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Abstract—Independent component analysis (ICA) in the 

frequency domain is used for solving the problem of blind source 
separation (BSS). However, this method has some problems. For 
example, a general ICA algorithm cannot determine the permutation 
of signals which is important in the frequency domain ICA. In this 
paper, we propose an approach to the solution for a permutation 
problem. The idea is to effectively combine two conventional 
approaches. This approach improves the signal separation 
performance by exploiting features of the conventional approaches. 
We show the simulation results using artificial data. 
 

Keywords—Blind source separation, Independent component 
analysis, Frequency domain, Permutation ambiguity. 

I.  INTRODUCTION  
LIND source separation (BSS) [1], [4] is an approach to 
estimating original source signals by using only the 

information of the mixed signals observed at a sensor array. 
This technique is applicable to the realization of the 
noise-robust speech recognition, the hearing aid which can 
enhance the specific sound that a user wants to listen, and so on. 
Independent component analysis (ICA) [4] is one of the 
statistical analysis methods and identifies the independent 
components in the random variables. ICA can be used for BSS 
of linear (instantaneous) mixtures. To achieve BSS of 
convolutive mixtures, several methods have been proposed [1], 
[2], [3], [5]. Although there are a number of applications for 
BSS to mixed speech signals in realistic acoustical 
environments, the separation performance is still not good 
enough [6]. 

In this paper, we propose an approach to solving a 
permutation problem of frequency domain ICA (FDICA) for 
BSS. In FDICA, it is necessary to solve the problem of 
ambiguity of scaling factors and permutation. Several methods 
have already been proposed for such problems [1], [2] but each 
of them has imperfection. For example, the method [1] is 
impossible to estimate the permutation when the envelopes of 
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source signals are similar. On the other hand, the method [2] is 
not dependent on the envelope of source signals. The method 
[1] performs better than the method [2] when the envelopes of 
source signals are different from each other. To improve the 
performance, we propose a new method for combining the 
features of these methods. 

The following chapter explains the formulation of the 
general ICA problems and FDICA. In Section III, the algorithm 
to solve scaling and permutation problems is explained. In 
Section IV, the source separation experiments are performed 
and the simulation results are illustrated. Finally, Section V 
shows the conclusion of  this paper. 

II.   INDEPENDENT COMPONENT ANALYSIS 

A.  Statement of the Problem 
In general, the liner mixture model of ICA is given by the 

following equation: 
 

( ) ( )tt sAx ⋅= ,                                     (1) 
 
where ( ) [ ]1 2( ), ( ), , ( ) T

nt x t x t x t=x K  is a set of observed 
signals, A is an unknown mixing matrix, and 

( ) [ ]1 2( ), ( ), , ( ) T
mt s t s t s t=s K  is a set of source signals which is 

assumed to be mutually independent. The purpose of ICA is to 
find a separation matrix W so that the output signals 
 

( ) ( )t t= ⋅y W x ,                                (2) 
 
where ( ) [ ]1 2( ), ( ), , ( ) T

mt y t y t y t=y K  is mutually independent. 
However, there are still ambiguity of scaling factors and 
permutation of output signals because of lack of information 
about the amplitude and permutation of the source signals, that 
is, W is allowed to satisfy the following equation: 
 

( ) ( )tt xWy ⋅=  
( )t= ⋅ ⋅Q D s ,                                  (3) 
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where D is a diagonal matrix which represents scaling factors 
and Q is a permutation matrix. 

In the case of acoustical signals, the mixing model is 
expressed by the convolutive mixture as 

 
( ) ( ) ( )∑ −⋅=

τ

ττ tt sAx  

( ) ( )tsA ∗= τ ,                                  (4) 
 
where operator ∗  denotes convolution and A(τ) is an unknown 
mixing filter. In the convolutive mixture case, (2) is rewritten 
by using a separation filter W(τ) as 

 
( ) ( ) ( )tt xWy ∗= τ  

( )t= ⋅ ⋅Q D s ,                                   (5) 
 

B.  Frequency Domain Independent Component Analysis 
(FDICA) 

By using the short time Fourier transform (STFT), we can 
transpose the convolutive model to the instantaneous model 
with complex values as in the form 

 
( ) ( ) ( )ˆˆ ˆ, ,s st tω ω ω= ⋅x A s ,                       (6) 

 
where ( )ˆ , stωx  and ( )ˆ , stωs  denote STFT of ( )tx  and ( )ts , 

respectively and ( )ˆ ωA  denotes the discrete Fourier transform 

(DFT) of the mixing filter ( )τA . ( )ˆ , stωx , and ( )ˆ , stωs are 
often referred as spectrograms. For any fixed frequency ω in 
(6), ( )ˆ , stωx can be regarded as the linear mixture model. 
Therefore, we can apply ICA for the linear mixture model at 
each frequency independently. 

In FDICA, ambiguity of scaling factors and the permutation 
of output signals become problematic when time domain 
signals are reconstructed. 

We propose an approach to solving the permutation problem. 
For the scaling problem, the method presented in [1] is applied. 

III. ALGORITHM 

A.  Solving Scaling Problem 

When a separating matrix ( )ˆ ωW  is obtained from the 

spectrogram ( )ˆ , stωx , the corresponding independent 
components are given by: 

 
( ) ( ) ( )ˆˆ ˆ, ,s st tω ω ω=u W x . (7) 

 
Then we can obtain the scaling factor as 

 

( ) ( ) ( )1

0

ˆˆ ˆ, ; ,

0

s i st i u tω ω ω−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

v W
M

M

,                          (8) 

 
where ( )ˆ ,i su tω  denotes the i-th independent component of 

( )ˆ , stωu  and ( )ˆ , ;st iωv  denotes the i-th independent 
components observed at each sensor [1]. 

B.  Solving Permutation Problem 
The proposed method is to combines the features of two 

conventional techniques presented in [1], [2]. In this section, 
we review these methods briefly. 

1)  Method based on temporal structure of speech signals 
(MTS) 

This algorithm was proposed by Murata et al. [1], utilizes a 
property of speech signals, that is, signals are intrinsically 
non-stationary in a long range mainly because of amplitude 
modulation. 

Let us rewrite ( )ˆ ,i ss tω , i-th element of ( )ˆ , stωs  in (6): 
 

( ) ( ) ( ),ˆ ˆ, , i sj t
i s i ss t s t e φ ωω ω= ,                      (9) 

 
where ( )ˆ ,i ss tω  and ( ),i stφ ω  are an absolute value, a phase 

of source signals in time-frequency domain, respectively. Since 
source signals are mutually independent, they satisfy the 
following equations: 

 

( ) ( )( )ˆ ˆcorr , , , 0,i s j ss t s t i jω ω = ≠ ,                 (10) 

( ) ( )( )ˆ ˆcorr , , , 0, ,i s j ss t s t i jω ω ω ω′ ′= ≠ ≠ ,          (11) 

 
where 
 

( ) ( )( )ˆ ˆcorr , , ,i s j ss t s tω ω  

( ) ( )( ) ( ) ( )ˆ ˆ ˆ ˆ, , , ,i s j s i s j ss t s t s t s tω ω ω ω= ⋅ + ⋅ , (12) 

( ) ( )
1

1ˆ ˆ, ,
T

i s i s
s

s t s t
T

ω ω
=

= ∑ , (13) 

 
We assume that T is sufficiently large. On the other hand, for 
different frequency components corresponding to the same 
source signal, we can assume 
 

( ) ( )( )ˆ ˆcorr , , , 0,i s i ss t s tω ω ω ω′ ′≠ ≠ .           (14) 

 
Therefore, the correlation coefficient of their envelopes shown 
as 
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( ) ( )( )ˆ ˆ, , ,i s j sr s t s tω ω′  

( ) ( )( )
( ) ( )( ) ( ) ( )( )

ˆ ˆcorr , , ,

ˆ ˆ ˆ ˆcorr , , , corr , , ,

i s j s

i s i s j s j s

s t s t

s t s t s t s t

ω ω

ω ω ω ω

′
=

′ ′
,(15) 

 
may be available for estimating an appropriate combination of 
frequency elements. 

Then, let us define a moving average operator ε for 
estimating the envelope of time series as 

 

( ) ( )
1

1ˆ ˆ, ; , ;
2 1

s

s s

t M n

s j s
t t M j

t i v t i
M

ε ω ω
+

′ = − =

=
+ ∑ ∑v ,               (16) 

 
where M is a positive constant and ( )ˆ , ;j sv t iω  denotes the j-th 

element of ( )ˆ , ;st iωv . 
We solve the permutation problem by the sorting based on 

the correlation of envelopes as follows: 
1) Sort ω in order of independent components with the low 

correlation. This is done by sorting them in ascending 
order of similarity defined as 

 
( ) ( ) ( )( )ˆ ˆsim , ; , , ;s s

i j
r t i t jω ε ω ε ω

≠

= ∑ v v ,               (17) 

1 2sim( ) sim( ) sim( )Nω ω ω≤ ≤ ≤L .                   (18) 
 
2) For 1ω , assign ( )1ˆ , ;st iωv  to ( )1ˆ , ;st iωy  as follows: 
 

( ) ( )1 1ˆ ˆ, ; , ; , 1, ,s st i t i i nω ω= =y v K .                  (19) 
 
3) For kω , find a permutation ( )iσ  which maximizes the 

correlation between the envelope of kω  and the summed 
envelope from 1ω  through 1kω − . This is achieved by 
maximizing the sum of correlation coefficients 

 

( )( ) ( )
1

1 1

ˆ ˆ, ; , , ;
m k

k s j s
i j

r t i t iε ω σ ε ω
−

= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑v y ,               (20) 

 
for all the possible permutations of 1, ,i m= K . 

4) Assign the appropriate permutation to ( )ˆ , ;k st iωy : 
 

( ) ( )( )ˆ ˆ, ; , ; , 1, ,k s k st i t i i mω ω σ= =y v K .             (21) 

 
5) Go to 3) until k N= . 

As a result, we obtain separated spectrograms 
 

( )ˆ , ; , 1, ,k st i i mω =y K .                             (22) 
 

2)  Method based on relation of the mixing matrix at the 
adjacent frequencies (MRM) 

Alternative approach, which was proposed by Asano et al. 
[2], utilizes a relation of the location vectors in the mixing 
matrix at adjacent frequencies. The relation between the mixing 
matrices at frequencies kω  and 1−kω  are written as 
 

( ) ( ) ( )11
ˆ,ˆ

−− ⋅= kkkk ωωωω ATA                        (23) 
 
where ( )1,k kω ω −T  is a rotation matrix. Absolute values of 

mixing matrices ( )kωÂ  and ( )1
ˆ

−kωA  are assumed to be unity 
for the sake of simplicity. If the difference between two 
frequencies 1k kω ω ω −Δ = −  is sufficiently small, the relation 
can be written as 

 
( ) ( )1

ˆˆ
−≈ kk ωω AA , ( ) IT ≈−1, kk ωω ,                   (24) 

 
where I  is a unit matrix. Then, an angle between the location 
vectors is small. The location vector ( )ki ωâ  is obtained by the 

column vector in the mixing matrix ( )ωÂ  as follows: 
 

( ) ( ) ( ) ( )1 2
ˆ ˆ ˆ ˆmω ω ω ω= ⎡ ⎤⎣ ⎦A a a aL .               (25) 

 
( )ωiâ  is defined as 

 

( )
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
−

−

ni

i

j

j

i

e

e

ωτ

ωτ

ω M

1

â ,                                 (26) 

 
where ij ,τ  denotes the propagation time from the i-th source 
signal to the j-th sensor. A symbol iθ  is defined as the angle 
between ( )ˆi kωa  and ( )1ˆi kω −a . Then, iθ  is expected to be the 
smallest for the correct permutation. 

Based on the above discussion, the permutation problem is 
solved by minimizing the sum of the angels { }1, , mθ θK  
between the location vectors in the adjacent frequencies. An 
estimate of the mixing matrix can be obtained by the inverse of 
the separation matrix ( )ˆ ωW  as 
 

( ) ( )1ˆω ω−=A W% .                              (27) 
 
Let us define the mixing matrix multiplied by the arbitrary 
permutation matrix P as 
 

( ) ( )T Tω ω= ⋅A P A% .                           (28) 
 
The permutation ( )T ωPA%  exchanges the row vectors of 
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( )T ωA% . The column vectors of ( )ωA  are denoted as 

( ) ( ) ( )1 , , mω ω ω= ⎡ ⎤⎣ ⎦A a aK . The cosine of the angle iθ  

between the two vectors, ( )i kωa  and ( )1i kω −a , is defined as 
 

( ) ( )
( ) ( )

1

1

cos
H

i k i k
i H

i k i k

ω ω
θ

ω ω
−

−

=
⋅

a a
a a

.                     (29) 

 
By using this, the permutation matrix is determined as 
 

( )ˆ arg max F=
P

P P ,                           (30) 

 
where the cost function ( )F P  is defined as 
 

( )
1

1 cos
m

i
i

F
m

θ
=

= ∑P .                         (31) 

 
The above method assumes that the estimate of the mixing 

matrix ( )ωA%  is a good approximation of the true mixing 

matrix ( )ωA . Therefore, if ( )1kω −A%  is a bad approximation, 
we may fail to estimate the correct permutation at the frequency 

kω . 
To prevent this, the reference frequency is extended to the 

following frequency range: 
 

k l k klω ω ω− = − ⋅ Δ , for 1, ,l L= K .                   (32) 
 
The cost function (31) is calculated at all L frequencies within 
this range. Let us define the value of the cost function at 

k l k klω ω ω− = − ⋅ Δ  as ( ),F lP . Next, a confidence measure for 

( ),F lP  is considered. When the largest value of ( )max ,F lP  

closes to other cost functions ( ),F lP , it may be difficult to 
determine the correct permutation, and then the value of 

( ),F lP  is not reliable. Based on this assumption, the 
following confidence measure is defined: 
 

( ) ( ) ( )max , max ,C l F l F l
′∈Ω ∈Ω

= −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦P P
P P               (33) 

 
where Ω  denotes a set of all possible P  and ′Ω  denotes Ω  
with ( )ˆ arg max ,F l

∈Ω
= ⎡ ⎤⎣ ⎦P

P P . An appropriate reference 

frequency is determined as 
 

( )ˆ max
l

l C l= .                                (34) 

 
The permutation is then solved by using the information at this 
reference frequency as 
 

( )ˆˆ arg max ,F l=
P

P P .                             (35) 

 
3)  Proposed method which combines two conventional 

methods (MCC) 
In this paper, we propose a method which combines MTS 

and MRM. MTS has a disadvantage, that is, it is impossible to 
estimate the permutation when the envelopes of source signals 
are similar. On the other hand, MRM is not dependent on the 
envelope of source signals. However, MTS provides better 
performance than MRM when the envelopes of source signals 
are different each other. Considering these facts, we propose to 
combine two methods in order to cover each disadvantage. 

We consider two situations. In the case that the envelopes of 
separated signals are similar, MTS is employed. In the case that 
the envelopes of separated signals are different, MRM is 
utilized. This gives better performance than using only MTS or 
MRM. 

The proposed procedure is summarized as follows: 
1) Set an appropriate threshold α  ( 1α ≤ ). 

2) For 1ω , assign ( )1ˆ , ;st iωv  to ( )1ˆ , ;st iωy  as 
 

( ) ( )1 1ˆ ˆ, ; , ; , 1, ,s st i t i i nω ω= =y v K .                   (36) 
 
3) For kω , use MTS methods (3) and (4). 

4) 1k k= + , and go to 3) while ( )sim kω α< . 
5) In the ascending frequency order, apply MRM within the 

reference frequency range [ ]LL,− . 
 

IV. EXPERIMENTAL RESULTS 
In this section, we compare the performance of the 

conventional method with the proposed method. 

A.  Conditions for Experiments 
For the source signals, three Japanese speech sounds 

recorded separately are used. 
Intonation of Japanese is given by the change of the 

fundamental frequency. Thus, the envelopes of the Japanese 
speech can be often similar to each other. The sets are prepared 
as follows: 

Set 1: Envelopes are mutually different, 
Set 2: Envelopes are mutually similar. 

The waveforms are shown in Fig. 1. 
The mixing process is assumed to be 

 

        ( ) ( ) ( )1 1 20.4249 0.3902x t s t s t τ= + −  

( ) ( ) ( )2 1 20.3322 0.3401x t s t s tτ= − + ,                (37) 
 
where ( )ts1  is "aoiie," which means a blue house in English. 

( )ts2  is "sakuragasaita," that means Japanese cherries 
blossomed in English, or "aiueo,"  five vowels in Japanese. τ is 
a delay factor. The other parameters are shown in Table I. 
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B.  Evaluation 
Since the true sources and mixing process are available, we 

can evaluate the performance using the noise-reduction rate 
(NRR) [3] that is defined by output signal-to-noise ratio (SNR) 
minus input SNR as 
 

( )[ ]
( ) ( )[ ]

( )[ ]
( ) ( )[ ]

( ) ( )[ ]
( ) ( )[ ]⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

=

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

tsty
tstx

tstx
ts

tsty
ts

inout

in

out

var
varlog10         

SNRSNRNRR
var

varlog10SNR

var
varlog10SNR

10

10

10

,                 (38) 

 
where [ ]•var  denotes the variance of the signal. In practice, we 
use the following equation: 
 

( ) ( )[ ]
( ) ( )[ ]

mjni

tsty
tstx

nm

n

i

m

j jij

ji

.,1,.,1

var
var

log101NRR
1 1

10

KK ==

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
= ∑∑

= = ,           (39) 

where 2== mn . Table II shows the experimental results.  
The performance of MCC was the best. When the envelope 

of source signals is mutually different, MTS performs better. 
However, in the frequency bin where the separation by ICA 
does not succeed, the estimate of permutation is incorrect 
because the envelope of spectrogram is mutually similar. In this 
case, the reliability of MRM is higher than that of MTS. On the 
other hand, when the envelope of source signals is mutually 
similar, MRM performs better. In the case that ( )sim kω  in 
(17) is sufficiently large, the reliability of MTS is higher than 
that of MRM. MCC can select the most appropriate approach 
for every frequency bin by setting the optimum threshold. As 
the result, MCC shows the best performance. 

V.   CONCLUSION 
In this paper, a method to combine two conventional 

methods for solving the permutation problem has been 
proposed. Our approach is to overcome the drawbacks in the 
conventional algorithms and the effect of a new method is 
well-recognized in the experiments. The proposed method 
works well and gives better performance than the conventional 
methods. 
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Fig. 1 Waveforms of source signals. (1a) is "aoiie," which means a 
blue house in English. (1b) is "sakuragasaita," that means Japanese 
cherries blossomed in English. (2a) is the same (1a). (2b) is "aiueo," 

five vowels in Japanese. (1a) and (1b) are a set of different envelopes. 
(2a) and (2b) are a set of similar envelopes 

 
 

TABLE I 
PARAMETERS OF EXPERIMENT 

Parameter Name Value 
Sampling frequency 16 kHz 
Delay τ 0.3125 ms (5 points) 
Window length 8 ms (128 points) 
Window function Hamming window 
Shifting time of analysis frames 1.25 ms (20 points) 
Threshold α (for Set 1) 0.70 
Threshold α (for Set 2) -0.06 
Window length of moving average M (16) 15 
Number of reference frequency range L 3 

 
 

TABLE II 
NOISE-REDUCTION RATES FOR CONVOLUTIVE MIXTURE 

Method Envelope is 
mutually different 

Envelope is 
mutually similar 

MTS 18.22 dB      0.93 dB      
MRM 12.86 dB      7.07 dB      
MCC 18.74 dB      8.84 dB      

 
 


