
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:4, 2010

454

Abstract—In this paper, parallelism in the solution of Ordinary
Differential Equations (ODEs) to increase the computational speed is
studied. The focus is the development of parallel algorithm of the two
point Block Backward Differentiation Formulas (PBBDF) that can
take advantage of the parallel architecture in computer technology.
Parallelism is obtained by using Message Passing Interface (MPI).
Numerical results are given to validate the efficiency of the PBBDF
implementation as compared to the sequential implementation.

Keywords—Ordinary differential equations, parallel.

I. INTRODUCTION

E shall consider parallel Block Backward Differentiation
Formulas (PBBDF) for the numerical solution of initial
value problems (IVPs) for the first order Ordinary

Differential Equations (ODEs) of the form

() []

()







=

∈=

00

,0,,

yy

Xxyxf
dx

dy
 (1)

where mRmRRf →×: . For all []Xx ,0∈ ,

() () xyLzxfyxf −≤− ,, , L is a Lipschitz constant.

Most of the existing numerical methods for solving (1) are

sequential in nature. Various approaches to solve (1) using
multiple processor computer system with emphasis on reduction
the computation time is due to the recent advances in computer
technology. Many researchers develop or modified existing
numerical methods to fully utilize the parallel architecture so
that some of the computations can be executed simultaneously
on multiple processor computer system. Generally, parallelism
can be achieved by partitioning the tasks across the methods or
across the system of equations. Parallel block methods have
been proposed by many researchers to

Zarina Bibi, I. is with the Institute of Mathematical Research, Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor, MALAYSIA (corresponding
author phone: 603-8946-6861; fax: 603-8943-7958; e-mail:
zarinabb@science.upm.edu.my).

Khairil Iskandar, O. is with the University Technology MARA, 40450 Shah
Alam, Selangor, MALAYSIA. (e-mail: khairil@tmsk.uitm.edu.my).

speed up the integration of (1). Some of the earlier works on
parallelism on ODEs are found in Gear [3], Bellen and Zennaro
[1], Franklin [4], and Chu and Hamilton [2] to name a few. In
[3] parallelism is classified as parallellism by partitioning the
tasks either “across the method” or “across the systems of
equations”. [1] introduced parallelism across the time which
means that each processor evaluates f for different values of x.
The paper is organized as follows. The PBBDF method is
presented in Section II. In Section III, a detailed implementation
of the PBBDF method using Message Passing Interface (MPI)
is given. Section IV provides numerical result to validate the
efficiency of the parallel algorithm of the PBBDF method. The
conclusions are given in Section V.

II. THE BLOCK BACKWARD DIFFERENTIATION

FORMULAS

In this section, we reviewed a class of block multistep
methods proposed by Ibrahim et. al in [6] which is called Block
Backward Differentiation Formulas for solving stiff ODEs. The
method given in [6] will compute the solutions of Initial Value
Problems (IVPs) at two points simultaneously on the x-axis ,i.e. 1ny +

and 2ny + . The solver start with constant step size which is

formulated as

2 1 1 2 1

2 1 1 2 2

1 3 9 3 6

10 5 5 10 5
3 16 36 48 12

25 25 25 25 25

n n n n n n

n n n n n n

y y y y y hf

y y y y y hf

− − + + +

− − + + +

− + − + + =

− + − + =
 (2)

The step size choosing strategy is based on the estimate of the

local truncation error (LTE). The step is accepted if the LTE
compared with the prescribed tolerance limit, TOL satisfy

TOLLTE < and rejected otherwise. Denoting tolerance by ε,

the next step size newh is computed by

() ()
p

p
nyp

nyoldhcnewh

11

2
1

2 











 −
+−+

+××= ε

where c is the safety factor and p is the order of the PBBDF
method. For our code, we take the safety factor as 0.8.

The next step size is increased by a factor of 1.6 to speed up
the computation. The PBBDF solver with the increased step size
1.6h is formulated as

Parallel Block Backward Differentiation
Formulas For Solving Large Systems of

Ordinary Differential Equations

Zarina Bibi, I., Khairil Iskandar, O.

W

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:4, 2010

455

2 1 1 2 1

2 1 1 2 2

208 6912 13689 351 117

775 5425 6200 1736 124
12544 53248 74529 2548 546

29875 29875 29875 1195 1195

n n n n n n

n n n n n n

y y y y y hf

y y y y y hf

− − + + +

− − + + +

− + − + + =

− + − + =

(3)

If the LTE > TOL, the step is rejected, the previous step will
be repeated and computed with halved the step size. The
PBBDF method when the step size is halved is given by

2 1 1 2 1

2 1 1 2 2

3 25 225 75 15

128 128 128 128 8
2 3 18 192 12

115 23 23 115 23

n n n n n n

n n n n n n

y y y y y hf

y y y y y hf

− − + + +

− − + + +

− + − + + =

− + − + =
 (4)

The formulas given in (2), (3) and (4) are in the similar form

of the standard Backward Differentiation Formula (BDF). The
clear advantage of PBBDF method is that all the coefficients
will be stored with automatic control of the step size for the
purpose of optimizing performance in terms of precision and
computation time but yet preserving the characteristic of the
variable step size. No differentiation coefficients need to be
calculated at each step since the coefficients of the y values are
stored. Furthermore, in the PBBDF method, two solution i.e.

1+ny and 2+ny values are computed simultaneously. This will

lead to a quicker execution time. See [6] for the details of the
derivation of the PBBDF and verification of the method.
We rewrite formulas (2), (3) and (4) in the general form





++=
++=

+++

+++

222122

111211

ψαθ
ψαθ

nnn

nnn

hfyy

hfyy
 (5)

with 1ψ and 2ψ are the backvalues.

Equation (5) in matrix-vector form is given by,









+















=


























−








+

+

+

+

2

1

2

1

2

1

2

1

2

1

0

0

0

0

10

01

ψ
ψ

α
α

θ
θ

n

n

n

n

f

f
h

y

y

 (6)
From (6)
 () ξ+=− hBFYAI

 where

 







=

10

01
I , 








=

+

+

2

1

n

n

y

y
Y , 








=

0

0

2

1

θ
θ

A ,

 







=

2

1

0

0

α
α

B , 







=

+

+

2

1

n

n

f

f
F and 








=

2

1

ψ
ψ

ξ

Applying Newton iteration to the matrix above by letting

 () 0ˆ =−−−= ξhBFYAIF

Therefore, the Newton-iteration form for the BBDF method is
given as

() () () ()() () () ()()[]ξ−−−






∂
∂−−−=− ++++

−

++++
+

++
i

nn
i

nn
i

nn
i

nn
i

nn YhBFYAIY
Y

F
hBAIYY 2,12,1

1

2,12,1
1

2,1

where () ()()i
nnY

Y

F
hBAI 2,1 ++∂

∂−− is the Jacobian matrix of F̂

with respect to y. To reduce the amount of computations, the
Jacobian matrix is updated when there is a consecutive step
failure in the integration i.e. LTE > ε. The starting values were
computed from the exact solution if available or by using the
Euler method.

III. PARALELL IMPLEMENTATION OF BBDF

In this section, we discuss the parallel implementation of the
BBDF method which allows the distribution of tasks amongst
the available processors in order to reduce the execution time.
Simultaneous approximations for several steps are obtained using
the Message Passing Interface (MPI) library which runs on a
High Performance Computer (HPC). These parallel
implementations are based on the master – slave approach. The
computation occurs only in the slaves while the master
broadcast all the data needed by the slaves. The subprogram,
JAC1, calculates the Newton-iteration for the PBBDF method.
The matrix multiplication is given as

 ()()








∂
∂

++
i

nnY
Y

F
hB 2,1 .

One way of performing the multiplication in parallel is to

have each processor compute different parts of the product.

Consider matrix ikA , kjB and
kj

n

k
ikij BAC

p

∑
=

=
1

 .

i) First, the matrix A is partition by rows and B by columns:

 broadcast) thedo(master slaves)by (done

 ...

......

......

......

......

 ...

1

11211

1

11211

21

11211

���� ����� ������ ����� ������ ����� ��

CBA

c...c

...

...

...

c...cc

b...b

...

...

...

b...bb

aaa

aaa

iji

i

kjk

k

ikii

i



























=



























×



























ii) The matrix A is striped row-wise among the slaves

nPPP ,...,, 21 so that each processor is assigned to one row. In

order, to avoid any processor been idle, the processor that finish
the computation early, will automatically take the next row.
Each process in row i will need all the values in column j.
Therefore, processor 0P , referred as master will broadcast the

entire matrix B of size jk × to all the slaves nPPP ,...,, 21 as

needed prior to the start of the multiplication. Take note that the
computation occurs only in the slaves while the master
broadcast all the data needed by the slaves.

IV. NUMERICAL RESULTS

Problem 1 : Brusselator systems

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:4, 2010

456

Brusselator systems is a nonlinear partial differential equation
which arise in the modeling of chemical reaction-diffusion
which is of the form

()

2

2
2

2

2
2 1

x

v
vuBu

t

v

x

u
uBvuA

t

u

∂
∂+−=

∂
∂

∂
∂++−+=

∂
∂

α

α

with []1,0∈x , 0≥α , A and B are the constant parameters. In
this paper, we consider A = 1, B = 3,α =1/50 and boundary
conditions for u and v which are given by

 () ()tutu ,11,0 == , () ()tvtv ,13,0 ==

 () ()xxu π2sin10, += , () 30, =xv .

By applying the method of lines, we obtain a system of
differential equations to be solved on the interval 100 ≤≤ x .

() ()

() ()11
22

11
22

213

2141

+−

+−

+−++−=

+−++−+=

iiiiii
i

iiiiii
i

vvvNvuu
dt

dv

uuuNuvu
dt

du

α

α
 (7)

 with () ()tutu N 10 1 +== , () ()tvtv N 10 3 +== ,

() () () 30, 2sin10 =+= iii vxu π ,
1+

=
N

i
xi , Ni ,...,1= .

Equation (7) is use to illustrate the performance of the

PBBDF method. For more details of this example see Nicolis
and Prigogine [7] and Prigogine and Lefever [8].

Problem 2:













































































−
+−

−
−

−

=







































′

′
′

NN y

y

y

N

N

y

y

y

.

.

.

01

10

.

..

..

..

32

0...21

1

.

.

.

2

1

2

1

,

N = number of equations, Initial values: () ()ty 0,...0,10 =

Interval : 200 ≤≤ x
Source: Hull, T.E. et al. [5].

The numerical results are performed on Sunfire V1280 HPC.
Parameters evaluated are the execution time, speedup and
efficiency. The notations used in the tables take the following
meaning,

 pS : Speedup

pE : Efficiency

EQN : Number of equations
TIM
E

: The execution time in seconds

The speedup of a parallel algorithm is defined as

 p

s
p T

T
S =

where sT is the execution time of sequential algorithm using

one processor and pT is the executime time by a parallel

algorithm using p processors. The efficiency of the parallel
algorithm denoted by pE is defined as the ratio of speedup to

the number of processors

p

S
E

p
p =

Theoretically, the value of efficiency is 10 ≤< pE . Table 1

shows the speedup and efficiency for Problem 1 when run with
different number of processors.

TABLE I
2P= 2 processor, 4P=4 processor, 6P= 6 processor
8P= 8 processor

 EQN 2P 4P 6P 8P

pS 20
60
100

0.876
1.146
1.158

2.151
3.381
3.454

2.987
5.556
5.712

3.245
7.434
7.259

pE 20
60
100

0.438
0.573
0.579

0.538
0.845
0.863

0.498
0.926
0.952

0.406
0.929
0.907

Note that the speed up is approaching the linear speedup as

the number of equations increased.
Table 2a and 2b shows the speedup and efficiency for

Problem 2 when run with different number of processors at
difference tolerance.

TABLE IIa: 210−=ε

 N NP
 2 4 6 8

 30 0.976 2.275 3.045 3.262
 50 1.094 3.149 5.052 6.621
 100 1.116 3.303 5.409 6.868
Sp 150 1.124 3.342 5.546 7.460
 200 1.130 3.384 5.604 7.295
 300 0.976 2.275 3.045 3.262

 30 0.488 0.569 0.508 0.408
 50 0.547 0.787 0.842 0.828
Ep 100 0.558 0.826 0.902 0.859
 150 0.562 0.836 0.924 0.933
 200 0.565 0.846 0.934 0.912
 300 0.488 0.569 0.508 0.408

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:4, 2010

457

TABLE IIb: 610−=ε

 30 0.985 2.296 3.135 3.343
 50 1.095 3.162 5.106 6.257
Sp 100 1.116 3.319 5.425 6.902
 150 1.120 3.343 5.549 7.190
 200 1.130 3.375 5.604 7.004
 300 0.985 2.296 3.135 3.343

 30 0.492 0.574 0.523 0.418
 50 0.547 0.790 0.851 0.782
Ep 100 0.558 0.830 0.904 0.863
 150 0.560 0.836 0.925 0.899
 200 0.565 0.844 0.934 0.876
 300 0.492 0.574 0.523 0.418

V. CONCLUSION

In this paper, we have presented the parallel implementation
of the PBBDF method for solving large systems of ordinary
differential equations. The parallel implementation of the
PBBDF method show significance gains over the sequential
implementation. The resulting speed up validates the efficiency
of the PBBDF method as the number of equations increased.

ACKNOWLEDGMENT

This research is supported by Institute of Mathematical
Research (INSPEM, University Putra Malaysia (UPM) under
Fundamental Research Grant Scheme (FRGS).

REFERENCES

[1] Bellen, A. and Zennaro, M. (1989), Parallel algorithms for initial value
problems, J. Comput. Appl. Math., 25,pp. 341-350.

[2] Chu, M. & Hamilton, H. (1987), Parallel solution of ODEs by
multi-block methods, SIAM J. Sci. Statist. Comput., 8, pp. 342-353.

[3] Gear, C.W. (1987), Parallel Methods For Ordinary Differential
Equations, Report No. UIUCDCS-R-87-1369.

[4] Franklin, M., (1978). Parallel solution of ordinary differential
equations, IEEE Trans. Comput., C-27, pp. 413-420.

[5] Hull, T.E., Enright, W.H., Fellen, B.M. and Sedgwick, A.E. (1972),
Comparing Numerical Methods for Ordinary Differential Equations.
Siam J. Num. Anal. 9(4):603-637.

[6] Ibrahim,Z.B., Suleiman, M.B., Othman, K.I., (2008). Fixed Coefficients
Block Backward Differentiation Formulas for the Numerical Solution of
Stiff Ordinary Differential Equations, European Journal of Scientific
Research, Vol. 21 No.3, pp. 508-520.

[7] Nicolis G, Prigogine I. (1977), Self-organization in non-equilibrium
systems. New York: Wiley-Interscience.

[8] Prigogine I, Lefever R. (1968), Symmetries breaking instabilities in
dissipative systems II. Journal of Physical Chemistry; 48: 1695-1700.

 N NP
 2 4 6 8

