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Abstract—The paper focuses on the enhanced stiffness modeling 

of robotic manipulators by taking into account influence of the 
external force/torque acting upon the end point. It implements the 
virtual joint technique that describes the compliance of manipulator 
elements by a set of localized six-dimensional springs separated by 
rigid links and perfect joints. In contrast to the conventional 
formulation, which is valid for the unloaded mode and small 
displacements, the proposed approach implicitly assumes that the 
loading leads to the non-negligible changes of the manipulator 
posture and corresponding amendment of the Jacobian. The 
developed numerical technique allows computing the static 
equilibrium and relevant force/torque reaction of the manipulator for 
any given displacement of the end-effector. This enables designer 
detecting essentially nonlinear effects in elastic behavior of 
manipulator, similar to the buckling of beam elements. It is also 
proposed the linearization procedure that is based on the inversion of 
the dedicated matrix composed of the stiffness parameters of the 
virtual springs and the Jacobians/Hessians of the active and passive 
joints. The developed technique is illustrated by an application 
example that deals with the stiffness analysis of a parallel 
manipulator of the Orthoglide family.

Keywords—Robotic manipulators, Stiffness model, Loaded 
mode, Nonlinear effects, Buckling, Orthoglide manipulator

I. INTRODUCTION

URRENT trends in mechanical design of robotic 
manipulators are targeted at essential reduction of moving 

masses, in order to achieve high dynamic performances with 
relatively small actuators and low energy consumption. This 
motivates using advanced kinematical architectures 
(Orthoglide, Isoglide, Delta, etc.) and light-weight materials, 
as well as minimization of cross-sections of all critical 
elements. The primary constraint for such minimization is the 
mechanical stiffness of the manipulator, which is directly 
related with the robot accuracy defined by the design 
specifications.
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In robotic literature, the manipulator stiffness is usually 
evaluated by a linear model, which defines the static response 
to the external force/torque, assuming that the compliant 
deflections are small and the external loading is insignificant. 
However, in many practical applications (such as milling, for 
instance), the loading is essential and conventional stiffness 
modeling techniques must be used with great caution. 
Moreover, for the manipulators with light-weight links, there is 
a potential danger of buckling phenomena that is known from 
general theory of elastic stability [1]. Hence, the existing 
stiffness modeling techniques for high-performance robotic 
manipulators must be revised, in order to add ability of 
detecting non-linear effects and avoid structural failures 
caused by the preloading.  

The existing approaches for the manipulator stiffness 
modeling may be roughly divided into three main groups:  the 
Finite Element Analysis (FEA) [2], the matrix structural 
analysis (SMA) [3], and the virtual joint method (VJM) that is 
often called the lumped modeling [4]. The most accurate of 
them is the Finite Element Analysis, which allows modeling 
links and joints with its true dimension and shape. However it 
is usually applied at the final design stage because of the high 
computational expenses required for the repeated remeshing of 
the complicated 3D structure over the whole workspace. The 
SMA also incorporates the main ideas of the FEA, but 
operates with rather large elements – 3D flexible beams that 
are presented in the manipulator structure. This leads 
obviously to the reduction of the computational expenses, but 
does not provide clear physical relations required for the 
parametric stiffness analysis. And finally, the VJM method is 
based on the expansion of the traditional rigid model by 
adding the virtual joints (localized springs), which describe the 
elastic deformations of the links, joints and actuators. The 
VJM technique is widely used at the pre-design stage and will 
be extended in this paper for the case of the preloaded 
manipulators.

It should be noted, that there are a number of variations and 
simplifications of the VJM, which differ in modeling 
assumptions and numerical techniques. Recent modification of 
this method allows to extend it to the over-constrained 
manipulator and to apply it at any workspace point, including 
the singular ones [5] [6]. Besides, to take into account real 
shape of the manipulator components, the stiffness parameters 
may be evaluated using the FEA modeling. The latter provided 
the FEA-accuracy throughout the whole workspace without 
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exhaustive remeshing required for the classical FEA.
At present, there is very limited number of publication that 

directly addressed the problem of the manipulator stiffness 
modeling in loaded mode. The most essential results were 
obtained in [7], [8] where the stiffness matrix was computed 
taking into account the change in the manipulator 
configuration due to the loading. However, the problem of 
finding the corresponding loaded equilibrium was omitted, so 
the Jacobian and Hessian were computed in a traditional way, 
i.e. for the neighborhood of the unloaded equilibrium. The 
latter yielded essential computational simplification but also 
imposed essential limitations, not allowing detecting the 
buckling and other non-liner effects [9].

This paper presents a complete solution of the considered 
problem, taking into account influence of the external 
force/torque on the manipulator configuration as well as on its 
Jacobian and Hessian. It implements the virtual joint technique 
that describes the compliance of the manipulator elements by a 
set of localized six-dimensional springs separated by rigid 
links and perfect joints. The remainder of the paper is 
organized as follows. Section 2 defines the research problem
and presents the kinetostatic model of the manipulator. In 
Section 3, it is proposed a numerical algorithm for computing 
of the loaded static equilibrium. Section 4 focuses on the 
stiffness matrix evaluation. And finally, Section 5 contains a 
numerical example that illustrates the nonlinear effects in the 
stiffness behavior of manipulators.

II. PROBLEM STATEMENT

Let us consider a parallel manipulator which consists of a 
fixed base, several identical kinematic chains and a mobile 
platform. Typical examples of such kinematics (Fig. 1) are the
3-PUU translational parallel kinematic machine [10], Delta 
parallel robot [11], Orthoglide parallel manipulator [12] and 
others [13] [14].

(a) (b)
Fig. 1 Kinematics of typical parallel manipulators:

(a) Orthoglide manipulator, (b) Par 2 Fatronik manipulator 

To evaluate the manipulator stiffness, let us apply the VJM 
method that assumes that the traditional rigid model is 
extended by adding virtual joints, which describe stiffness of 
the actuator and links. Thus, each chain of the manipulator can 
be described by a sequence of the following typical elements:

(a) a rigid link between the manipulator base and actuating 
joint described by the constant homogenous transformation 
matrix BaseT ;

(b) compliant actuating joints defining three translational 
and three rotational actuator coordinates, which are described 
by the homogenous matrix function  ,Ac a aT q θ  where aq  is 

the active joint coordinates and aθ are the virtual springs 
coordinate of the actuator;

(c) complaint serial kinamatic chain defining by the rigid 
links, virtual and passive joints coordinates, which describes 
by the  homogenous matrix function  ,Chain c cT q θ  where cq

and cθ  are the vectors, which collects all passive and virtual 
joints coordinates of the chain respectively;

(d) a rigid link from the last link to the end-effector,
described by the homogenous matrix transformation ToolT . 

Hence, the end-effector position may be computed by 
sequential multiplication of the above homogenous matrices, 
so the kinematic model of a separate chain may written as 

( , ) ( , )Base Ac a a Chain c c Tool   T T T q θ T q θ T (1)

This expression includes both traditional geometric 
variables (passive and active joint coordinates) and stiffness 
variables (virtual joint coordinates). Explicit position and 
orientation of the end-effector can by extracted from the 
matrix T [15], so finally the kinematic model can be rewritten 
as

( , )t  g q θ (2)

where (...)g  is the geometry function which depends of the 
passive ( )q  and virtual joint ( )θ coordinates, the vectors 

1 2( , , ..., )T
nq q qq includes all passive joint coordinates, the 

vector 1 2( , , ..., )T
m  θ  collects all virtual joint 

coordinates, n  is the number of passive joins, m  is the 
number of virtual joints.

To evaluate the manipulator ability to respond to external 
forces and torques, it is necessary to introduce additional 
equations that define the virtual joint reactions to the 
corresponding spring deformations. For analytical 
convenience, corresponding expressions may be collected in a 
single matrix equation

 θ θτ K θ (3)

where  ,1 ,2 ,, , ...,
T

m    θτ  is the aggregated vector of the 

virtual joint reactions,  , , ...,diagθ θ,1 θ,2 θ,mK K K K  is the 

aggregated spring stiffness matrix of the size mm, and ,iθK  is 
the spring stiffness matrix of the corresponding link. Similarly, 
one can define the aggregated vector of the passive joint 
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reactions  ,1 ,2 ,, , ...,
T

q q q n  qτ  but, in this case, all its 

components must be equal to zero qτ 0 .
In general case, the desired stiffness model is defined by a 

non-liner relation

( )F f Δt (4)

that describes resistance of a mechanism to deformations 
Δt caused by an external force/torque F [1]. It should be 
noted that the mapping  Δt F  is strictly mathematically 
defined and physically tractable in all cases, including under-
constrained kinematics and singular configurations of the 
manipulator. However, the converse is not true.

In engineering practice, function (...)f is usually linearized 
in the neighborhood of the static equilibrium ( , )q θ

corresponding to the end-effector position t  and external 
loading F . For the unloaded mode, i.e. when F 0  and 

0θ 0  the stiffness model is expressed by a simple relation 

( , ) 0 0F K q θ Δt (5)

where K is 66 ‘‘stiffness matrix” and the vector 

0 01 02 0( , , ..., )T
nq q qq defines the equilibrium configuration

corresponding to the end-effector location 0t , in accordance 
with the manipulator geometry. 

However, for the loaded mode, stiffness model have to be 
defined in the neighborhood of the static equilibrium that
corresponds to another manipulator configuration ( , )q θ , 
which is caused by external forces F . In this case, the stiffness 
model describes the relation between the increments of the 
force δF and the position δt

( , )  F K q θ t (6)

where  0q q Δq  and  0θ θ Δθ denote the new position 
of the manipulator, Δq  and Δθ  are the deviations of the 
passive joint and virtual spring coordinates.

Hence, the problem of the stiffness modeling in the loaded 
mode may be divided into two sequential subtasks: (i) finding 
the static equilibrium for the loaded configuration; and (ii) 
linearization of relevant force/position relations in the
neighborhood of this equilibrium. Let us consider these two 
sub-problems consequently.

III. STATIC EQUILIBRIUM FOR THE LOADED MODE

Let us assume that, due to the external force F, the end-
effector of the manipulator is relocated from the initial 
(unloaded) position ( , )P0 0 0t q θ  to a new position 

( , )Pt q θ , which satisfies the condition of the mechanical 
equilibrium. Here 0q  is computed via the inverse kinematics

and 0θ is equal to zero (since there is no preloading in the
springs), ,q θ  are passive and virtual joint coordinate in the
loaded mode respectively. For rather small displacement 

  0Δt t t , a new position of the end-effector 
( , )P  0 0t q Δq θ Δθ  may be expressed as 

    0 θ qt t J Δθ J Δq (7)

where θJ  and qJ are the kinematic Jacobians with respect to 

the coordinates , q, which may be computed from (1) 
analytically or semi-analytically, using the factorization 
technique [6]. However, in general case, the stiffness model is 
highly non-linear and computing ( , )q θ  requires some 
additional efforts. 

For computational reasons, let us consider the dual problem
that deals with determining the external force F and the 
manipulator configuration ( , )q θ  that correspond to the output 
position t . 

Let us assume that the joints give small, arbitrary virtual 
displacements Δθ  in the equilibrium neighborhood.
According to the principle of virtual displacements, the virtual 
work of the external force F  applied to the end-effector along 
the corresponding displacement    θ qΔt J Δθ J Δq  is equal 

to the sum    T T  θ qF J Δθ F J Δq . Since  the passive joints 

do not produce the force/torque reactions, the virtual work 
includes only one component  T θτ Δθ  (the minus sign takes 
into account the force-displacement directions for the virtual 
spring). In the static equilibrium, the total virtual work of all 
forces is equal to zero for any virtual displacement, therefore 
the equilibrium conditions may be written as 

;T

T

 

 
θ θ

q

J F τ

J F 0
(8)

Taking into account (3), the latter can be rewritten as

;

0

T

T

  

 
θ θ

q

F J K θ

F J
(9)

It is evident that there is no general method for analytical 
solution of this system and it is required to apply numerical 
techniques. To derive the numerical algorithm, let us linearize 
the kinematic equation in the neighborhood of the current 
position ( , )i iq θ

1 1( , ) ( , ) ( ) ( , ) ( )i i i i i i i i i iP        q θt q θ J q θ q q J q θ θ θ (10)

and rewrite the static equilibrium equations as



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:10, 2009

1205

1 1

1

( , ) ;

( , )

T
i i i i

T
i i i

 



 

 
θ θ

q

J q θ F K θ

J q θ F 0
(11)

This leads to a linear algebraic system of equations with 
respect to 1 1 1( , , )i i i  q θ F

1 1

1 1

1

( , ) ( , )

( , ) ( , ) ( , )

( , )

( , )

i i i i i i

i i i i i i i i

T
i i i i

T
i i i

 

 



   

     

    

 

q θ

q θ

θ θ

q

J q θ q J q θ θ

t f q θ J q θ q J q θ θ

K θ J q θ F 0

J q θ F 0

(12)

which gives the following iterative scheme

11
1

1

1
1 1

( , ) ( , ) ( , )
( , ) 0

( , ) ( , ) ( , )
0

( , )

T
i i i i i i i

T
i i i

i i i i i i i i

T
i i i i







 

  
   
    

   
  
 

  

θ θ θ q

q

q θ

θ θ

F J q θ K J q θ J q θ

q J q θ

t f q θ J q θ q J q θ θ

θ K J q θ F

(13)

where the starting point ( ,0 0q θ ) can be chosen using the non-
loaded configuration, and computed via the inverse 
kinematics.

As follows from computational experiments, for typical 
values of deformations the proposed iterative algorithm 
possesses rather good convergence (3-5 iterations are usually 
enough). However, in the case of buckling or in the area of 
multiple equilibriums, the problem of convergence becomes 
rather critical and highly depends on the initial guess. To 
overcome this problem, the value of the joint variables 
 ,i iθ q  computed at each iterations were disturbed by adding 
small random noise. Further enhancement of this algorithm 
may be based on the full-scale Newton-Raphson technique (i.e. 
linearization of the static equilibrium equations in addition to 
the kinematic one), this obviously increases computational 
expenses but potentially improves convergence.

IV. STIFFNESS MODEL FOR THE LOADED MODE

After the static equilibrium corresponding to the external 
loading is found, the force-displacement relations may be 
linearized. To compute the desired stiffness matrix, let us 
assume that the manipulator was moved from the configuration 
( , , , )F q θ t  to the configuration ( , , , )      F F q q θ θ t t

and both of them satisfy the equilibriums equations, i.e.

;

0

T

T

  

 
θ θ

q

F J K θ

F J
(14)

and 

     
   

;

0

T

T

  

 

     

   

θ θ θ

q q

F F J J K θ θ

F F J J
(15)

where ( , ) qJ q θ  and ( , ) θJ q θ  are the differentials of the 

Jacobians due to changes in ( , )q θ .  
Let us also linearize the geometric model (5) in the 

neighborhood of ( , )q θ

( , ) ( , )   θ qδt J q θ δθ J q θ δq , (16)

After relevant transformation and neglecting high-order 
small terms, equations (14), (15) may be rewritten as 

( ) ( ) ( )

( ) ( ) ( )

T

T

   

  

      

     

F F
θ θq θθ θ

F F
q qq qθ

J q,θ F H q,θ q H q,θ θ K θ

J q,θ F H q,θ q H q,θ θ 0
(17)

where , , ,F F F F
qq qθ θq θθH H H H ,are the Hessian matrices of the 

scalar function ( , )T F g q θ .
This allows to apply substitution for θ   and to obtain 

system of two matrix equations with unknowns  F  and q

T

T T

         
                 

F F F
θ θ θ q θ θ θq

F F F F F F
q qθ θ θ qq qθ θ θq

J k J J J k H δF δt

J H k J H H k H δq 0
, (18)

which determine stiffness model for the case of the loaded 

equilibrium. Here   1
 F F

θ θ θθk K H .

Therefore, for a separate kinematic chain, the desired 
stiffness matrix FK  defining the displacement-to-force 
mapping (4) in the neighborhood of the loaded configuration
can be computed  by direct inversion of the matrix in the left-
hand side of (18) and extracting from it the left-upper 66 sub-
matrix.

Let us note that the matrix (18) can be computed and 
inverted for any configuration (including singular ones). 
Besides, the proposed technique takes into account both elastic
deformations in the virtual springs and unrestricted kinematics 
motions due to the passive joints. In the case of multi-chain 
manipulator, the desired matrix can be computed by simple 
summation 

1

n
ii

 F FK K , where i
FK corresponds to the i-th 

chain. This follows from the superposition principle, since the 
total external force corresponding to the end-effector 
displacement δt  (the same for each kinematic chains) can be 
expressed as the sum of the partial forces.

V. ILLUSTRATIVE EXAMPLE

A. Kinetostatic model
Let us illustrate the proposed technique by stiffness analysis 

of a translational manipulator of the Orthoglide family
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presented in Fig.1. For this manipulator, each kinematic chain 
consists of a foot, a kinematic parallelogram with two axes and 
two bars, and an end-effector. (Fig. 2). 

Fig 2 Chain of the Orthoglide manipulator

As follows from a separate study, the rigidity of the 
parallelogram axes is high compared to the bar and the foot. 
For the remaining elements, the compliance matrices (i.e. the 
inverses of the corresponding stiffness matrices) were 
identified using the FEA-based methodology and special 
accuracy improvement tools proposed by the authors [16]. 
Numerical values for these matrices are 

5 5 7

5 5 7

4 6 6

6 8

6 8

7 7 9

28 10 33 10 0 0 0 40 10
33 10 41 10 0 0 0 54 10

0 0 19 10 11 10 15 10 0
0 0 11 10 23 10 0 0
0 0 15 10 0 23 10 0

40 10 54 10 0 0 0 84 10

Footk

  

  

  

 

 

  

     
     
    

  
  

    
     

(19)

6

2 5

3 5

6

5 7

4 7

46 10 0 0 0 0 0
0 23 10 0 0 0 11 10
0 0 51 10 0 24 10 0
0 0 0 29 10 0 0
0 0 24 10 0 15 10 0
0 11 10 0 0 0 72 10

Bark



 

 



 

 

 
   
   

  
 

    
   

(20)

For the analysis, the kinematic parallelogram was replaced 
by a bar element with double stiffness and there were 
considered several typical postures presented in Fig 3.

For such approximation, the kinematic model of the 
manipulator chain is expressed as 

1 2

3 4

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
base x a Foot y z

x Link z y Tool

q q

L q q

      

    

T T T V θ R R

T V θ R R T
(21)

where ,base ToolT T are constant transformations matrices (the 
matrix baseT  includes also the “foot” transformation); 

, ,a Foot Link θ θ  are the virtual joint coordinates of the actuator,
the “foot” and the “link” respectively; (...)V  is the 
homogeneous matrix-function of the virtual springs, which

Fig 3 Typical postures of the Orthoglide kinematic chain

depends on six variables and can be described via the
multiplication of elementary transformations as

( , , , , , )

( ) ( ) ( ) ( ) ( ) ( )
x y z x y z

x x y y z z x x y y z z

  

  

      

           

V

T T T R R R
(22)

where , , , , ,x y z x y zT T T R R R  are elementary homogeneous 
transformation matrices. For this case study, the Jacobian and 
Hessian matrices were computed semi-analytically, via 
differentiation of the model (21).

B. Stiffness modeling
The stiffness modeling experiments were carried out for 

four typical postures presented in Fig 3 and TABLE I. During 
the stiffness modeling, the end-effector of the kinematic chain 
was displaced in the range between 0 and 4 mm with the step 
0.001 mm, starting from the unloaded configuration. The static 
equilibrium and corresponding force were determined for each 
displacement using the iterative algorithm presented in Section 
3. Besides, the stiffness matrix was computed for each case. 
The stiffness model was computed sequentially from small to 
high displacement, using previous state as a starting one for 
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TABLE II
INFLUENCE OF THE EXTERNAL LOADING ON THE STIFFNESS OF THE MANIPULATOR CHAIN

Buckling Large deformations (2cr)Posture K0, N/m
K1, N/m Fcr, N Δcr, mm K2, N/m F1, N Δ1, mm K3, N/m

Posture A 3228 3228 2661 0.82 8.56 2672 2.00 8.56
Posture B 1130 1105 1920 1.7 159 2494 4.00 27.7
Posture C 13056 13090 2300 0.18 8.56 2305 0.30 8.56
Posture D 1260 1170 2000 1.61 52.73 2191 3.00 20.6
K0 is the stiffness for the unloaded mode, K1 is the stiffness before the buckling, K2 is the stiffness after the buckling, K3 is the 
stiffness for the “large” deformations, Fcr is the critical force for the buckling, F1 is the force for the “large” deformations, Δcr is 
the deformation in the buckling mode, Δ1 is the “large” deformation value.

the next step. The force-displacement relationship for each 
posture present on the Fig 4

TABLE I
CONFIGURATIONS OF THE MANIPULATOR CHAIN

Configuration 1q 2q 3q 4q
Pos. A (Fig 3, a) 0 0 0 0
Pos. B (Fig 3, b) 0 / 6 / 6 0
Pos. C (Fig 3, c) / 6 0 0 / 6
Pos. D / 6 / 6 / 6 / 6
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Fig 4 Force-displacement relationship of the Orthoglide chain:
a) Pos. A; b) Pos. B; c) Pos. C; d) Pos. D;

The obtained results show that the stiffness model of the 
considered kinematic chain is significantly nonlinear and 
essentially depends on both the posture of the manipulator 
chain and the external force. In particular, applying the force 
about 2 kN leads to the buckling effect and considerable 
reduction of the stiffness (by 50…100 times, see TABLE I). 
After the buckling, even insignificant increase of the external
force causes very essential deflections of the kinematic chain
and corresponding positing errors.

Hence, the developed technique allowed detecting some 
uncommon behavior of the robotic manipulators which was 
previously not reported in robotic literature.  These 
phenomena are directly related to the robot accuracy and must 
be obviously taken into account during design and analysis.
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