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Abstract—In this paper, parallelism in the solution of Ordinary 
Differential Equations (ODEs) to increase the computational speed is 
studied. The focus is the development of  parallel  algorithm of the two 
point Block Backward Differentiation Formulas (PBBDF) that can 
take advantage of the parallel architecture in computer technology. 
Parallelism is obtained by using Message Passing Interface (MPI). 
Numerical results are given to validate the efficiency of the PBBDF 
implementation as compared to the sequential implementation.  

 
Keywords—Ordinary differential equations, parallel. 

I.  INTRODUCTION 

E shall consider parallel Block Backward Differentiation 
Formulas (PBBDF) for the numerical solution of initial 
value problems (IVPs) for the first order Ordinary 

Differential Equations (ODEs) of the form 
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where mRmRRf →×: . For all [ ]Xx ,0∈ , 

( ) ( ) xyLzxfyxf −≤− ,, , L is a Lipschitz constant. 

 
Most of the existing numerical methods  for solving  (1) are 

sequential in nature. Various approaches to solve (1) using 
multiple processor computer system with emphasis on reduction 
the computation time is due to the recent advances in computer 
technology. Many researchers develop or modified existing 
numerical methods to fully utilize the parallel architecture so 
that some of the computations can be executed simultaneously 
on multiple processor computer system.  Generally, parallelism 
can be achieved by partitioning the tasks across the methods or 
across the system of equations.  Parallel block methods have 
been proposed by many researchers to  
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speed up the integration of (1). Some of the earlier works on 
parallelism on ODEs are found in Gear [3], Bellen and Zennaro 
[1], Franklin [4], and Chu and Hamilton [2] to name a few.  In  
[3] parallelism is classified as parallellism by partitioning the 
tasks either “across the method” or “across the systems of 
equations”. [1] introduced parallelism across the time which 
means that each processor evaluates f for different values of x. 
The paper is organized as follows. The  PBBDF method is 
presented in Section II. In Section III, a detailed implementation 
of the PBBDF method using Message Passing Interface (MPI) 
is given. Section IV provides numerical result to validate the  
efficiency of the parallel algorithm of the PBBDF method. The 
conclusions are given in Section V. 

II.   THE BLOCK BACKWARD DIFFERENTIATION 

FORMULAS  

In this section, we reviewed a class of block multistep 
methods proposed by Ibrahim et. al in [6] which is called Block 
Backward  Differentiation Formulas for solving stiff ODEs. The 
method given in [6] will compute the solutions of Initial Value 
Problems (IVPs) at two points simultaneously on the x-axis ,i.e. 1ny +  

and 2ny + . The solver  start with constant step size which is 

formulated as 
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The step size choosing strategy is based on the estimate of the 

local truncation error (LTE). The step is accepted if the LTE 
compared with the prescribed tolerance limit, TOL satisfy 

TOLLTE <  and rejected otherwise. Denoting tolerance by ε, 

the next step size newh  is computed by                                         
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where c is the safety factor and p is the order of the PBBDF 
method. For our code, we take the safety factor as 0.8. 

The next step size is increased by a factor of 1.6 to speed up 
the computation. The PBBDF solver with the increased step size 
1.6h is formulated as 
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(3) 
 

If the LTE > TOL, the step is rejected, the previous step will 
be repeated and computed with halved the step size.  The 
PBBDF method when the step size is halved is given by 
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The formulas given in (2), (3) and (4) are in the similar form 

of the standard Backward Differentiation Formula (BDF). The 
clear advantage of PBBDF method is that all the coefficients 
will be stored with automatic control of the step size for the 
purpose of optimizing performance in terms of precision and 
computation time but yet preserving the characteristic of the 
variable step size. No differentiation coefficients need to be 
calculated at each step since the coefficients of the y values are 
stored. Furthermore, in the PBBDF method, two solution i.e. 

1+ny  and 2+ny  values are computed simultaneously. This will 

lead to a quicker execution time. See [6] for the details of the 
derivation of the PBBDF and verification of the method.  
We rewrite formulas (2), (3) and (4) in the general form  
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with 1ψ  and 2ψ  are the backvalues.  

 
Equation (5) in matrix-vector form is given by, 
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From (6)        
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Applying Newton iteration to the matrix above by letting 

                        ( ) 0ˆ =−−−= ξhBFYAIF  

Therefore, the Newton-iteration form for the BBDF method is 
given as 
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where ( ) ( )( )i
nnY

Y

F
hBAI 2,1 ++∂

∂−−  is the Jacobian matrix of F̂  

with respect to y.  To reduce the amount of computations, the 
Jacobian matrix is updated when there is a consecutive step 
failure in the integration i.e. LTE > ε. The starting values were 
computed from the exact solution if available or by using the 
Euler method. 

III.  PARALELL IMPLEMENTATION OF BBDF 

In this section, we discuss the parallel implementation of the 
BBDF method which allows the distribution of tasks amongst 
the available processors in order to reduce the execution time. 
Simultaneous approximations for several steps are obtained using 
the Message Passing Interface (MPI) library which runs on a 
High Performance Computer (HPC). These parallel 
implementations are based on the master – slave approach. The 
computation occurs only in the slaves while the master 
broadcast all the data needed by the slaves. The subprogram, 
JAC1, calculates the Newton-iteration for the PBBDF method. 
The matrix multiplication is given as 
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One way of performing the multiplication in parallel is to 

have each processor compute different parts of the product. 

Consider matrix ikA , kjB and 
kj

n
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i) First, the matrix A is partition by rows and B by columns: 
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ii) The matrix A is striped row-wise among the slaves  

nPPP ,...,, 21   so that each processor is  assigned to one row. In 

order, to avoid any processor been idle, the processor that finish 
the computation early, will automatically take the next row. 
Each process in row i will need all the values in column j. 
Therefore, processor 0P ,  referred as master will broadcast the 

entire matrix B of size jk ×  to all the slaves nPPP ,...,, 21  as 

needed prior to the start of the multiplication. Take note that the 
computation occurs only in the slaves while the master 
broadcast all the data needed by the slaves.   

IV.  NUMERICAL RESULTS   

Problem 1 : Brusselator systems  
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Brusselator systems is a nonlinear partial differential equation 
which arise in the modeling of chemical reaction-diffusion 
which is of the form 
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with [ ]1,0∈x , 0≥α ,  A and B are the constant parameters. In 
this paper, we consider  A = 1, B = 3,α  =1/50 and boundary 
conditions for u and v which are given by  
 
                         ( ) ( )tutu ,11,0 == , ( ) ( )tvtv ,13,0 ==  

                         ( ) ( )xxu π2sin10, += , ( ) 30, =xv . 

 
By applying the method of lines, we obtain a system of  
differential equations to be solved on the interval 100 ≤≤ x . 
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Equation (7)  is use to illustrate the performance of the 

PBBDF method. For more details of this example see Nicolis 
and Prigogine [7] and Prigogine and Lefever [8]. 
 
Problem 2:  
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N = number of equations, Initial values:  ( ) ( )ty 0,...0,10 =  

Interval : 200 ≤≤ x  
Source: Hull, T.E. et al. [5]. 

The numerical results are performed on Sunfire V1280 HPC. 
Parameters evaluated are the execution time, speedup and 
efficiency. The notations used in the tables take the following 
meaning, 
 

 pS    :   Speedup 

pE  : Efficiency 

EQN : Number of equations 
TIM
E 

: The execution time in seconds 

 
The speedup of a parallel algorithm is defined as 
 

                                                   p

s
p T

T
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where sT  is the execution time of  sequential algorithm using 

one processor and  pT  is the executime time by a parallel 

algorithm using p processors. The efficiency of the parallel 
algorithm denoted by pE  is defined as the ratio of speedup to 

the number of processors  

                                             
p

S
E

p
p =  

Theoretically, the value of efficiency is   10 ≤< pE . Table 1 

shows the speedup and efficiency for Problem 1 when run with 
different number of processors. 
 

TABLE I 
2P= 2 processor, 4P=4 processor, 6P= 6 processor 
8P= 8 processor 

 
 EQN 2P 4P 6P 8P 

pS  20 
60 
100 
 

0.876 
1.146 
1.158 

2.151 
3.381 
3.454 

2.987 
5.556 
5.712 

3.245 
7.434 
7.259 

pE  20 
60 
100 

0.438 
0.573 
0.579 

0.538 
0.845 
0.863 

0.498 
0.926 
0.952 

0.406 
0.929 
0.907 

 

 
Note that the speed up is approaching the linear speedup as 

the number of equations increased. 
Table 2a and 2b shows the speedup and efficiency for 

Problem 2 when run with different number of processors at 
difference tolerance. 
 

TABLE IIa: 210−=ε  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 N  NP   
    2   4   6   8 

 30 0.976 2.275 3.045 3.262 
 50 1.094 3.149 5.052 6.621 
 100 1.116 3.303 5.409 6.868 
Sp 150 1.124 3.342 5.546 7.460 
 200 1.130 3.384 5.604 7.295 
 300 0.976 2.275 3.045 3.262 
      
 30 0.488 0.569 0.508 0.408 
 50 0.547 0.787 0.842 0.828 
Ep 100 0.558 0.826 0.902 0.859 
 150 0.562 0.836 0.924 0.933 
 200 0.565 0.846 0.934 0.912 
 300 0.488 0.569 0.508 0.408 
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TABLE  IIb: 610−=ε  
 

 30 0.985 2.296 3.135 3.343 
 50 1.095 3.162 5.106 6.257 
Sp 100 1.116 3.319 5.425 6.902 
 150 1.120 3.343 5.549 7.190 
 200 1.130 3.375 5.604 7.004 
 300 0.985 2.296 3.135 3.343 
      
 30 0.492 0.574 0.523 0.418 
 50 0.547 0.790 0.851 0.782 
Ep 100 0.558 0.830 0.904 0.863 
 150 0.560 0.836 0.925 0.899 
 200 0.565 0.844 0.934 0.876 
 300 0.492 0.574 0.523 0.418 

 

V. CONCLUSION   

In this paper, we have presented the parallel implementation 
of the PBBDF method for solving large systems of ordinary 
differential equations. The parallel implementation of the 
PBBDF method show significance gains over the sequential 
implementation. The resulting speed up validates the efficiency 
of the PBBDF method as the number of equations increased.  
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