
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1855

Abstract—Ontology is a terminology which is used in artificial

intelligence with different meanings. Ontology researching has an

important role in computer science and practical applications,

especially distributed knowledge systems. In this paper we present an

ontology which is called Computational Object Knowledge Base

Ontology. It has been used in designing some knowledge base

systems for solving problems such as the system that supports

studying knowledge and solving analytic geometry problems, the

program for studying and solving problems in Plane Geometry, the

knowledge system in linear algebra.

Keywords—Artificial intelligence, knowledge representation,

knowledge base system, ontology.

I. INTRODUCTION

N artificial intelligence science, models and methods for

knowledge representation play an important role in

designing knowledge base systems and expert systems.

Nowadays there are many various knowledge models which

have already been suggested and applied. In the books [2], [3],

[4] and [9] we have found popular methods for knowledge

representation in designing knowledge base systems (KBS).

Ontology is a terminology which is used in artificial

intelligence with different meanings, and some of its

definition can be found in [1], [3], [5], [8] and [10]. The

followings are some definitions of the terminology ontology:

- “An Ontology is an explicit specification of a

conceptualization” [5].

- “The subject ontology is the study of categories of

things that exist or may exist in some domain. The

product of such a study, called an ontology, is a catalog

of the types of things that are assumed to exist in a

domain of interest D from the perspective of a person

who uses a language L for the purpose of talking about

D” [3].

- For Artificial Intelligence researchers “an ontology

describes a formal, shared conceptualization of a

particular domain of interest. Thus, ontologies provide

a way of capturing a shared understanding of a domain

that can be used both by humans and systems to aid in

information exchange and integration“ [1].

Ontologies give us a modern approach for designing

knowledge components of KBS. However, practical

applications of intelligent systems expect more powerful and

useful models for knowledge representation. In this paper an

ontology, which is called “Computational Object Knowledge

Base Ontology” (COKB-ONT), will be presented. It includes

models, specification language, problems and deductive

methods. The COKB-ONT was used to produce applications

in education and training such as a program for studying and

solving problems in plane geometry presented in [6], a system

that supports studying knowledge and solving of analytic

geometry problems presented in [7], and a knowledge base

system in linear algebra. These intelligent programs must have

suitable knowledge base and they not only give human

readable solutions but also present solutions as the way

teachers and students usually write them. The practical

methods in [11], [12] and [13] are difficult to use for

designing the above programs. Our applications have been

implemented by using programming tools and computer

algebra systems such as C++, JAVA, and MAPLE. They are

very easy to use for students in studying knowledge, to solve

automatically problems and give human readable solutions

agree with those written by teachers and students.

The COKB-ONT has been shown that it is convenient for

studying of users and for using by inference engine. Besides,

problems are also modeled easily so that we can design

algorithms for solving problems automatically and propose a

simple language for specifying them.

II. MODEL OF COMPUTATIONAL OBJECT KNOWLEDGE BASE

The traditional methods for knowledge representation such

as those presented in [2], [4], [9] and [14] are interested and

useful for many applications. However, those methods are not

enough and not easy to use for constructing intelligent

programs or knowledge base systems in different domains of

knowledge, especially programs with human readable output.

The model of computational object knowledge base has been

established from Object-Oriented approach to represent

knowledge together with programming techniques for

symbolic computation. There have been many results and

tools for Object-Oriented methods, and some principles as

well as techniques were presented in [15]. This way also gives

us a method to model problems and to design algorithms. The

models are very useful for constructing components and the

whole knowledge base of intelligent system in practice of

knowledge domains.

A. Components of the Model

The model of computational object knowledge base (COKB

model) consists of 6 components:

(C, H, R, Ops, Funcs, Rules).

An Ontology for Knowledge Representation and

Applications

Nhon Do

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1856

The meanings of the components are as follows:

- C is a set of concepts of computational objects (C-

Object).

- H is a set of hierarchy relation on the concepts.

- R is a set of relations on the concepts.

- Ops is a set of operators.

- Funcs is a set of functions.

- Rules is a set of rules.

Each concept in C is a class of C-objects. The structure C-

Objects can be modeled by (Attrs, F, Facts, Rules). Attrs is a

set of attributes, F is a set of equations called computation

relations, Facts is a set of properties or events of objects, and

Rules is a set of deductive rules on facts. For example,

knowledge about a triangle consists of elements (angles,

edges, etc) together with formulas and some properties on

them can be modeled as a class of C-objects whose sets are as

follows:

Attrs = {A, B, C, a, b, c, R, S, p, ...} is the set of all

attributes of a triangle,

F = {A+B+C = ; R
A

a
2

)sin(
; R

B

b
2

)sin(
;

R
C

c
2

)sin(
;

)sin()sin(B

b

A

a ;

)sin(
2

1
AbcS ; ...},

Facts = {a+b>c; a+c>b; b+c>a ; …}, and

Rules = { {a>b} {A>B}; {b>c} {B>C};

{c>a} {C>A}; {a=b} {A=B};

{a^2= b^2+c^2} {A=pi/2},

{A=pi/2} {a^2 = b^2+c^2, b c},

 ...}.

An object also has basic behaviors for solving problems on

its attributes. Objects are equipped abilities to solve problems

such as:

1. Determines the closure of a set of attributes.

2. Executes deduction and gives answers for questions

about problems of the form: determine some attributes

from some other attributes.

3. Executes computations

4. Suggests completing the hypothesis if needed.

For example, when a triangle object is requested to give a

solution for problem {a, B, C} S, it will give a solution

consists of three following steps:

Step 1: determine A, by A = -B-C;

Step 2: determine b, by b = a.sin(B)/sin(A);

Step 3: determine S, by S = a.b.sin(C)/2;

There are relations represent specializations between

concepts in the set C; H represent these special relations on C.

This relation is an ordered relation on the set C, and H can be

considered as the Hasse diagram for that relation. The Fig. 1

below represents special relations on the classes of triangles.

Fig. 1 Specialization relations on the classes of triangles

R is a set of other relations on C, and in case a relation r is a

binary relation it may have properties such as reflexivity,

symmetry, etc…. In plane geometry and analytic geometry,

there are many such relations: relation “belongs to” of a point

and a line, relation “central point” of a point and a line

segment, relation “parallel” between two line segments,

relation “perpendicular” between two line segments, the

equality relation between triangles, etc.

The set Ops consists of operators on C. This component

represents a part of knowledge about operations on the

objects. Almost knowledge domains have a component

consisting of operators. In analytic geometry there are vector

operators such as addition, multiplication of a vector by a

scalar, cross product, vector product; in linear algebra there

are operations on matrices. The COKB model helps to

organize this kind of knowledge in knowledge domains as a

component in the knowledge base of intelligent systems.

The set Funcs consists of functions on C-Objects.

Knowledge about functions is also a popular kind of

knowledge in almost knowledge domains in practice,

especially fields of natural sciences such as fields of

mathematics, fields of physics. In analytic geometry we have

the functions: distance between two points, distance from a

point to a line or a plane, projection of a point or a line onto a

plane, etc. The determinant of a square matrix is also a

function on square matrices in linear algebra.

The set Rules represents for deductive rules. The set of

rules is certain part of knowledge bases. The rules represent

for statements, theorems, principles, formulas, and so forth.

Almost rules can be written as the form “if <facts> then

<facts>”. In the structure of a deductive rule, <facts> is a set

of facts with certain classification. Therefore, we use

deductive rules in the COKB model. Facts must be classified

so that the component Rules can be specified and processed in

the inference engine of knowledge base system or intelligent

systems.

Base on the COKB model, the knowledge base can be

organized by the following components:

1. The dictionary of concepts about kinds of objects,

attributes, operators, functions, relations and related

concepts.

2. The table of descriptions for structures and features of

objects. For example, we can request a triangle to

compute and to give us its attributes.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1857

3. The tables for representing hierarchical relations of

concepts.

4. The tables for representing other relations of concepts.

5. The tables for representing knowledge about operators.

6. The tables for representing knowledge about functions.

7. The tables of descriptions for kinds of facts. For

example, a relational fact consists of kind of the

relation and the list of objects in the relation.

8. The tables of descriptions for rules. For example, a

deductive rule consists of hypothesis part and

conclusion part. Both of them are lists of facts.

9. The lists or sets of rules.

10.The lists of problem patterns.

B. Kinds of Facts in COKB Model

In the COKB model there are 11 kinds of facts accepted.

These kinds of facts have been proposed from the researching

on real requirements and problems in different domains of

knowledge. The kinds of facts are as follows:

- Fact of kind 1: information about object kind. The

followings are some examples:

ABC is a right triangle.

ABCD is a parallelogram.

The matrix A is a square matrix.

- Fact of kind 2: a determination of an object or an

attribute of an object. The following problem in

analytic geometry gives some examples for facts of

kind 2.

Problem: Given the points E and F, and the line (d).

Suppose E, F, and (d) are determined. (P) is the

plane satisfying the relations: E (P), F (P), and

(d) // (P). Find the general equation of (P). In this

problem we have three facts of kind 3: (1) point E is

determined or we have already known the

coordinates of E, (2) point F is determined, (3) line

(d) is determined or we have already known the

equation of (d).

- Fact of kind 3: a determination of an object or an

attribute of an object by a value or a constant

expression. The followings are some examples in plane

geometry and in analytic geometry:

In the triangle ABC, suppose that the length of

edge BC = 5.

The plane (P) has the equation 2x + 3y – z + 6

= 0, and point M has the coordinate (1, 2, 3).

- Fact of kind 4: equality on objects or attributes of

objects. This kind of facts is also popular, and there are

many problems related to it on the knowledge base.

The following problem in plane geometry gives some

examples for facts of kind 4.

Problem: Given the parallelogram ABCD. Suppose

M and N are two points of segment AC such that

AM = CN. Prove that two triangles ABM and CDN

are equal (see Fig. 2).

Fig. 2 Problem: prove that ABM = CDN

In the above problem we have to determine equality

between two C-objects, a fact of kind 4.

- Fact of kind 5: a dependence of an object on other

objects by a general equation. An example in geometry

for this kind of fact is that w = 2*u + 3*v; here u, v and

w are vectors.

- Fact of kind 6: a relation on objects or attributes of the

objects. In almost problems there are facts of kind 6

such as the parallel of two lines, a line is perpendicular

to a plane, a point belongs to a line segment.

- Fact of kind 7: a determination of a function.

- Fact of kind 8: a determination of a function by a

value or a constant expression.

- Fact of kind 9: equality between an object and a

function.

- Fact of kind 10: equality between a function and

another function.

- Fact of kind 11: a dependence of a function on other

functions or other objects by an equation.

The last five kinds of facts are related to knowledge about

functions, the component Funcs in the COKB model. The

problem below gives some examples for facts related to

functions.

Problem: Let d be the line with the equation 3x + 4y - 12 =

0. P and Q are intersection points of d and the axes Ox,

Oy.

(a) Find the central point of PQ

(b) Find the projection of O onto the line d.

For each line segment, there exists one and only one point

which is the central point of that segment. Therefore, there is a

function MIDPOINT(A, B) that outputs the central point M of

the line segment AB. Part (a) of the above problem can be

represented as to find the point I such that I =

MIDPOINT(P,Q), a fact of kind 9. The projection can also be

represented by the function PROJECTION(M, d) that outputs

the projection point N of point M onto line d. Part (b) of the

above problem can be represented as to find the point A such

that A = PROJECTION(O,d), which is also a fact of kind 9.

The above models and kinds of facts can be used to

represent knowledge in practical applications. Unification

algorithms of facts were designed and used in different

applications such as the system that supports studying

knowledge and solving analytic geometry problems, the

program for studying and solving problems in Plane

Geometry, the knowledge system in linear algebra. Discussion

about these applications will be presented in section IV.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1858

III. SPECIFICATION LANGUAGE

The language for the COKB model is constructed to

represent the knowledge of the form COKB model. This

language includes the following:

- A set of characters: letter, number, special letter.

- Vocabulary: keywords, names.

- Data types: basic types and structured types.

- Expressions and sentences.

- Statements.

- Syntax for specifying the components of COKB model.

The followings are some structures of definitions for

expressions, C-Objects, relations, facts, and functions.

Definitions of expressions:

expr ::= expr | rel-expr | logic-expr

expr ::= expr add-operator term |

 term

term ::= term mul-operator factor | factor

factor ::= – factor |

 element ^ factor |

 element

element ::= (expr) |

 name |

 number |

 function-call

rel-expr ::= expr rel-operator expr

logic-expr ::= logic-expr OR logic-term |

 logic-expr IMPLIES logic-term |

NOT logic-term |

 logic-term |

logic-term ::= logic-term AND logic-primary |

 logic-primary |

logic-primary ::= expr |

 rel-expr |

 function-call |

 quantify-expr |

TRUE | FALSE

quantify-expr ::= FORALL(name <, name>*), logic-expr |

EXISTS(name), logic-expr

Definitions of C-object type:

cobject-type ::= COBJECT name;

 [isa]

 [hasa]

 [constructs]

 [attributes]

 [constraints]

 [crelations]

 [facts]

 [rules]

ENDCOBJECT;

Definitions of computational relations:

crelations ::= CRELATION:

 crelation-def+

 ENDCRELATION;

crelation-def ::= CR name;

MF: name <, name>*;

 MFEXP: equation;

ENDCR;

equation ::= expr = expr

Definitions of special relations:

isa ::= ISA: name <, name>*;

hasa ::= HASA:

 [fact-def]

Definitions of facts:

facts ::= FACT: fact-def+

fact-def ::= object-type | attribute | name |

 equation | relation | expression

object-type ::= cobject-type (name) |

 cobject-type (name <, name>*)

relation ::= relation (name <, name>+)

Definitions of relations based on facts:

relation-def ::= RELATION name;

ARGUMENT: argument-def+

 [facts]

ENDRELATION;

argument-def ::= name <, name>*: type;

Definitions of functions – form 1:

function-def ::= FUNCTION name;

 ARGUMENT: argument-def+

 RETURN: return-def;

 [constraint]

 [facts]

 ENDFUNCTION;

return-def ::= name: type;

Definitions of functions – form 2:

function-def ::= FUNCTION name;

ARGUMENT: argument-def+

RETURN: return-def;

 [constraint]

 [variables]

 [statements]

ENDFUNCTION;

statements ::= statement-def+

statement-def ::= assign-stmt | if-stmt | for-stmt

asign-stmt ::= name := expr;

if-stmt ::= IF logic-expr THEN statements+

ENDIF; |

IF logic-expr THEN statements+

 ELSE statements+

ENDIF;

for-stmt ::= FOR name IN [range] DO

 statements+

ENDFOR;

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1859

IV. APPLICATIONS

Some practical intelligent systems were produced with

designing based on COKB model and the above specification

language. Applications include:

- The system that supports studying knowledge and

solving analytic geometry problems. The system

consists of three components: the interface, the

knowledge base, the knowledge processing modules or

the inference engine. The program has menus for users

searching knowledge they need and they can access

knowledge base. Besides, there are windows for

inputting problems. Users are supported a simple

language for specifying problems. There are also

windows in which the program shows solutions of

problems and figures.

- The program for studying and solving problems in

plane geometry. It can solve problems in general forms.

Users only declare hypothesis and goal of problems

base on a simple language but strong enough for

specifying problems. The hypothesis can consist of

objects, relations between objects or between

attributes. It can also contain formulas, determination

properties of some attributes or their values. The goal

can be to compute an attribute, to determine an object,

a relation or a formula. After specifying a problem,

users can request the program to solve it automatically

or to give instructions that help them to solve it

themselves. The program also gives a human readable

solution, which is easy to read and agree with the way

of thinking and writing by students and teachers. The

second function of the program is "Search for

Knowledge". This function helps users to find out

necessary knowledge quickly. They can search for

concepts, definitions, properties, related theorems or

formulas, and problem patterns.

The process of analysis and design the components of the

systems consists of the following stages:

Stage 1: Collecting and classifying real knowledge based

on COKB model, to analyze requirements.

Stage 2: Establishing knowledge base organization for the

system based on COKB model and specification language.

Knowledge base can be organized by structured text files.

They include the files below.

- The file OBJECT_KINDS.txt stores names of

concepts.

- The files <name of concept>.txt store the specifications

of structures of C-Objects.

- The file HIERARCHY.txt stores the Hasse diagram

representing for the component H of COKB model.

- The files RELATIONS.txt and RELATIONS_DEF.txt

store the specification of relations (the component R of

COKB model).

- The files OPERATORS.txt and

OPERATORS_DEF.txt store the specification of

operators (the component Ops of COKB model).

- The files FUNCTIONS.txt and FUNCTIONS_DEF.txt

store the specification of functions (the component

Funcs of COKB model).

- The file FACT_KINDS.txt stores the definition of

kinds of facts.

- The file RULES.txt stores deductive rules.

- The file SOMEOBJECTS.txt stores certain objects.

In the appendix, a part of the files SEGMENT.TXT and

TRIANGLE.TXT shows the specification of the concept

“segment” and the concept “triangle” in the knowledge base

of plane geometry; the definition of function MIDPOINT in

the file FUNCTIONS_DEF.TXT will be also listed. The

specification for some rules in the file RULES.TXT will be

shown too. We also present a part of the file

FUNCTIONS_DEF.TXT that specifies some functions in the

knowledge base of analytic geometry.

Stage 3: Modeling problems and designing algorithms.

Problems are represented using a model that is called

networks of C-Objects. It consists of three sets below.

 O = O1, O2, . . ., On ,

 F = f1, f2, . . ., fm ,

 Goal = g1, g2, . . ., gm .

In the above model the set O consists of n C-objects, F is

the set of facts given on the objects, and Goal consists of

goals. A goal of a problem may be the followings:

- Determine an object.

- Determine an attribute (or some attributes) of an object.

- Consider a relation between objects.

- Find a relation between objects.

- Find an expression relative to some objects.

- Compute a parameter (or some parameters).

- Compute a value of a function relative to objects.

 The design of deductive algorithms for solving problems

and the design of interface of the system can be developed by

three steps for modeling:

Step 1: Classify problems such as problems as frames,

problems of a determination or a proof of a fact, problems of

finding objects or facts, etc…

Step 2: Classify facts and representing them based on the

kinds of facts of COKB model.

Step 3: Modeling kinds of problems from classifying in

step 1 and 2. From models of each kind, we can construct a

general model for problems, which are given to the system for

solving them.

The basic technique for designing deductive algorithms is

the unification of facts. Based on the kinds of facts and their

structures, there will be criteria for unification proposed. Then

it produces algorithms to check the unification of two facts.

The next important work is doing research on strategies for

deduction to solve problems on computer. The most difficult

thing is modeling for experience, sensible reaction and

intuitional human to find the heuristics rules, which were able

to imitate the human thinking for solving problems.

The following general algorithm represents one strategy for

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1860

solving problems: forward chaining reasoning with heuristics

in which objects attend the reasoning process as active agents.

Step 1: Record the elements in hypothesis part and goal

part.

Step 2: Check goal G. If G is obtained then goto step 7.

Step 3: Using heuristic rules to select a rule for producing

new facts or new objects.

Step 4: If selection in step 3 fails then search for any rule,

which can be used to deduce new facts or new

objects.

Step 5: If there is a rule found in step 3 or in step 4 then

record the information about the rule, new facts in

Solution, and new situation (previous objects and

facts together with new facts and new objects), and

goto step 2.

Step 6: Else {search for a rule fails} Conclusion: Solution

not found, and stop.

Step 7: Reduce the solution found by excluding redundant

rules and information in the solution.

Some heuristic rules were used for reasoning are listed

below.

1. Priority use of rules for determining objects and

attributes.

2. Transform objects to objects at a higher level in the

hierarchical graph if there are enough facts. For

example, a triangle will become isosceles triangle if it

has two equal edges.

3. Use rules for producing new objects that contains

elements, which are not in existing objects.

4. Use rules for producing new objects that have

relationship with existing objects, especially the goal,

in necessary situations.

5. Try to use deduction rules to get new facts, especially

facts that have relationship with the goal.

6. If we could not produce new facts or new objects then

we should use parameters and equations.

7. There are always new facts (relations or expressions)

when we produce new objects.

Examples below illustrate the functions of a system for

solving problems of analytic geometry and a system for

solving problems in plane geometry. The systems are designed

by using COKB model, its language and algorithms. The

system was implemented in JAVA and MAPLE. Each

example presents the problem in natural language, specifies

the problem in specification language to input into the system,

and a solution produced from the system.

Example 1: Let d be the line with the equation 3x + 4y - 12

= 0. P and Q are intersection points of d and the axes Ox, Oy.

(a) Find the midpoint of PQ

(b) Find the projection of O on the line d.

Specification of the problem:

Objects = {[d,line], [P,point], [Q,point]}.

Hypothesis = { d . f = (3*x+4*y-12 = 0), Ox . f = (y = 0),

 O = [0, 0], P = INTERSECT(Ox, d),

 Q = INTERSECT (Oy, d),

 H = PROJECTION(O, d), Oy . f = (x = 0) }.

Goal = { MIDPOINT(P, Q), H }.

Solution found by the system:

Step 1. {d.f = (3*x+4*y-12 = 0), Ox.f = (y = 0),

Oy.f = (x = 0)} {d.f, Ox.f , Oy.f }.

Step 2. {Ox.f, Oy.f, d.f}

 {Ox, Oy, d}.

Step 3. {P = INTERSECT(Ox,d), d, Ox}

 {P = [4, 0]}.

Step 4. {d, Oy, Q = INTERSECT(Oy,d)}

 {Q = [0, 3]}.

Step 5. {P = [4, 0], Q = [0, 3]}

 {P, Q}.

Step 6. {P, Q}

 {MIDPOINT(P,Q) = [2, 3/2]}.

Step 7. {d, H = PROJECTION(O,d), O}

 { H = [36/25, 48/25]}.

Step 8. {H = [36/25, 48/25]}

 {H}.

Example 2: Given two points P(2, 5) and Q(5,1). Suppose

d is a line that contains the point P, and the distance between

Q and d is 3. Find the equation of line d.

Specification of the problem:

Objects = {[P,point], [Q,point], [d, line]}.

Hypothesis = {DISTANCE(Q, d) = 3, P = [2, 5], Q = [5, 1],

 ["BELONG", P, d]}.

Goal = [d . f].

Solution found by the system:

Step 1. {P = [2, 5]}

 {P}.

Step 2. {DISTANCE(Q,d) = 3}

 {DISTANCE(Q,d)}.

Step 3. {d, P}

 {2d[1]+5d[2]+d[3] = 0}.

Step 4. {DISTANCE(Q,d) = 3}

3

]2[]1[

]3[]2[]1[5

22 dd

ddd .

Step 5. {d[1] = 1, 2d[1] + 5d[2] + d[3] = 0,

3

]2[]1[

]3[]2[]1[5

22 dd

ddd }

 {d.f = (0
7

134

7

24
yx),

 d.f = (x – 2 = 0)}.

Step 6. {d.f = 0
7

134

7

24
yx , d.f = x - 2= 0}

 {d.f}

Example 3: Given the parallelogram ABCD. Suppose M

and N are two points of segment AC such that AM = CN.

Prove that two triangles ABM and CDN are equal (see figure

2 in section II-B above).

Specification of the problem:

Objects = {[A, POINT], [B, POINT], [C, POINT],

 [D, POINT], [M, POINT], [N, POINT],

[O1, PARALLELOGRAM[A,B,C,D],

[O2, TRIANGLE[A,B,M]],

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1861

[O3, TRIANGLE [C,D,N]]}.

Hypothesis = { [« BELONG », M, SEGMENT[A,C]],

 [« BELONG », N, SEGMENT[A,C]],

 SEGMENT[A,M] = SEGMENT[C,N] }.

Goal = { O2 = O3}.

Solution found by the system:

Step 1. Hypothesis

 {O2.SEGMENT[A,M] = O3. SEGMENT[C,N],

O2.SEGMENT[A,B] = O1. SEGMENT[A,B],

O3.SEGMENT[C,D] = O1.SEGMENT[C,D]}.

Step 2. Produce new objects related to O2, O3, O1

 {[O4, TRIANGLE[A,B,C]],

 [O5, TRIANGLE[C,D,A]]}.

Step 3. {[O1, PARALLELOGRAM[A,B,C,D]}

{O4 = O5, SEGMENT[A,B] = SEGMENT[C,D]}.

Step 4. { O2.SEGMENT[A,B] = O1.SEGMENT[A,B],

 O3.SEGMENT[C,D] = O1.SEGMENT[C,D],

 SEGMENT[A,B] = SEGMENT[C,D]}

{O2.SEGMENT[A,B] = O3.SEGMENT[C.D]}.

Step 5. {[« BELONG », M, SEGMENT[A,C]]}

 {O4.angle_A = O2.angle_A}.

Step 6. {[« BELONG », N, SEGMENT[A,C]]}

 { O5.angle_A = O3.angle_A }.

Step 7. {O4 = O5 }

 {O4.angle_A = O5.angle_A}.

Step 8. { O4.angle_A = O2.angle_A ,

 O5.angle_A = O3.angle_A ,

 O4.angle_A = O5.angle_A }

{ O2.angle_A = O3.angle_A}.

Step 9. { O2.SEGMENT[A,M] = O3. SEGMENT[C,N],

 O2.SEGMENT[A,B] = O3.SEGMENT[C.D],

 O2.angle_A = O3.angle_A }

 {O2 = O3}.

V. CONCLUSION

The COKB-ONT is an ontology that can be used to design

and to implement intelligent systems for solving problems

based on a knowledge base. It consists of the COKB model,

the specification language for COKB, the network of C-

Objects for modeling problems, algorithms for automated

problem solving.

The models proposed provide a natural way for

representing knowledge. By Object-Oriented approach the

highly intuitive representation for knowledge has been

established. These are the bases for designing the knowledge

base of the system. The knowledge base is convenient for

accessing and for using by the inference engine. The methods

of modeling problems and algorithms for automated problem

solving represent a normal way of thinking and writing of

people.

 COKB-ONT is a useful tool and method for designing

practical knowledge bases, modeling complex problems and

designing algorithms to solve automatically problems based

on a knowledge base. It is also used for designing other

components of knowledge base systems. The COKB-ONT

was used to produce intelligent educational softwares for e-

learning, and they were implemented by using C++, JAVA,

and MAPLE. Besides applications were presented here,

COKB-ONT is able to use in other domain of knowledge such

as physics and chemistry. Moreover, it also has been used to

develop applications for e-government.

APPENDIX

A. Part of the File SEGMENT.TXT that Defines the

Concept “Segment” in the Knowledge of Plane Geometry

begin_object: SEGMENT[_A,_B];

 _A,_B: POINT;

 begin_othername

 end_othername

 begin_variables

 a: REAL; # length

 end_variables

 begin_constraints

 a > 0;

 end_constraints

begin_construction_properties

 SEGMENT[_A,_B] = SEGMENT [_B,_A];

end_construction_properties

 begin_properties

 ["BELONG",_A,"Object"]

 ["BELONG",_B,"Object"]

 end_properties

 begin_computation_relations

 end_computation_relations

 begin_facts

 end_facts

 begin_rules

 begin_rule

 kind_rule = "object_determined";

 a:REAL

 hypothesis_part:

 {a}

 end_hypothesis_part

 goal_part:

 {"Object"}

 end_goal_part

 end_rule

 end_rules

end_object

B. Part of the File TRIANGLE.TXT that Defines the

Concept “Triangle” in the Knowledge of Plane Geometry

begin_object: TRIANGLE[_A,_B,_C];

 _A,_B,_C: POINT

 begin_othername

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1862

 end_othername

 begin_variables

 angle_A : ANGLE[_C,_A,_B];

 angle_B : ANGLE [_A,_B,_C];

 angle_C : ANGLE [_B,_C,_A];

 a : SEGMENT[_B,_C];

 b : SEGMENT [_A,_C];

 c : SEGMENT [_A,_B];

 ha,hb,hc,ma,mb,mc,pa,pb,pc : SEGMENT;

 S,p,R, CV: REAL;

 end_variables

 begin_constraints

 S > 0; p > 0; R > 0;

 end_constraints

 begin_computation_relations

 begin_relation 0

 flag = 1

 Mf ={angle_A.a, angle_B.a, angle_C.a}

 rf =1

 vf ={}

 expf =` angle_A.a + angle_B.a + angle_C.a = Pi`

 end_relation

 begin_relation 1

 flag = 1

 Mf={CV, SEGMENT[_B,_C].a, SEGMENT [_A,_C].a,

 SEGMENT [_A,_B].a}

 rf =1

 vf ={}

 expf = `CV = SEGMENT [_B,_C].a + SEGMENT

 [_A,_C].a + SEGMENT [_A,_B].a`

 end_relation

 end_computation_relations

begin_rules

 begin_rule

 kind_rule = "theorem";

 _A,_B,_C : POINT

 hypothesis_part:

 {(SEGMENT[_B,_C].a)^2 =

 (SEGMENT [_A,_B].a)^2 +(SEGMENT [_A,_C].a)^2}

 end_hypothesis_part

 goal_part:

 {ANGLE[_B,_A,_C].a= Pi/2}

 end_goal_part

 end_rule

 begin_rule

 kind_rule = "theorem";

 _A,_B,_C : POINT

 hypothesis_part:

 {ANGLE[_B,_A,_C].a= Pi/2}

 end_hypothesis_part

 goal_part:

 {(SEGMENT[_B,_C].a)^2 =

(SEGMENT[_A,_B].a)^2+(SEGMENT[_A,_C].a)^2}

 end_goal_part

 end_rule

 begin_rule

 kind_rule = "";

 _A,_B,_C : POINT

 hypothesis_part:

 {ANGLE[_A,_B,_C].a= ANGLE[_A,_C,_B].a}

 end_hypothesis_part

 goal_part:

 {[TRIANGLE[_A,_B,_C],

"ISOSCELES_TRIANGLE"]}

 end_goal_part

 end_rule

 end_rules

end_object

C. Definition of Function MIDPOINT

begin_function: MIDPOINT(_A,_B)

 _A,_B: POINT

 result _W: POINT

 begin_proc

 end_proc

 properties

 SEGMENT[_A,_W].a = SEGMENT [_B,_W].a

 ["BELONG", _W, SEGMENT[_A,_B]]

 SEGMENT [_A,_W].a = SEGMENT [_A,_B].a/2

 SEGMENT [_B,_W].a = SEGMENT [_A,_B].a/2

 SEGMENT [_A,_W].a + SEGMENT [_B,_W].a

 = DOAN[_A,_B].a

 end_properties

 end_function

D. Specification for a Rule in the File RULES.TXT

begin_rule

 kind_rule = "equality of triangles, edge-edge-edge"

 _A,_B,_C,_M,_N,_P: POINT

 hypothesis_part:

 {SEGMENT[_A,_B].a = SEGMENT[_M,_N].a,

 SEGMENT[_B,_C].a = SEGMENT[_N,_P].a,

 SEGMENT[_A,_C].a = SEGMENT[_M,_P].a}

 end_hypothesis_part

 goal_part:

 {TRIANGLE[_A,_B,_C] = TRIANGLE[_M,_N,_P]}

 end_goal_part

end_rule

begin_rule

 kind_rule = "equality of triangles, edge-angle-edge"

 _A,_B,_C,_M,_N,_P: POINT

hypothesis_part:

 {SEGMENT[_A,_B].a = SEGMENT[_M,_N].a,

 ANGLE[_A,_B,_C].a = ANGLE[_M,_N,_P].a,

 SEGMENT[_B,_C].a = SEGMENT[_N,_P].a}

end_hypothesis_part

goal_part:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1863

 {TRIANGLE[_A,_B,_C] = TRIANGLE[_M,_N,_P]}

end_goal_part

end_rule

E. Part of the File FUNCTIONS_DEF.TXT that Specifies

some Functions in the Knowledge Base of Analytic Geometry

begin_function: MIDPOINT(A,B)

 A, B: POINT

 return I: POINT

 begin_proc

 local I;

 I.x := (A.x+B.x)/2;

 I.y := (A.y+B.y)/2;

 return I;

 end_proc

 properties

 end_properties

end_function

begin_function: PROJECTION(A, f)

 A: POINT

 f: LINE

 return B: POINT

 begin_proc

 local B, g;

 g := LineEquation(A, f,1);

 B := INTERSECT(f,g);

 return B;

 end_proc

 properties

 end_properties

end_function

REFERENCES

[1] L. Stojanovic, J. Schneider, A. Maedche, S. Libischer, R. Suder, T.

Lumpp, A. Abecker, G. Breiter, J. Dinger, The Role of Ontologies in

Autonomic Computing Systems, IBM Systems Journal, Vol 43, No 3,

2004.

[2] Stuart Russell & Peter Norvig, Artificial Intelligence – A modern

approach (second edition), Prentice Hall, 2003.

[3] John F. Sowa. Knowledge Representation: Logical, Philosophical and

Computational Foundations, Brooks/Cole, 2000.

[4] George F. Luger & William A Stubblefield, Artificial Intelligence,

Addison Wesley Longman, Inc. 1998.

[5] Gruber, T. R., Toward Principles for the Design of Ontologies Used for

Knowledge Sharing. International Journal Human-Computer Studies,

43(5-6):907-928, 1995.

[6] Do Van Nhon, A Program for studying and Solving problems in Plane

Geometry, Proceedings of International Conference on Artificial

Intelligence 2000, Las Vegas, USA, 2000, pp. 1441-1447.

[7] Do Van Nhon, A system that supports studying knowledge and solving

of analytic geometry problems, 16 th World Computer Congress 2000,

Proceedings of Conference on Education Uses of Information and

Communication Technologies, Beijing, China, 2000, pp. 236-239.

[8] Asunción Gómez-Pérez & Mariano Férnandez-López & Oscar Corcho,

Ontological Engineering. Springer-Verlag, 2004.

[9] Chitta Baral, Knowledge Representation, Reasoning and Declarative

Problem Solving, Cambridge University Press, 2003.

[10] Guarino, N. Formal Ontology, Conceptual Analysis and Knowledge

Representation, International Journal of Human-Computer Studies, 43(5-

6):625–640, 1995.

[11] Wen-tsun Wu, Mechanical Theorem Proving in Geometries. Springer-

Verlag, 1994.

[12] Chou, S.C. & Gao, X.S. & Zhang, J.Z. Machine Proofs in Geometry.

Singapore: Utopia Press, 1994.

[13] Pfalzgraf, J. & Wang, D. Automated Practical Reasoning. NewYork:

Springer-Verlag, 1995.

[14] Lakemeyer, G. & Nebel, B. Foundations of Knowledge representation

and Reasoning. Berlin Heidelberg: Springer-Verlag, 1994.

[15] Berge, J.M. & Levia, O. & Rouillard, J. Object-Oriented Modeling.

Netherlands: Kluwer Academic Publishers, 1996.

Nhon Do is currently a senior lecturer in the faculty of Computer Science at

the University of Information Technology, Ho Chi Minh City, Vietnam. He

got his MSc and Ph.D. in 1996 and 2002 respectively, from The University of

Natural Sciences – National University of Ho Chi Minh City. His research

interests include Artificial Intelligence, computer science, and their practical

applications, especially intelligent systems and knowledge base systems.

