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Abstract—In this study, the numerical solution of unsteady flow 

between two concentric rotating spheres with suction and blowing at 
their boundaries is presented. The spheres are rotating about a 
common axis of rotation while their angular velocities are constant. 
The Navier-Stokes equations are solved by employing the finite 
difference method and implicit scheme. The resulting flow patterns 
are presented for various values of the flow parameters including 
rotational Reynolds number Re , and a blowing/suction Reynolds 

number wRe . Viscous torques at the inner and the outer spheres are 
calculated, too. It is seen that increasing the amount of suction and 
blowing decrease the size of eddies generated in the annulus.  
 

Keywords—Concentric spheres, numerical study, suction and 
blowing, unsteady flow, viscous torque.  

I. INTRODUCTION 
HE flow and heat transfer in an annulus between two 
spheres has been studied in various cases by many 

researchers. Such studies can be classified into two main 
groups.  In the first group, there is neither suction nor blowing 
at the spherical walls. Such containers are used in engineering 
designs like centrifuges and fluid gyroscopes.  
     The first numerical study of time-dependent viscous flow 
between two rotating spheres has been presented by Pearson 
[1] in which the cases of one (or both)sphere is given an 
impulsive change in angular velocity starting from a state of 
either rest or uniform rotation.  Munson and Joseph [2] have 
considered the case of steady motion of a viscous fluid 
between concentric rotating spheres using perturbation 
techniques for small values of Reynolds number and a 
Legendre polynomial expansion for larger values of Reynolds 
numbers. Recently a numerical study of flow and heat transfer 
between two rotating spheres has been done by Jabari 
Moghadam and Rahimi [3] in which the fluid contained 
between two vertically eccentric spheres maintained at 
different temperature and rotating about a common axis with 
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different angular velocities when the angular velocities are 
arbitrary functions of time. Jabari Moghadam and Rahimi [4] 
have also studied the similarity solution for spheres rotating 
with constant angular velocity. 

In the second group, the effects of transpiration on flow in 
an annulus between two spheres have been investigated. The 
study of flow in a spherical annulus along with transpiration is 
used in many practical applications, such as rotary machines 
and spherical heat exchangers and in the design of spherical 
fluid storage systems. In these applications transpiration is 
used to regulate the rate of heat transfer.           

Effects of transpiration on free convection in an annulus 
between two stationary concentric porous spheres have been 
considered by Gulwadi et al. [5]. Gulwadi et al. [6] studied the 
laminar flow in an annulus between rotating porous spheres 
and with injection and suction at spherical walls. Their results 
are valid for small values of the rotational Reynolds number 
and an injection/suction Reynolds number. A review of the 
literature reveals that there is no study on the transient motion 
between two rotating spheres with uniform transpiration. In 
the present study, a numerical solution of unsteady momentum 
equations is presented for concentric spheres.  

II. PROBLEM FORMULATION 
The geometry of the spherical annulus considered is 

indicated in Fig. 1.  
 

 
 

                   Fig. 1 Geometry of problem 
 

A Newtonian, viscous, incompressible fluid fills the gap 
between the inner and outer spheres which are of radii iR and 

oR .  The inner and outer spheres rotates about a common 
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axis with constant angular velocities iΩ  and oΩ , 

respectively. The components of velocity in directions r ,θ , 
and φ  are rv , θv , and φv , respectively.  These velocity 
components for incompressible flow and in meridian plane 
satisfy the continuity equation and are related to stream 
function ψ  and angular momentum function Ω  in the 
following manner:  

 

θ
ψ θ

sin2r
vr = ,

θ
ψ

θ sinr
v r−
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θφ sinr

v Ω
=                 (1)                    

                                                                                         
The blowing/suction Reynolds number is defined as: 
 

ν
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=Re                                                                      (2) 

in Which orv (radial velocity) and or (radius)  are reference 

values, which are selected as iRv and Ri respectively. 

The blowing/suction Reynolds number wRe  is positive for 
blowing at the inner sphere and negative for suction.  Since 
the flow is assumed to be independent of the longitude,φ , the 
non-dimensional Navier-Stokes equations  and energy 
equation can be written in terms of the stream function and the 
angular velocity function as follows:  
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in which the Reynolds number ( Re ) is defined as:  
 

ν
ω 2

Re oor
=                                                                          (5) 

The following non-dimensional parameters have been used in 
the above equations and then the asterisks have been omitted: 
 

ott ω=∗ , 
or
rr =∗ , 

oor ω
ψψ 3=∗ , 

oor ω2
Ω

=Ω∗           (6) 

     
in which oω is reference value which is selected as iΩ . The 
non-dimensional boundary and initial conditions for the above 
governing equations are: 
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III.  PROBLEM SOLUTION 
In this section, we firstly present the Computational 

Procedure and discuss then on the obtained results. 

A. Computational Procedure 
The two equations governing the fluid motion show that 

each is describing the behavior of one of the dependent 
variables Ω  andψ .  On the other hand, these two equations 
are coupled only through nonlinear terms.  To solve the 
problem, the momentum equations were discretized by the 
finite-difference method and implicit scheme. 

In each time step (n+1), the value of the dependent 
variables are guessed from their values at previous time steps 
(n), (n-1), and (n-2) and after using them in difference 
equations and repeating it until the desired convergence, will 
lead to the corrected values at this time step.  This procedure 
is applied for the next time step. 

The flow field considered is covered with a regular mesh. 
To solve the system of linear difference equations, a 
tridiagonal method algorithm is used in both directions r  
andθ .  

Direct substitution of previous values of dependent 
variables by new calculated values can cause calculation un-
stability in general.  To overcome this problem, a weighting 
procedure is used in which the optimum weighting factor 
depends on Reynolds number.  The mesh size used in 
numerical solution for equator of the circle is a uniform 
40x20, 60x30, 80x40 and 100x50(θ -direction x r-direction, 
respectively)   with the ratio of Rout /Rin=2, which all of them 
show that the problem is independent of mesh size, but on the 
one hand by noting to calculations time and on the other hand 
since a finer mesh size is better we choose the 80x40 mesh 
size. To verify the validity of the numerical procedure used in 
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this work, comparison with Ref [6] have been done which 
show very good agreement. 

B. Results and Discussions 
The contours of flow field in the meridian plane for 

blowing ( 5.0Re =w ) at the inner boundary for, 

Re 20= , 0=
Ω
Ω

=Ω
i

o
oi (outer sphere is stationary) and  

i

o

R 0.5Rλ = =  in t =50sec is shown in Fig. 2. From Fig.                                 

2, it is seen that, because of relatively low value of blowing 
Reynolds number ( 5.0Re =w ), two stagnation points exist   

on the streamlines at the poles ( 0θ = o and 180θ = o ) in which 
the value of rν (radial velocity component) is zero. In this 
condition, the eddies created by the centrifugal effect 
generated by the rotation of the inner sphere are confined 
within regions near the poles, as the size of the eddies 
decreases with increase in value of wRe . To verify the 
results, comparisons with Ref [6] have been done which show 
very good agreements. 
  

(a)  
(b)  

Fig. 2 Contour of flow field for Re 20= , 5.0Re =w , 0=Ωoi , 
(a) Presented work, (b) Ref [6] 

 
In Fig. 3 the streamlines for Re 20= , 2Re =w and 

0=Ωoi in t =50sec is shown. It is observed that, with 
increasing the blowing the eddies in the annulus are removed. 
Figure (4) show the streamlines for the case suction 
for Re 20=   and 0=Ωoi in t =50sec. In the case (a), 

5.0Re −=w   the eddies are formed in the equator. As can 

be seen in the case (b), 1Re −=w  with increasing the 
suction the eddies are removed.    

                                                                                   

 
Fig. 3 Contour of flow field for Re 20= , 2Re =w  

 

 
(a) 

 
 
(b) 

Fig. 4 Contour of flow field for Re 20= , 0=Ωoi  

(a) 5.0Re −=w , (b) 1Re −=w  
 

     In the above cases, the outer sphere was stationary. Now, 
we aim to examine the effect of angular velocity of outer 
sphere on flow field. Fig. 5 show the flow field 
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for 50Re = , 3Re =w  for two cases, when the outer sphere 

is stationary as 0=Ωoi (case a) and or other case (case b) 
when the outer sphere rotates with same angular velocity as 
inner sphere so that 1=Ωoi  ( 1,1 =Ω=Ω oi ). It is 
observed from this figure that the change in angular velocity 
of outer sphere can removes the eddies.      

The dimensionless viscous torque μT  at any radius r can 
be defined in general as: 

 

∫=
π

φμ θθτ
0

23 d sin
4
3

rrT                                               (9) 

 
where the dimensionless shear stress φτ r is: 
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Using the above definitions, the viscous torques at the inner 

sphere iT ,μ  and at the outer sphere oT ,μ  can be calculated. 
Figures (6) and (7) show the variations of viscous torques 
with time at the inner and outer spheres for Re 20= , 

0=Ωoi  and three different suction / blowing Reynolds 

number. Note that in the case 0Re =w   the viscous torque at 
the inner and outer spheres are nearly equal, as expected.  

 
 

 

(a)  

(b)  

Fig. 5 Effect of angular velocity of the outer sphere on flow 
field: 50Re = , 3Re =w ,(a) 0=Ωoi (b) 1=Ωoi  
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                       Fig. 6 Variations of viscous torque at the inner             
                           sphere with time for Re 20= , 0=Ωoi  
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                    Fig. 7 Variations of viscous torque at the outer                

                          sphere with time for Re 20= , 0=Ωoi       
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IV. CONCLUSION 

A numerical study of unsteady flow between two 
concentric rotating spheres with uniform transpiration has 
been done. The obtained results showed that with increasing 
the value of transpiration (suction and blowing) the eddies 
created in the annulus by centrifugal effects can be removed. 
Also it is observed that with change in the angular velocity of 
a sphere can remove the eddies, too. 

When the outer sphere is stationary, suction decreases the 
thickness of the boundary layer of inner sphere and 
corresponding to this change then the coefficient of friction 
and therefore viscous torques on this sphere is increased.  The 
effect of suction on outer sphere is that the boundary layer 
thickness is increased and therefore the coefficient of friction 
and viscous torques are decreased. 
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