : The neuron activation functions f̃i(·) and
g̃j(·) in (1) satisfy

l−j ≤ f̃j(a)− f̃j(b)

a− b
≤ l+j , (3)

k−i ≤ g̃i(a)− g̃i(b)

a− b
≤ k+i , (4)

for all a, b ∈ R, a �= b, i = 1, 2, · · · , n, j = 1, 2, · · · ,m. The
constants l−i , l

+
i , k

−
j , k

+
j in Assumption 2.1 are allowed to be

positive, negative or zero.
Remark 2.2 Assumption 2.1 was proposed in [13]. The
constants l−i , l

+
i , k

−
j , k

+
j in Assumption 2.1 are allowed to

be positive, negative or zero. Then, Assumption 2.1 is less
restrictive than the descriptions on both the Lipschitz-type
activation functions and the sigmoid activation functions.
Now, let u∗ = [u∗1, · · · , u∗n]T , v∗ = [v∗1 , · · · , v∗n]T be the
equilibrium points of (2), and define the following variables:

x(t) = u(t)− u∗, y(t) = v(t)− v∗.

Then, the neural networks (2) is transformed to{
ẋ(t) = −Ax(t) +B1f(y(t)) +B2f(y(t− τ(t))),

ẏ(t) = −Cy(t) +D1g(x(t)) +D2g(x(t− σ(t))),
(5)

where f(y(t)) = [f1(y1(t)), · · · , fm(ym(t))]T , g(x(t)) =
[g1(x1(t)), · · · , gn(xn(t))]T , fj(yj(t)) = f̃j(yj(t) + v∗) −
f̃j(v

∗), gi(xi(t)) = g̃i(xi(t) + u∗)− g̃i(u
∗).

According to the Assumption 2.1, one can obtain that

l−j ≤ fj(a)

a
≤ l+j , fj(0) = 0, j = 1, · · · ,m, (6)

k−i ≤ gi(a)

a
≤ k+i , gi(0) = 0, i = 1, · · · , n. (7)

Assumption 2.3 Considering the information of probability
distribution of the time-delays τ(t), σ(t) are defined

Prob
{
τ(t) ∈ [0, τ1]

}
= α0, Prob

{
τ(t) ∈ (τ1, τ2]

}
= 1− α0,

Prob
{
σ(t) ∈ [0, σ1]

}
= β0, Prob

{
σ(t) ∈ (σ1, σ2]

}
= 1− β0,

where 0 ≤ α0 ≤ 1, 0 ≤ β0 ≤ 1 are constants.

Therefore, the stochastic variables α(t), β(t) can be defined
as

α(t) =

{
1, τ(t) ∈ [0, τ1],

0, τ(t) ∈ (τ1, τ2]
β(t) =

{
1, σ(t) ∈ [0, σ1],

0, σ(t) ∈ (σ1, σ2],
(8)

with its probabilities Prob{α(t) = 1} = α0, Prob{β(t) =
1} = β0, Prob{α(t) = 0} = 1−α0, Prob{β(t) = 0} = 1−β0.

From Assumption 2.3, it is easy to see that E{α(t)−α0} =
0, E{(α(t) − α0)

2} = α0(1 − α0), E{β(t) − β0} = 0, and
E{(β(t) − β0)

2} = β0(1 − β0). Now, we introduce time-
varying delays τ1(t), τ2(t), σ1(t) and σ2(t) such that

τ(t) =

{
τ1(t), τ(t) ∈ [0, τ1],

τ2(t), τ(t) ∈ (τ1, τ2]

σ(t) =

{
σ1(t), σ(t) ∈ [0, σ1],

σ2(t), σ(t) ∈ (σ1, σ2].
(9)

By using the new functions τ1(t), τ2(t), σ1(t) σ2(t) and
stochastic variables α(t), β(t), the system (5) can be written
as⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ(t) = −Ax(t) +B1f(y(t)) + α(t)B2f(y(t− τ1(t)))

+ (1− α(t))B2f(y(t− τ2(t))),

ẏ(t) = −Cy(t) +D1g(x(t)) + β(t)D2g(x(t− σ1(t)))

+ (1− β(t))D2g(x(t− σ2(t))),

(10)

which is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = −Ax(t) +B1f(y(t)) + α0B2f(y(t− τ1(t)))

+(1− α0)B2f(y(t− τ2(t))) + (α(t)− α0)
[
B2f(y(t− τ1(t)))

−B2f(y(t− τ2(t)))
]
,

ẏ(t) = −Cy(t) +D1g(x(t)) + β0D2g(x(t− σ1(t)))

+(1− β0)D2g(x(t− σ2(t))) + (β(t)− β0)
[
D2g(x(t− σ1(t)))

−D2g(x(t− σ2(t)))
]
.

III. MAIN RESULTS

For representation convenience, we introduce the
following notations: L1 = diag{l−1 l+1 , l−2 l

+
2 , · · · , l−ml+m, },

L2 = diag
{

l−1 +l+1
2 ,

l−2 +l+2
2 , · · · , l−m+l+m

2

}
, L− =

diag{l−1 , l−2 , · · · , l−m}, L+ = diagdiag{l+1 , l+2 , · · · , l+m},
K1 = diag{k−1 k+1 , k−2 k+2 , · · · , k−n k+n , }, K2 =

diag
{

k−
1 +k+

1

2 ,
k−
2 +k+

2

2 , · · · , k−
n +k+

n

2

}
, K− =

diag{k−1 , k−2 , · · · , k−n }, K+ = diagdiag{k+1 , k+2 , · · · , k+n }.
Now, a new delay-dependent stability analysis of delayed

system (11) is given in the following theorem.
Theorem 3.1 The system (11) is globally asymptotically stable
in the mean square if there exist positive definite symmetric
matrices P1 > 0, P2 > 0, Ql > 0, Rl > 0 (l = 1, · · · , 4)
positive diagonal matrices Λ1,Λ2,Δ1,Δ2,Wr (r = 1, · · · , 6)
and real matrices Sa(a = 1, · · · , 4) of appropriate dimensions,
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such that the following LMIs hold:

⎡
⎢⎢⎢⎢⎣

Ξ Γ1R1 Γ2R1 Γ3R2 Γ4R2

∗ −R1 0 0 0
∗ ∗ −R1 0 0
∗ ∗ ∗ −R2 0
∗ ∗ ∗ ∗ −R2

⎤
⎥⎥⎥⎥⎦ < 0,

[
R1 S1

∗ R1

]
≥ 0,

[
R2 S2

∗ R2

]
≥ 0,[

R3 S3

∗ R3

]
≥ 0,

[
R4 S4

∗ R4

]
≥ 0, (11)

where Ξ16×16with entries : Ξ1,1 = −P1A − ATP1 + Q1 +
Q2 − R1 + 2K−TΛ1A − 2K+TΛ2A − K1W4, Ξ1,3 = S1,
Ξ1,7 = R1 − S1, Ξ1,11 = −ATΛT

1 +K2W4, Ξ1,12 = P1B1 −
K−TΛ1B1 + K+TΛ2B1, Ξ1,15 = α0[P1B2 − K−TΛ1B2 +
K+TΛ2B2], Ξ1,16 = (1 − α0)[P1B2 − K−TΛ1B2 +
K+TΛ2B2], Ξ2,2 = −P2C − CTP2 + Q3 + Q4 − R3 +
2L−TΔ1C−2L+TΔ2C−L1W1, Ξ2,5 = S3, Ξ2,9 = R3−S3,
Ξ2,11 = P2D1−L−TΔ1D1+L

+TΔ2D1, Ξ2,12 = −CTΔT
1 +

CTΔT
2 +L2W1, Ξ2,13 = β0(P2D2−L−TΔ1D2+L

+TΔ2D2),
Ξ2,14 = (1 − β0)[P2D2 − L−TΔ1D2 + L+TΔ2D2], Ξ3,3 =
−Q1−R1−R2, Ξ3,4 = S2, Ξ3,7 = R1−ST

1 , Ξ3,8 = R2−S2,
Ξ4,4 = −Q2−R2, Ξ4,8 = R2−ST

2 , Ξ5,5 = −Q3−R3−R4,
Ξ5,6 = S4, Ξ5,9 = R3−ST

3 , Ξ5,10 = R4−S4, Ξ6,6 = −Q4−
R4, Ξ6,10 = R4 − ST

4 , Xi7,7 = −2R1 + S1 + ST
1 −K1W5,

Ξ7,13 = K2W5, Ξ8,8 = −2R2 + S2 + ST
2 −K1W6, Ξ8,14 =

K2W6, Xi9,9 = −2R3 + S3 + ST
3 − L1W2, Ξ9,15 = L2W2,

Ξ10,10 = −2R4 + S4 + ST
4 − L1W3, Ξ10,16 = L2W3,

Ξ11,11 = −W4, Ξ11,12 = Λ1B1 +DT
1 Δ

T
1 −DT

1 Δ
T
2 , Ξ11,15 =

α0Λ1B2, Ξ11,16 = (1 − α0)Λ1B2, Ξ12,12 = −W1, Ξ12,13 =
β0(Δ1D2 − Δ2D2), Ξ12,14 = (1 − β0)(Δ1D2 − Δ2D2),
Ξ13,13 = −W5, Ξ14,14 = −W6, Ξ15,15 = −W2, Ξ16,16 =

−W3, Γ1 =
[
− A 0...0︸︷︷︸

10

B1 0 0 α0B2 (1 − α0)B2

]T
,

Γ2 =
[
0...0︸︷︷︸
14

√
α0(1− α0)B2 − √

α0(1− α0)B2

]T
,

Γ3 =
[
0 − C 0...0︸︷︷︸

8

D1 0 β0D2 (1 − β0)D2

]T
,

Γ4 =
[
0...0︸︷︷︸
12

√
β0(1− β0)D2 − √

β0(1− β0)D2 0 0
]T

,

R1 = σ2
1R1 + (σ2 − σ1)

2R2, R2 = τ21R3 + (τ2 − τ1)
2R4.

Proof. Consider the following Lyapunov-Krasovskii functional

V (t) = V1(t) + V2(t) + V3(t) + V4(t), (12)

where

V1(t) = xT (t)P1x(t) + yT (t)P2y(t),

V2(t) =

∫ t

t−σ1

xT (s)Q1x(s)ds+

∫ t

t−σ2

xT (s)Q2x(s)ds

+

∫ t

t−τ1

yT (s)Q3y(s)ds+

∫ t

t−τ2

yT (s)Q4y(s)ds,

V3(t) = σ1

∫ 0

−σ1

∫ t

t+θ

ẋT (s)R1ẋ(s)dsdθ

+(σ2 − σ1)

∫ −σ1

−σ2

∫ t

t+θ

ẋT (s)R2ẋ(s)dsdθ

+τ1

∫ 0

−τ1

∫ t

t+θ

ẏT (s)R3ẏ(s)dsdθ

+(τ2 − τ1)

∫ −τ1

−τ2

∫ t

t+θ

ẏT (s)R4ẏ(s)dsdθ

V4(t) = 2
n∑

i=1

(
λ1i

∫ xi(t)

0

(gi(s)− k−i s)ds

+λ2i

∫ xi(t)

0

(k+i s− gi(s))ds
)

+2

m∑
j=1

(
δ1j

∫ yj(t)

0

(fj(s)− l−j s)ds

+δ2j

∫ yj(t)

0

(l+j s− fj(s))ds
)
.

Define the infinitesimal operator L of V (t) as in [11], we have

LV (t) ≤ LV1(t) + LV2(t) + LV3(t) + LV4(t), (13)

where LV1(t) = 2xT (t)P1ẋ(t) + 2yT (t)P2ẏ(t),
LV2(t) = xT (t)Q1x(t) − xT (t − σ1)Q1x(t − σ1) +
xT (t)Q2x(t) − xT (t − σ2)Q2x(t − σ2) + yT (t)Q3y(t) +
yT (t)Q4y(t)−yT (t−τ1)Q3y(t−τ1)−yT (t−τ2)Q4y(t−τ2),
LV3(t) = ẋT (t){σ2

1R1 + (σ2 − σ1)
2R2}ẋ(t) −

σ1
∫ t

t−σ1
ẋT (s)R1ẋ(s)ds− (σ2−σ1)

∫ t−σ1

t−σ2
ẋT (s)R2ẋ(s)ds+

ẏT (t){τ21R3+(τ2−τ1)2R4}ẏ(t)− τ1
∫ t

t−τ1
ẏT (s)R3ẏ(s)ds−

(τ2 − τ1)
∫ t−τ1
t−τ2

ẏT (s)R4ẏ(s)ds, LV4(t) = 2[g(x(t)) −
K−x(t)]TΛ1ẋ(t)+2[K+x(t)−g(x(t))]TΛ2ẋ(t)+2[f(y(t))−
L−y(t)]TΔ1ẏ(t) + 2[L+y(t)− f(y(t))]TΔ2 ˙

Remark 3.2 Recently, the problem of stability analysis
of BAM neural networks with time-varying delays have
been reported in [6]-[8]. In this paper, we have provided a
delay-dependent condition to ensure the global asymptotic
stability of BAM neural networks with probabilistic time-
varying delays. The global stability criterion is derived by
using suitable Lyapunov-Krasovskii functional, Jensen’s
inequality and some inequality techniques. It is worth noting
that in contrast to existing literature, the derived stability
criteria in this paper is dependent on the upper bound of the
probabilistic time-varying delays.

IV. NUMERICAL EXAMPLE

In this section, a numerical example is provided along with
simulation results to illustrate the potential benefits and effec-
tiveness of the developed method for BAM neural networks.

Consider a third-order delayed BAM neural network (11)

y(t).
The rest of proof is omitted.
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with the following parameters

A = diag{3.1, 3.5, 3.8}, B1 =

⎡
⎣ 1 0 −1

−1 0 1
0 0.6 1.3

⎤
⎦ ,

B2 =

⎡
⎣ 1.2 0 1.2

−1.2 0 0.7
0.5 −0.5 0

⎤
⎦ ,

C = diag{2.5, 2, 2.9}, D1 =

⎡
⎣ 0.5 −1 0

−0.7 1 0.8
1 0 −0.4

⎤
⎦ ,

D2 =

⎡
⎣ 0.5 0 0

0 0.5 0
0 0 0.5

⎤
⎦ ,

and the activation functions are taken as follows:

f(y(t)) = tanh y(t), g(x(t)) = tanhx(t).

Further, it satisfies Assumption 2.1 with k−b = l−b = 0
and k+b = l+b = 1 (b = 1, 2, 3). Thus, we can get the
following parameters: K1 = L1 = diag{0, 0, 0}, K2 =
L2 = diag{0.5, 0.5, 0.5}, K− = L− = diag{0, 0, 0},
K+ = L+ = diag{1, 1, 1}. Let τ1 = σ1 = 1, τ2 = σ2 =
1.49, α0 = β0 = 0.25 and solving the LMIs in Theorem
3.1 in aid of MATLAB LMI Control Tool box, it can be
easily confirmed that the LMIs are feasible. Here note that
we are given only few feasible matrices of LMIs (12)-(13)
for page limitation. The Fig. 1 show the state trajectories of
the dynamical system converge to the zero equilibrium point
with different initial conditions. Therefore, the BAM neural
networks (11) is robustly globally asymptotically stable in the
mean square sense.

V. CONCLUSION

In this paper, we have dealt with the delay-distribution
dependent stability criteria for BAM neural networks with
time-varying delays. By establishing a stochastic variable
with Bernoulli distribution, the information of probabilistic
time-varying delay is transformed into the deterministic time-
varying delay with stochastic parameters. Based on a appro-
priate Lyapunov-Krasovskii functional and some inequality
techniques, a delay-dependent stability criteria for BAM neural
networks have been derived. Finally, a numerical example has
been given to show the effectiveness and superiority of the
proposed results.
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Fig. 1. state trajectories of system (11) with different initial conditions.
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