
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:9, 2007

436

Abstract—The last decade has shown that object-oriented

concept by itself is not that powerful to cope with the rapidly
changing requirements of ongoing applications. Component-based
systems achieve flexibility by clearly separating the stable parts of
systems (i.e. the components) from the specification of their
composition. In order to realize the reuse of components effectively
in CBSD, it is required to measure the reusability of components.
However, due to the black-box nature of components where the
source code of these components are not available, it is difficult to
use conventional metrics in Component-based Development as these
metrics require analysis of source codes. In this paper, we survey
few existing component-based reusability metrics. These metrics
give a border view of component’s understandability, adaptability,
and portability. It also describes the analysis, in terms of quality
factors related to reusability, contained in an approach that aids
significantly in assessing existing components for reusability.

Keywords—Components, Customizability, Reusability, and
Observability.

I. INTRODUCTION
HE last decade has shown that object-oriented technology
alone is not enough to cope with the rapidly changing

requirements of present-day applications. One of the reasons
is that, although object-oriented methods encourage one to
develop rich models that reflect the objects of the problem
domain, this does not necessarily yield software architectures
that can be easily adapted to changing requirements.
Moreover, today’s applications are large, complex and are not
integrated. Although they come packaged with a wide range
of features but most features can neither be removed,
upgraded independently or replaced nor can be used in other
applications. In particular, object-oriented methods do not
typically lead to designs that make a clear separation between
computational and compositional aspects [1].

 Arun Sharma is with Department of Information Technology, Amity
University, Noida, India. He can be contacted at 91-120-4392277,
09899202168 (M) e-mail: arunsharma@aiit.amity.edu
 Rajesh Kumar is with Thapar Institute of Engineering and Technology,
Patiala, India. e-mail: rajnagdev@yahoo.co.in
 P S Grover was Dean and Head, Computer Science Department, Delhi
University, India. Now he is Director General Guru Teg Bahadur Engg.
College, New Delhi, India. E-mail: groverps@hotmail.com

Any application must have some additional characteristics
like robustness, usability, flexibility, simple installation,
maintainability, proper documentation, portable,
interoperable, extensible etc. to fight with the advancement in
the technology and rapidly changing requirements. To
improve the business performance it is necessary to use the
latest technologies available.

Today Component Based Software Development (CBSD) is
getting accepted in industry as a new effective development
paradigm. It emphasizes the design & construction of
software system using reusable components. CBSD is capable
of reducing development costs and improving the reliability of
an entire software system using components. The major
advantages of CBSD are in-time and high quality solutions.
Higher productivity, flexibility & quality through reusability,
replaceability, efficient maintainability, and scalability are
some additional benefits of CBSD.

II. COMPONENT BASED SOFTWARE DEVELOPMENT (CBSD)
CBSE is a paradigm that aims at constructing and designing

systems using a pre-defined set of software components
explicitly created for reuse. According to Clements [2], CBSE
embodies the “the ‘buy, don’t build’ philosophy”. He also
says about CBSE that “in the same way that early subroutines
liberated the programmer from thinking about details, CBSE
shifts the emphasis from programming to composing software
systems”. In Object-Oriented Programming (OOP) code is
reused in the form of objects, and several mechanisms such as
inheritance and polymorphism let the developer reuse these
objects in several ways. The principle is the same with CBSE,
but the focus is on reusing whole software components, not
objects.

Component-based systems achieve flexibility by clearly
separating the stable parts of the system (i.e. the components)
from the specification of their composition. Components are
black-box entities that encapsulate services behind well-
defined interfaces. These interfaces tend to be very restricted
in nature, reflecting a particular model of plug-compatibility
supported by a component-framework, rather than being very
rich and reflecting real-world entities of the application
domain. Components are not used in isolation, but according
to a software architecture that determines the interfaces that

A Critical Survey of Reusability Aspects for
Component-Based Systems

Arun Sharma, Rajesh Kumar, and P. S. Grover

T

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:9, 2007

437

components may have and the rules governing their
composition [7].

Component
There are a number of definitions given related to the

component, some of these are:
• A software component is a reusable piece of code or software

in binary form, which can be plugged into components from
other vendors with relatively little efforts.
• A software component is a unit of composition with
contractually specified interface and explicit context
dependencies only. A software component can be deployed
independently and is subjected to composition by third
parts.[4]
• A software component is a language neutral, independently
implemented package of software services, delivered in an
encapsulated and replaceable container, accessed via one or
more published interface. A component is not platform-
constrained nor is it application-bound [5].
• A software component is a unit of packaging, distribution
or delivery that provides services within a data integrity or
encapsulation boundary. [Microsoft Corp]

In summary, a software component is a reusable, self-
contained piece of software in binary form with well-specified
interface that is independent of any application. The
important aspect, which has to be kept in mind while
developing a component, is the usability of component,
regardless of whether or not an organization can identify what
the future requirements of the component will be.
Components can be placed on any network node, depending
on application needs and regardless on the type of particular
network structure [6].

There are several kinds of components and the granularity
of these components can vary [7]:

A distributed component is a possibly network addressable
component which has the lowest granularity. It may be
implemented as an Enterprise JavaBean, as a CORBA
component, or as a DCOM component.

A business component implements a single autonomous
business concept. A business component system is a group of
business components that co-operate to deliver a cohesive set
of functionality and properties required in a specific domain.

A tier is a group of components in the same layer. The
classic three-tier architecture consists of the presentation tier
(windows, reports,…), application logic tier (business rules of
the application) and resource tier (persistent storage
mechanism).

Component-based software development (CBSD) is an
approach in which systems are built from well-defined,
independently produced pieces by combining the pieces with
self-made components. Some definitions emphasize that
components are conceptually coherent packages of useful
behavior, while some others state that components are
physical, deployable units of software, which execute within a

well-defined environment. The key to the success of CBSD is
its ability to use software components that are often developed
by and purchased from third parties. [8]

If there are a number of components available, it becomes
necessary to devise some software metrics to qualify the
various characteristics of components. Software metrics are
intended to measure software quality characteristics
quantitatively. Among several quality characteristics, the
reusability is particularly important when reusing components.
It is necessary to measure the reusability of components in
order to realize the reuse of components effectively.

III. REUSABILITY
Software programming is a hard design task, mainly due to

the complexity involved in the process. Nowadays this
complexity is increasing to levels in which reuse of previous
software designs are very useful to short cut the development
time. The main idea of software reuse is to use previous
software components to create new software programs. Thus
software reuse is software design, where previous components
are the building blocks for the generation of new systems. In
case of Component-based Development, software reuse refers
to the utilization of a software component C within a product
P, where the original motivation for constructing C was other
than for use in P. In other words, reuse is the process of
adapting a generalized component to various contexts of use.
The idea of reusing software embodies several advantages. It
improves productivity, maintainability, portability and quality
of software systems. A reusable component can be seen as a
box, which contains the code and the documentation [11].
These boxes are defines as:

A. Black Box Reuse
In black box reuse, the reuser sees the interface, not the

implementation of the component. The interface contains
public methods, user documentation, requirements and
restrictions of the component. If a programmer were to change
the code of a black box component, compiling and linking the
component would propagate the change to the applications
that reuse the component. As the users of the component trust
its interface, changes should not affect the logical behavior of
the component. The clients will get what the contract
promises only if the post condition is true after the changes to
the internal implementation [9].

B. Glass Box Reuse
In glass box reuse the inside of the box can be seen as well

as the outside, but it is not possible to touch the inside. This
solution has an advantage when compared to black box reuse,
as the reuser can understand the box and its use better. The
disadvantage is that it is possible that the reuser will rely on a
particular way of implementation or other factors that are not

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:9, 2007

438

in the contract. That can be hazardous when the
implementation changes.

C. White Box Reuse
In white box reuse it is possible to see and change the

inside of the box as well as its interface. A white box can
share its internal structure or implementation with another box
through inheritance or delegation. The new box can retain the
reused box as such or it can change it. It is necessary to test
anything new that is created or changed.

One of the essential problems in software reuse is the
retrieval and selection of suitable software components from a
large library of components. Gill [10] discusses the
importance of component characterization for better
reusability. It discusses several benefits of component
characterization, which includes improved cataloguing,
improved usage, improved retrieval and improved
understanding eventually for better reuse.

IV. METRICS
The area of software measurement is one of the areas in

software engineering where researchers are active from a long
time. The area of software measurement is also known as
software metrics. According to IEEE [IEEE 93],

“A software metric is a quantitative measure of the degree
to which a system, component or process possess a given
attribute”.

Software metrics are intended to measure the software
quality and performance characteristics quantitatively
encountered during the planning and execution of software
development resource and effort allocation, scheduling and
product evaluation. These can serve as measures of software
products for the purpose of comparison, cost estimation, fault
prediction and forecasting.

Reusability Metrics
Reusability can measure the degree of features that are

reused in building applications. There is a number of metrics
available for measuring the reusability for object-oriented
systems. These metrics focus on the object structure, which
reflects on each individual entity such as methods and classes,
and on the external attributes that measures the interaction
among entities such as coupling & inheritance. But there are
some difficulties in applying existing object oriented metrics
into the component development and CBSD. Object oriented
metrics cannot be used to measure the component’s quality.
The reasons are:

i. Measurement unit is different. Object oriented metrics
only focus on objects or classes. Component consists of
one or more classes as well as one or more interfaces.
Existing object-oriented metrics do not consider

component itself or component’s interfaces on
measuring complexity, cohesion or coupling and so on.
Therefore it is required new metrics that measure
complexity of component itself.

ii. Measurement factor is insufficient. Because object
oriented applications are developed with only classes,
most of the object-oriented metrics measure the
complexity or reusability by considering classes,
methods and depth of class hierarchy. However,
considering these factors are not sufficient to measure
the complexity or reusability of component because
components have more much information such as
interfaces, interface methods and so on.

iii.Existing object oriented metrics do not consider
customizability of classes or objects. Customizability
of components is very important in CBSD because
component’s customizability effects on reusability of
components in CBSD. Most of the traditional metrics
are based on source code (LOC) or similar size counts,
defects counts and effort figures. For Object Oriented
Development also, reuse is assumed to be a very
effective strategy to build high-quality software. All
these approaches use the size factor to measure the
empirical values of the quality attributes of the
software.

However in CBD, the metrics are different than the

conventional metrics. Components are termed as black box
entities, for which size is not known so alternative measures
have to be used to measure the quality of the software.

The performance and reliability of components also vary
because only using the black box testing concepts can test
these components and inherently biased vendor claims may be
the only source of information. These concerns can be by
overcome by using a separate set of metrics for CB systems,
which keeps in mind the quality criteria to be measured, the
methods to measure them along with their relative strength
etc.

An important issue in choosing the best component for
reusability is deciding which components is more easily
adapted. Generally, good guidelines for predicting reusability
are: small size of code, simple structure and good
documentation. Starting from the assumption that two
functions have the same functionality these three guidelines
are used in our system to rank candidate functions for reuse.
Gill [11] discusses the various issues concerning component
reusability and its benefits in terms of cost and time- savings.
Papers also provide some guidelines to augment the level of
software reusability in Component-Based development, which
are summarized below:

i. Conducting thorough and detailed Software Reuse
assessment to measure the potential for practicing reuse
in an organization so that it can be ensured that the

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:9, 2007

439

organization can get the maximum benefit from already
practicing reuse.

ii. Performing Cost-Benefit Analysis to decide whether or
not reuse is a worthwhile investment. This analysis can
be performed by using well-established economic
techniques like Net Present Value (NPV) and others.

iii.Adoption of standards for components to facilitate a
better and faster understanding of a component and a
faster integration into a system.

iv. Selecting pilot projects for wider development of reuse
v. Identifying reuse metrics.

Poulin [12] presents a set of metrics used by IBM to

estimate the efforts saved by reuse. The study suggests the
potential benefits against the expenditures of time and
resources required to identify and integrate reusable software
into a product. Study assumes the cost as the set of data
elements like Shipped Source Instructions (SSI), Changed
Source Instructions (CSI), Reused source Instructions (RSI)
etc.

Reuse Percentage measures how much of the product can
be attributed to reuse and is given as

Product Reuse Percentage = (RSI / (RSI + SSI)) * 100%

Paper proposes several other reusability metrics in terms of
cost and productivity like Reuse cost avoidance, Reuse value
added and Additional development cost, which can be used
significantly for business applications.

Cho et al [13] proposes a set of metrics for measuring
various aspects of software components like complexity,
customizability and reusability. The work considers two
approaches to measure the reusability of a component. The
first is a metric that measures how a component has reusability
and may be used at design phase in a component development
process. This metric, Component Reusability (CR) is
calculated by dividing sum of interface methods providing
commonality functions in a domain to the sum of total
interface methods. The second approach is a metric called
Component Reusability level (CRL) to measure particular
component’s reuse level per application in a component based
software development. This metric is again divided into two
sub-metrics. First is CRLLOC, which is measured by using
lines of code, and is expressed as percentage as given as

CRL LOC (C) = (Reuse (C) / Size (C)) *100%

The second sub-metric is CRLFunc, which is measured by
dividing functionality that a component supports into required
functionality in an application. This metric gives an indication
of higher reusability if a large number of functions used in a
component. However, the proposed metrics are based on lines
of codes and can only be used at design time for components.

Washizaki et al [14] discusses the importance of reusability
of components in order to realize the reuse of components
effectively and propose a Component Reusability Model for
black-box components from the viewpoint of component
users. The model defines a set of metrics to define quality
factors that affect reusability. These metrics are:

i. Existence of Meta-Information (EMI) checks whether the

BeanInfo class corresponding to the target component C is
provided. The metric can be used by the user to understand
the component’s usage.

ii. Rate of Component’s Observability (RCO) is a percentage
of readable properties in all fields implemented within the
Façade class of a component C. The metric indicates that
high value of readability would help user to understand the
behavior of a component from outside the component.

iii. Rate of Component’s Customizability (RCC) is a
percentage of writable properties in all fields implemented
within Façade class of a component C. High value of the
metric indicates the high level of customizability of
component as per the user’s requirement and thus leading to
high adaptability. But if a component has too much writable
properties, it will loose the encapsulation and can be used
wrongly.

iv. Self-completeness of Component’s Return Value (SCCr) is
the percentage of business methods without any return value
in all business methods implemented within a component C,
while Self-completeness of Component’s Parameter (SCCp)
is the percentage of business methods without any
parameters in all business methods implemented within a
component C. The business methods without return
value/parameter will lead to self completeness of a
component and thus lead to high portability of the
component.

The paper also conducts an empirical evaluation of these

metrics on various JavaBean components and set confidence
intervals for these metrics. It also establishes a relationship
among these proposed metrics. These metrics are applied on
only for small JavaBean components and need to be validated
for other component technologies like .NET, ActiveX and
others also.

V. CONCLUSION
In this paper we survey different aspects of reusability for

component-based systems. The paper gives an insight view of
various reusability metrics for component-based systems. The
work proposed here can be used by researchers for further
study and empirical validation of these existing metrics for
CBS. Also, some new enhanced metrics can be proposed and
empirically validated on the basis of the work already done by
researchers in this area.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:9, 2007

440

REFERENCES
[1] Jean-Guy Schneider: "Component Scripts and Glue: A Conceptual

framework for software composition" Ph.D. thesis, Institute für
Informatik (IAM), Universität Bern, Berne, Switzerland, 2003.

[2] Michael Sparling: "Lessons Learned through Six Years of Component
Based Development" published in Castek (as published in
"Communications of the ACM") date:04-09-03.

[3] Szyperski C: Component Software: beyond Object Oriented
Programming, New York: ACM Press/ Addison Wesley 1998.

[4] Hironori Washizaki, Hirokazu Yamamoto and Yoshiaki Fukazawa: "A
Metrics Suite for Measuring Reusability of Software Components",
Proceedings of the 9th International Symposium on Software Metrics
September 2003.

[5] Miguel Goulão: "CBSE: a Quantitative Approach" PhD Workshop at
ECOOP'2003, Darmstadt, Germany. July, 2003.

[6] Nasib S. Gill and P. S. Grover: "Necessary Guidelines for deriving
Component Based Metrics". In ACM SIGPLAN SEN Vol 28, #6
Page:30, 2003.

[7] Pentti Virtanen “Measuring and Improving Component-Based Software
Development by Pentti Virtanen “University of Turku, Department of
Computer Science, FIN-20014 Turku Finland 2003.

[8] Arun Sharma, Rajesh Kumar, P S Grover, "Investigation of reusability,
complexity and customizability for component-based systems", ICFAI
Journal of IT, Vol.2 Iss. 1, June 2006.

[9] Goldberg A., Rubin K. S.: Succeeding with Objects, Decision
Frameworks for Project Management, Addison-Wesley Publishing,
1995.

[10] Nasib Singh Gill, Importance of Software Component Characterization
For Better Software Reusability”, ACM SIGSOFT SEN Vol. 31 No. 1.

[11] Nasib Singh Gill, “Reusability Issues in Component-based
Development”, ACM SIGSOFT SEN Vol. 28 No. 6, pp. 30.

[12] J. Poulin, J Caruso and D Hancock, “ The Business Case for Software
Reuse, IBM Systems Journal, 32(40): 567-594, 1993.

[13] Eun Sook Cho et al., “Component Metrics to Measure Component
Quality”, Proceedings of the eighths Asia-Pacific Software Engineering
Conference, 1530-1362/01.

[14] Hironori Washizaki, Hirokazu Yamamoto and Yoshiaki Fukazawa,
"Software Component Metrics and It's Experimental Evaluation," Proc.
of the International Symposium on Empirical Software Engineering
(ISESE 2002), October 2002.

