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Abstract—Validation of an automation system is an important issue.
The goal is to check if the system under investigation, modeled
by a Petri net, never enters the undesired states. Usually, tools
dedicated to Petri nets such as DESIGN/CPN are used to make
reachability analysis. The biggest problem with this approach is that
it is impossible to generate the full occurence graph of the system
because it is too large. In this paper, we show how computational
methods such as temporal logic model checking and Groebner bases
can be used to verify the correctness of the design of an automation
system. We report our experimental results with two automation
systems: the Automated Guided Vehicle (AGV) system and the traffic
light system. Validation of these two systems ranged from 10 to 30
seconds on a PC depending on the optimizing parameters.

Keywords—Computational Intelligence, Temporal Logic Reasoning,
Model Checking, Groebner Bases.

I. INTRODUCTION

VERIFYING the correctness of a design for an automation
system is an important issue. The goal is to check if the

system never enters the undesired states, i.e. the situations that
should never happen. Usually, the system under investigation
is modeled by means of a Petri net and tools dedicated to
Petri nets such as DESIGN/CPN are used to make reachability
analysis [27, 35]. The biggest problem with this approach is
that it is impossible to generate the full occurence graph of
the system because it is too large.

In this paper, we show how computational methods such as
temporal logic model checking and Groebner bases can be
used to verify the correctness of the design of an automation
system.

Temporal logic model checking is one of the formal verifica-
tion techniques which can be used to verify the correctness of
a finite state concurrent system. Model checking [1, 2, 9, 31]
with temporal logic [36] and automata-theoretic techniques
[28, 29, 30, 45, 46, 47, 48, 49] have the ability to discover
subtle flaws resulting from improbable events. Model checking
has several attractive features. Once the Kripke model of
the system and the temporal logic specifications have been
defined, the process is fully automated. If a computation
that violates the specification is found in the Kripke model,
it can be displayed to the designer to aid the debugging
process. In addition, the model checker can formally verify
if the specification holds [28, 32, 33]. Popularity of model
checking has been increased due to being a fast and automatic
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method. Unlike other techniques, model checking can produce
a counter example when there is fault in the system design.
This automatic generation of counter examples can be used
to pinpoint the bug in the design. In the paper we also show
how the behavior of a system can be expressed in terms of
algebraic equations and use Groebner bases to validate the
system design.

We report our results with validating the correctness of two
different systems: the Automated Guided Vehicle (AGV) sys-
tem and the traffic light system using SMV model checker and
reachability analysis on the Petri net using Groebner basis.

The paper is organized as follows. Section 2 present the formal
logic, the model checking and Groebner basis verification
methodology. Section 3 and 4 describe the AGV and traffic
light verification problem respectively.

II. VERIFICATION METHODOLOGY

The methodology that we use to verify the correctness of
automation systems are known as temporal logic model check-
ing and Groebner bases. Temporal logic [36] is a logic for
expressing the ordering of events in time without introducing
time explicitly. Model checking is an automatic verification
approach used for concurrent systems [1, 2, 9, 31]. Model
checking provides a counter-example if it finds an error
during verification. By studying such counter-examples, we
can pinpoint the error, correct it, and re-verify.

A. Temporal Logics

The first step in formal verification is the representation of
formal specification of the design consisting of a description
of the desired behavior. As sequential systems capture time-
variant behavior, it is not possible to describe their properties
completely in the framework of conventional propositional for-
mulas. In a temporal logic, temporal operators are additionally
provided, which can be used to express time-variant depen-
dencies. A widely used specification language for designs is
Temporal Logic [36], which is a modal logic (i.e. logic to
reason about many possible worlds with their semantics based
on Kripke structures).

In linear temporal logic (LTL), time is treated as if each
moment has a unique possible future. (An alternative approach
is to use branching time (CTL) [10].) Linear temporal formulas
are constructed from a set ℘ of atomic propositions using
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usual Boolean connectives as well as temporal connectives X
(“next”); G (“always”); F (“eventually”); and U (“until”).

The semantics of LTL formulas are based on an appropriate
Kripke structure of the form K = (N,≤,π), where N is the set
of natural numbers, ≤⊆ N

2 is the standard linear order, and
π : N → 2℘ is a function that defines what propositions are
true at a certain time instant.

An LTL formula is interpreted over computations viewed as
infinite sequences of truth assignments to the atomic proposi-
tions in Σω where Σ = 2℘ as follows:

1) π, i � ϕ means that formula ϕ holds at the time i of the
computation π ,

2) π, i � p iff p ∈ π(i),
3) π, i � Xϕ iff π, i+1 � ϕ ,
4) π, i � Gϕ iff π, j � ϕ ∀ j ≥ i,
5) π, i � Fϕ iff π, j � ϕ for some j ≥ i,
6) π, i � ϕUψ iff ∃ j ≥ i such that π, j � ψ and π,k � ϕ

∀ j > k ≥ i.

Notice that operators G and F can be derived from X and U
as Fϕ ≡ true Uϕ(true ≡ p∨¬p) and Gϕ ≡ ¬F¬ϕ .

In LTL model checking, we assume that the specification is
given in terms of properties expressed by LTL formulas. For
example the formula G(request → F grant), which refers to
the atomic propositions request and grant, specifies that every
state in the computation in which request holds is followed
by some state in the future in which grant holds.

B. Validity in Model Checking

Using temporal logic as a specification language for systems
quite naturally leads to the idea of model checking. In fact,
model checking has become one of the most actively studied
automated formal verification techniques [9, 10, 37]. In model
checking, an LTL specification is checked against a Kripke
model of the finite state system (i.e. the implementation).
Validity and satisfiability are defined as follows:

• π satisfies a formula ϕ , denoted by π � ϕ , iff π,0 � ϕ ,
• models(ϕ) = {π ∈ (2℘)ω : π � ϕ},
• ϕ is satisfiable iff models(ϕ) �= /0 (non-emptiness),
• ϕ is valid iff models(ϕ) = (2℘)ω (universality).

C. Model Checking

In model checking, the specification is expressed in temporal
logic and the system is modeled as a finite state machine.
For realistic designs, the number of states of the system can
be very large, 1020 or higher, and hence explicit traversal of
the state space becomes infeasible. Perhaps the biggest hurdle
for the practical use of model checking is the state explosion
problem [44]. To relieve the state explosion problem, many
approaches have been proposed.

Symbolic model checking using ordered binary decision di-
agrams (BDD) is a successful and widely used techniques

for verifying properties of concurrent hardware and software
systems. In symbolic model checking, the state space is
represented implicitly using symbolic means, and the propo-
sitional logic formulas are manipulated using BDDs [23].
Symbolic model checking succeeded in checking systems with
unprecedented large state spaces

Bounded model checking uses the same basic idea as symbolic
model checking using BDD in that the state space of the sys-
tem is represented implicitly by Boolean formulas. However,
instead of manipulating the Boolean formulas using BDDs,
the bounded model checker transforms the model and property
specifications into a propositional satisfiability (SAT) problem.
Given a system M, a temporal logic formula ψ and a bound
k, a Boolean formula is constructed, which is satisfiable if and
only if M has a counterexample of length k to ψ . A SAT solver
such as SATO or zChaff is used to perform the query. In BMC,
the growth of the size of the Boolean formulas can be known
in advanced, but predicting the running times of the SAT
solver is difficult. BMC is particularly good at finding shallow
counterexamples, and some industrial applications have been
successful of BMC [3, 4, 13].

Other approaches to relieve the state explosion problem in-
clude the partial order methods [17, 26, 43, 50]; complete
finite prefixes [21, 31]; compositional methods [12, 19, 25];
symmetry reduction [16, 20, 22, 24, 38]; and abstraction
[11, 14, 15, 18].

Petri nets (PN) provide a graphical and mathematical represen-
tation of many systems [34]. Formally we can define a Petri
net as a bipartite directed graph represented by a quadruple
PN = (P,T, I,O), where

• P = {p1, p2, .........., pn} is a finite set of places,
• T = {t1, t2, ...........,tm} is a finite set of transitions,
• I : P×T →{0,1} is an input function that defines the

set of directed arcs from P to T ,
• O : T ×P →{0,1} is an output function that defines the

set of directed arcs from T to P,
• P∪T �= φ , P∩T = φ

Furthermore, a marking M of the Petri net assigns to each
place a non-negative integer M(pi), the number of tokens on
that place. In the Petri net every marking M of Petri net can
be associated with a polynomial pol(M) = ∏P pM(p) and each
transition t of Petri net can be associated with a polynomial:
pol(t) = ∏P pw(p,t)−∏P qw(t,q).

Consider a set of polynomial P ⊆ K[X△]. We say that two
polynomials f and g of K[X△] are equivalent modulo P and
write f =P g if their difference can be expressed in terms of P,
i.e. f −g = k1 p1 + ...+kn pn for some p1, ..., pn ∈ P,k1, ...,kn ∈
K[X△]. Deciding f =P g can be made easy with Groebner
Basis [5, 6, 7, 39, 40, 41, 42].

A polynomial g reduces to another polynomial h modulo some
polynomial set F , written as g→F h, if and only if there exists
f ∈ F , c = lc(g)/lc( f ) and u = lm(g)/lm( f ) such that h =
g− c ·u · f [8]. The new polynomial h is equivalent to g with
respect to the ideal generated by F . If a polynomial g can
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be reduced to h by finitely many reduction steps w.r.t. F we
write g →∗

F h. An h is said to be in reduced form if h cannot
be reduced further w.r.t. F , denoted by hF .

A given a finite set of polynomials G is a Groebner basis if
and only if ∀g,h,k if h and k are normal form of g modulo G
then h = k, i.e.∀g,h,k (hF ←F∗g→F∗ kF )⇒(h = k).

The reachability test will answer whether we can reach some
state in the Petri net. Formally, the reachability problem for a
Petri net is given two markings, M1 and M2 of the same Petri
net M, to answer if M2 is reachable from M1. A Petri net is
called reversible if a marking M2 is reachable from another
marking M1 which implies that M1 is reachable from M2. We
can apply the Groebner basis procedure to reversible Petri nets
to solve the reachability problem [8].

Given a set of transitions, F = {pol(t) : t ∈ T} where F ⊆
K[X△], we can compute G, a Groebner Basis for F . The new
generated polynomials after the Groebner basis computation
still corresponds to a Petri net because the generated polyno-
mials are of the same form as the polynomials arising from
the translation . Now, marking M1 is reachable from marking
M0 if and only if pol(M1) →G pol(M0) .

III. AUTOMATIC GUIDED VEHICLE SYSTEM

A. Problem Formulation

The objective of the problem is to check whether the paths
followed by the five Automated Guided Vehicles (AGVs)
modeled by the Petri Net as in Figure 1 [35] are collision
free or not. The model consist of five different paths followed
by vehicle A, B, D, E and F. Additionally there are three
different workstations represented by W1,W2 and W3. Shaded
rectangular depict the collision area for two vehicles i.e. two
vehicles can’t be in this area simultaneously.

Further we have used model checking technique to verify
whether the adding of new places as mentioned in [35] makes
the design collision free or not.

To solve the problem using model checking, we use tran-
sitions as SMV processes. For each transition, one process
was instantiated. Moreover, processes are run asynchronously,
which means among all the modules instantiated, one is
non-deterministically chosen, and the assignment statements
declared in the process are executed in parallel. This is done
by instantiating process with using process keyword. This
approach seems elegant since only one process can run at a
time and is determined non-deterministically.

• Places are represented by the variables and ASSIGN
declaration specifies their initial values (Figure 2).

Figure 1. Reduced Version of AGV [35]

Figure 2. AVG Main Module

• Processes are nested, meaning five process modules for
five AGVs, and in each AVG’s process there are processes
for transitions. These transition processes are actually the
instantiation of the process, differentiated by the number
of parameters used which actually represent the number
of input and output places (Figure 3). For example,
t 2(in1,in2,out1,ou2) represents a transition with two
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New Place Input Transitions Output Transition

Z1 t4, t7, t19, t30 t3, t6, t18, t25
Z2 t12, t15, t21, t28 t11, t14, t18, t25
Z3 t23, t26, t36, t43 t18, t25, t35, t40
Z4 t38, t41, t47, t52 t35, t40, t46, t50

Table I
FOUR NEW PLACES ON AVG MODEL TO AVOID COLLISION[35]

input places in1 and in2, and two output places out1 and
out2.

Figure 3. Module for Transitions of AVG

• Each AGV process has FAIRNESS running to make sure
that every AVG process is executed infinitely often , so
the system must make progress when possible.

• Finally, we have specification to check existence of the
collision state. We check for the occurrence of one or
more tokens in the places within collision area (Figure
4).

Figure 4. Specification for AVG Model

Verification done with SMV shows that there is a sequence
of steps which leads to collision. This model can be made
collision free by adding new places as shown in Table I and
Figure 5 shows adding one of the new place Z1. New SMV
program is written adding these new places (Figure 6) and this
time verification shows that its a collision free design.

Figure 5. AGV with place Z1

Figure 6. SMV Code for AGV with New Places

This result can be improved if we can find some optimal
variable order. Since this things can be done in NuSMV,
different variable orderings for this program is tested. Various
combination order and their running time is shown in Table
II.

Table II
RUNNING TIME FOR VARIOUS VARIABLE ORDER FOR AVG PROGRAM

Order 1 Order 2 Order 3 Order 4 Order 5 Order 6

W12 A02 W12 W32 W12 W12
W14 A06 W14 W12 W14 W14
A02 A03 A02 W14 A02 A02
A03 A04 A03 A02 A03 A03
A04 A05 A04 A03 A04 A04
A05 B06 A05 A04 A05 A05
A06 B07 A06 A05 A06 A06
... ... ... ... ... ...

W31 W35 W33 W33 W33 W33
19.14 sec 21.64 sec 18.95 sec 30.22 sec 14.35 sec 13.73 sec

In Table II six different variable orders and their corresponding
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running times are given. Among these Order 6 has least
running time. An important notice in this result is that running
time is greatly increased when the two variables W32 and W33
are not placed consecutively.

B. Verification with Groebner basis

1) AVG without places Z:

a) Scenario I: : Marking with polynomial pol(M1) =
a3b7d6e5 f 1w12w23w31w32

• Initial state pol(M0) = a6b8d4e1 f 3w12w23w32w33
• Graded reverse lexicographic order: w33, w35, w32, w31,

w23, w24, w12, w14, e10, f8, e5, b7, d6, d3, a3, f1, e1,
e6, b8, d1, d4, a4, b13, b12, b11, b10, b14, e9, b9, b2,
f7, f3, f2, e8, e7, e4, e3, e2, b6, b5, b4, b3, d2, d5, a5,
a2, a6.

• Groebner Basis G = [a2 - a6, a5 - a6, b4 - b3, b5 - b3,
b6 - b3, e3 - e2, e4 - e2, e8 - e7, f3 - f2, f7 - f2, b2 -
b3, b9 - b3, e9 - e7, b14 - b3, b10 - b3, b11 - b3, b12 -
b3, b13 - b3, a4 - a6, d4 - d5, d1 - d2, b8 - b3, e6 - e7,
e1 - e2, f1 - f2, a3 - a6, -d2 + d3, d6 - d5, b7 - b3, e5
- e2, f8 - f2, e10 - e7, w12 a6 - w14 a6, w12 d2 - w14
d5, w32 d2 - w31 d5, w23 b3 - w24 b3, w24 e7 - w23
e2, w35 e7 - w33 e2, w14 d2 a6 - w14 d5 a6, w31 w12
d5 - w32 w14 d5, w35 w23 e2 - w33 w24 e2, w33 w32
f2 - w35 w31 f2, w32 w14 d5 a6 - w31 w14 d5 a6, w35
w31 f2 d2 - w33 w31 f2 d5, w33 w24 e2 b3 - w35 w24
e2 b3, w33 w31 f2 e2 d2 - w33 w31 f2 e7 d5, w33 w31
w14 f2 d5 a6 - w35 w31 w14 f2 d5 a6, w35 w32 w24
f2 e2 b3 - w35 w31 w24 f2 e2 b3].

• Normal form of M1 − M0 with respect to
Groebner Basis G is w312w14d5a6w24e2b3 f 2 −
w35w31 f 2w24b3w14a6e2d5 which is not equal to zero.
Thus this state is not reachable.

b) Scenario II: : Marking with polynomial pol(M2) =
a3b7d6e5 f 8w12w23w33w35

Normal form of M2 −M0 with respect to Groebner Basis G
is −w35w31 f 2w24b3w14a6e2d5 + w352w24e2b3w14a6 f 2d5
which is not equal to zero. Thus this state is also not reachable.

Interestingly these are the only two states which are not
reachable in this original AGV Petri net.

C. AGV with places Z

c) Scenario I: : Marking with polynomial
pol(M1) =a2b9d4e1 f 3w12w23w32w33z2z3z4

• Initial state pol(M0)=
a6b8d4e1 f 3w12w23w32w33z1z2z3z4

• Graded reverse lexicographic order: w33, w35, w32, w31,
w23, w24, w12, w14, b9, b2, e10, f8, f1, e7, e2, e5, b7,
d1, d6, d4, d3, a4, a3, e1, f7, f2, e6, b8, d2, d5, a5, a2,
b13, b11, f3, a6, b14, e9, e4, b6, b4, b12, b10, e8, e3,
b5, b3, z2, z1, z4, z3.

• Groebner Basis G = [b4 - b3, b6 - b5, e4 - e3, e9 - e8,
b11 - b10, b13 - b12, a5 - a2, f7 - f2, b9 - b2, -e2 + e3
z3, b10 z3 - b2, b7 z3 - b5, e10 z3 - e8, -e7 + e8 z4, -f2
+ f3 z4, e5 z4 - e3, f1 z4 - f2, f8 z4 - f2, b3 z1 - b2,
b14 z1 - b12, a6 z1 - a2, -a2 + a3 z1, a4 z1 - a2, b5 z2
- b3, b12 z2 - b10, -d2 + d3 z2, d4 z2 - d5, -d5 + d6 z2,
d1 z2 - d2, d6 b3 - d4 b3, d1 b3 - d3 b3, b10 b5 - b12
b3, d5 b5 - d4 b3, d2 b5 - d3 b3, f1 e3 - f3 e3, f8 e3 -
f3 e3, b7 e8 - e10 b5, a3 b10 - a6 b10, a4 b10 - a6 b10,
......].

• Normal form of M1 −M0 with respect to Groebner Basis
G is -w35 w31 f3 e3 b3 w14 a2 d3 w24 + w31 w14 d5
a2 w35 w24 b2 f2 e8 which is not equal to zero.

• Thus this state is not reachable. This is true because B
vehicle can move to collision area if and only if there
is token at z1, z2 and z3 and also remove token from
these places if it moves to collision area i.e. z1, z2 and
z3 control the vehicle B.

d) Scenario II: : Marking with polynomial pol(M2) :
a6b8d4e4 f 7w12w23w32w33z1z2z3z4

This marking is also not reachable since normal form of M2−
M0 with respect to Groebner Basis G and with same graded
reverse lexicographic order as above is -w35 w31 f3 e3 b3
w14 a2 d3 w24 + w35 w31f2b3w14a2d3w24e3 which is not
equal to zero. This is true because token of route E can’t be in
collision area if both places Z3 and Z4 do not have the token.

IV. TRAFFIC LIGHT SYSTEM

A. Problem Formulation

The objective of this problem is to verify that traffic light
system at a busy intersection works correctly. The complete
structure of this intersection is shown in Figure 7. On each
direction we have five lanes, right two lanes are for incoming
traffics and left three for outgoing traffic from that direction.
Among three lanes on the left hand side, rightmost lane is to
turn left, middle one to go straight and leftmost can be used
either to go straight or turn right. Incoming vehicles are sensed
by the sensor and controlled by the traffic lights. Vehicles are
allowed to continue at the junction if it is safe to do so i.e. there
is no possibility of collision with the vehicle from opposite
direction. Further we also have four buttons for pedestrians
on each of the four directions. When a pedestrian presses the
button, lights must be set in a way such that it is safe for the
pedestrian to cross the road.
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Figure 8. Traffic Light Petri Net

Figure 7. Traffic System

To solve this problem the whole program is divided into three
modules, for straight lane (Figure 9), for left turn lane and for
pedestrian. The following approach is taken to simulate lane
activities (Figure 9):

• For each lane four states are defined: idle (no vehicle),
entering (vehicle sensed), critical (request is pending) and
exiting (successfully crossed).

• Initially lane is in idle state
• If vehicle arrive sensor will be activate , set the request

and change state to entering.

• After being in entering state try to get lock on the lane
if

– none of the opposite lanes have set it.
– none of opposite lanes have requested and
– none of pedestrian on the way have requested.

• After gaining lock check if all other opposite lane has
not requested (same condition as for gaining lock). If so
enter the critical state and set the go status.

• Once done, free the lock if pair lanes are also done and
set off the go status.

Figure 9. SMV Code for Straight Lane

Figure 10. SMV Code for Left Turn Lane
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Similarly, pedestrian module as shown in Figure 11 is written
to simulate pedestrian activity. Following is an outline of steps
done to do so (Figure 11):

• Three states of pedestrian are defined as follows: idle
(no request), press (requested) and exiting (successfully
granted).

• The initially state is idle.
• State changes to press as soon as a sensor senses the

request.
• Crossing is allowed if all incoming lanes (there will be

four lanes to check each time) had not requested.

Figure 11. SMV Code for Pedestrian

Now let us explain the specification give for the verification.
Specification is shown in Figure 12. Two sets of specification
are given, one to check for mutual exclusion i.e. when any one
lane or one side pedestrian is in go state no other opposite lane
be in go state too. This ensures that no collisions or hit will
ever occur. Other set of specifications ensure that no process
can block other process from getting the request.

Figure 12. Specification for Traffic Light Verification

1) Verification with Model Checking: Following observation
(Figure 13) is made while verifying the model. All the
specification comes to be true so no counter example is given
which means that the desire properties are fulfilled by the
model.

Figure 13. Traffic Light Problem Verification Result

2) Verification with Groebner Basis: Now, further verification
can be done with the help of Petri Net and Groebner basis.
Petri Net for this traffic problem can be defined in terms of
traffic lights. Here six traffic lights will be enough to simulate,
four lights for each left turn and one light for each horizontal
and vertical lane. Pedestrian lights can share same transition as
of horizontal and vertical lanes. For example North to South
pedestrian light will be identical to light for North-South lane.

Scenario I: Lights for both North-East turn and South-West
turn is green pol(M1) = R1G2R3R4G5R6

• Initial state pol(M0) = SR1R2R3R4R5R6
• Graded reverse lexicographic order: R1, R2, R3, R4, R5,

R6, G4, O1, G2, O2, O4, G3, O3, G6, O6, G5, G1, O5,
S.
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• Groebner Basis G = [G5 - O5, G6 - O6, G3 - O3, G2 -
O2, O1 - G1, G4 - O4, S R6 - O6, S R5 - O5, -O4 + S
R4, -O3 + S R3, -O2 + S R2, S R1 - G1, R5 G1 - R1
O5, R5 O6 - R6 O5, R1 O6 - R6 G1, R6 O3 - R3 O6,
R5 O3 - R3 O5, R1 O3 - R3 G1, R6 O4 - R4 O6, R5
O4 - R4 O5, R3 O4 - R4 O3, R1 O4 - R4 G1, R6 O2 -
R2 O6, R5 O2 - R2 O5, R4 O2 - R2 O4, R3 O2 - R2
O3, R1 O2 - R2 G1]

• Normal form of M1 −M0 with respect to Groebner Basis
G is R6 G1 R2 O5 R3 R4 - R6 O5 R1 R2 R3 R4 which is
not equal to zero. Thus this state is not reachable which
must be true to ensure safety at the crossroad.

Scenario II: Lights for both North-South and East-West lane
are green pol(M2) = G1R2R3G4R5R6

The normal form of M2 −M0 with respect to Groebner Basis
G and with same graded reverse lexicographic order as above
is R6 G1 R2 O5 R3 R4 - R6 O5 R1 R2 R3 R4 which is not
equal to zero. Thus this state is also unreachable.

V. CONCLUSION

We have shown that computational methods like model check-
ing and Groebner bases can be used to verify the correctness
of an automation system by specifying the desired properties
in the CTL form and verifying the corresponding temporal
formula. The benefit of using SMV for model checking is
its feature of giving counter example in the case of fault
in the system. This feature not only helps to catch the bug
but also helps to rectify the fault in the design. We also use
algorithms from the field of computer algebra particularly
theory of Groebner basis is used on Petri Net to test the
reachability problem.
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