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In Search of Robustness and Efficiency via �1− and
�2− Regularized Optimization for Physiological

Motion Compensation

Abstract—Compensating physiological motion in the context
of minimally invasive cardiac surgery has become an attractive
issue since it outperforms traditional cardiac procedures offering
remarkable benefits. Owing to space restrictions, computer vision
techniques have proven to be the most practical and suitable solution.
However, the lack of robustness and efficiency of existing methods
make physiological motion compensation an open and challenging
problem. This work focusses on increasing robustness and efficiency
via exploration of the classes of �1−and �2−regularized optimization,
emphasizing the use of explicit regularization. Both approaches are
based on natural features of the heart using intensity information.
Results pointed out the �1−regularized optimization class as the best
since it offered the shortest computational cost, the smallest average
error and it proved to work even under complex deformations.

I. INTRODUCTION

M INIMALLY invasive beating heart surgery has
demonstrated to provide relevant benefits in

comparison with traditional cardiac surgery such as [1],
[2]: smaller incisions; shorter term rehabilitation; less
bleeding; faster recovery; cosmetic improvement; and
reduction of cognitive and neurological effects. However,
since the heart is beating while intervention is performed, the
surgeon has to face two sources of disturbances: respiration
and heartbeat. These physiological motions hinder surgeon’s
gestures and limit precision during surgery. Thus, a main
research goal is to compensate them in order to give to the
surgeon the sensation of working in a motionless area.

The quasiperiodic behaviour of the heart; this, together with
the high precision requirements, the need of operating in real
time, the surface characteristics, the limited workspace, and
illumination changes make physiological motion compensation
be a real challenge. To cope with these drawbacks in some
works (e.g. [3], [4], [5], [6]) the use of mechanical stabilization
devices, which are positioned over the heart surface to keep
the region of interest in steady state, are proposed. However,
their performances have been reported to be unsatisfying
because: physiological motion still needs to be manually
compensated by the surgeons, devices can only be applied
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on the top of the heart surface, can damage the heart tissue,
and biocompatibility studies are not carried out.

Moreover, the use of various sensors to compensate
physiological motion has been investigated by some authors,
including accelerometers [7], laser scan system [8], whisker
sensor [9], an optical fiber sensor [10] and a sensor based
on microwave doppler radar [11]. Besides the sensor size
problem; a serious issues are: their long-term stability; their
shape; and the biocompatibility (e.g. hemocomparibility).
Because of previous drawbacks, the most practical and
suitable solution is the use of a vision sensor, which avoids
above-mentioned drawbacks since it is integrated on the
endoscope. Thus, the use of Computer Vision Techniques
(CVT) are adopted in this work.

The feasibility of CVT for physiological motion
compensation was first explored by Nakamura et al.
[12]. In that work, the authors introduced the concept of
heart synchronization for minimally invasive cardiac surgery.
Also, they developed a heartbeat synchronization system, in
which artificial markers over the heart were used for tracking
the region of interest. Artificial markers were also employed
in [13], but afterwards avoid them using a texture-based
approach. Similarity, passive colored markers attached to
the heart, to do feature extraction, were adopted in [14],
in which a physic-based heart motion tracking method was
proposed. That is, authors described the heart surface as a
physical elastic body in form of partial differential equations.
However, the use of artificial markers is impractical because
of the presence of liquids (e.g. blood) and vapors during the
surgery, and the difficulty of putting them on the heart.

To avoid these problems Ortmaier et al. [15] explored
natural landmarks on heart surface for estimating heart motion.
In their work a reduced affine tracking method was proposed
for tracking the 2D displacement of salient features on the
heart surface. Likewise, a solution based on the combination
of both thin-plate splines and second-order minimization is put
forward in [16]. Another solution has been presented in [17],
in which the SURF method is used in order to recover distinct
regions that are used in the Lucas-Kanade tracker.

In this work, two approaches, which make use of the
�1− and �2-regularized optimization classes are presented and
compared, with the main aim of generating a solution capable
of working in realistic clinical environments. Moreover, the
introduction of explicit regularization is highlighted in order to
solve the ill-posed problem, offering stability to the system and
helping the optimization process via decreasing the number of
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local minima.

II. PROBLEM STATEMENT

The setup for heart motion compensation is part of the
Robotic Surgical System given in Fig. 1. Besides the motion
compensation module, the system includes: a processing
module for image correction and enhancement; a prediction
module, which ensures system operation during occlusions
(e.g. when the camera is blocked by an instrument); and a
control module, which synchronizes the surgical instruments
with the heart motion.

The solution for compensating physiological motion is
formulated as an energy minimization problem, in which the
available information is given by a vision sensor. Thus, let
If : ΩIf → R and Ia : ΩIa → R be the fixed and the acquired
images, respectively, given a each time instant, in which the
transformation/displacement, u, minimizes the total energy Et.
More specifically, the defined energy functional is given by
two main terms: the dissimilarity term, Ed, which evaluates
the discrepancy between the two given images and the
regularization term, Er, that allows fulfilling the Hadamard’s
postulate [18] and generates a well-defined displacement field
represented by u, α ∈ �+ gives a balance between both terms,
and x represents a vector in �d.

argmin
u

Et(u) = Ed(If (x), Ia(u(x)+x))+αEr(u(x)) (1)

A deformation model has to be carefully selected to
parametrize u, since it has a direct effect over the global
behaviour of the system. This model has also to be
characterized by two main factors: short computational time
and valuable information [19]. A classification of deformation
models was proposed in [20] with three main categories i)
physical models, ii) knowledge models and iii) approximation
and interpolation models.

Although the first and second categories have been used
in medical applications, their disadvantages are the complex

computation and the deficiency in deformation retrieval.
Therefore, the third category is the most adequate option due
to its ability to deal with complex deformations, and to the
convenient time consumption. In this category well-known
models can be found such as thin-plate splines, elastic
body splines and piecewise affine. Their main drawbacks are
inverse inconsistency, lack of mathematical optimality and
continuity, and high computational demand. An interesting
option is B-splines that offer various desirable benefits [21],
[22]: easy manipulation, compact support, low computational
cost, optimal mathematical properties, multiresolution, Hölder
continuous of order n, affine invariance and preservation of
both convexity and diminishing properties.

Based on previous arguments, B-splines have been selected
in this work to parametrize the displacement field u. Let Cj |
Cj ≥ 0 be all control points in d-dimensions belonging to a
lattice uniformly spaced, then, the idea is to describe u under
the influence of the given points. The parametrization of u
using b-splines of degree 3 (i.e. cubic) is written as

ud(x) =
n∑

j1=0

...
n∑

jd=0

Cj1,...,jd

d∏
k=1

Υk(uk
d

=

3∑
k=0

3∑
m=0

Υk(μ)Υm(v)Cp+k,q+m : {x ∈ R
2 | d = 2}

(2)
Defining the position vector x = (x, y) and the size of the
lattice as Φx ∗ Φy , then, p = � x

Φx
� − 1 and q = � y

Φy
� − 1.

Moreover, let Υk,m be basis functions expressed as

Υ0(μ) = (1− μ)3/6

Υ1(μ) = (4 + 3μ3 − 6μ2)/6

Υ2(μ) = (1− 3μ3 − 3μ2 + 3μ)/6

Υ3(μ) = μ3/6

(3)

Fig. 1 Proposed scheme for physiological motion compensation in a Robotic Surgical System.

) : {x ∈ R }
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III. PROPOSED SOLUTIONS

In this section, the generalized optimization problem
presented in (1) is reformulated using the classes of �1−
and �2-regularized optimizations. The general process that
is carried out in both cases can be seen in Fig. 2. These
formulations use intensity information of the images as
matching criteria and two well-known regularization methods:
Tikhonov [23] and Total Variation (TV) [24].

The idea of use explicit regularization in this application is:
to guarantee an existing and stable solution via restriction of
the space of solutions; to penalize oscillating deformations (i.e.
generate a well-defined displacement field); and to decrease
the computational cost of the optimization process. It is worth
noticing that regularization is applied to the gradient of the
displacement field, ∇u ∈ R

2, that is discretized as follows:
Let Iroi ∈ Ω be a region of interest formed by N ∗N pixels
with i, j positions, then, ∇u(x) = ui+1,j − ui,j || ∇u(x) =
ui,j+1−ui,j when N < i || N < j, otherwise (N = i || N =
j) ∇u = 0.

A. �1-Based Formulation

Motivated by the fact that proposals of this problem
presented up to now are oriented to use the norm �2,
exploration of the class of �1-regularized optimization in the
context of heart motion is proposed. This class offers different
advantages such as it: works-well with outliers; is related
to robustness; outperforms solutions (in certain applications)
obtained with the class �2; and is non-sensitivity to changes
of intensity.

In order to obtain the dissimilarity between the pixels in
If and Ia, the Sum of Absolute Difference (SAD) method is
applied. Thus, rewriting first term, Ed, from (1), it results in

Ed =
1

2

∫
Ω

|(Ia(u(x) + x)− If (x))|dx

=
1

2

∑
x∈Ω

|(Ia(u(x) + x)− If (x))|
(4)

The regularization term, Er, is reformulated using TV
method, in which penalization is carried out via the absolute
gradient of the displacement field. This method has been
chosen due to its simplicity, efficiency, easier interpretation
and its ability to preserve discontinuities in the displacement
field. Moreover, its desirable mathematical properties as
lower semi-continuity, convexity and homogeneity [25]. Thus,
reformulating second term, Er, from (1) applying TV, it is
given by

Er =

n∑
d=1

∫
Ω

|∇ud(x)|dx =

2∑
d=1

∑
x∈Ω

|∇ud(x)| (5)

The main inconvenience of the previous formulation is
that it is non-differentiable at zero. As a consequence,
the optimization process is hindered, and standard methods
are not directly applicable. A classic alternative is to use
subgradient methods [26] or ε−subgradient methods [27], but
they converge slowly and they have the lack of efficiency in
certain cases. Another option is to treat the unconstrained

non-differentiable problem as a constrained problem. The
simplest and effective alternative is to redefine the functional
with a differentiable approximation, allowing the use of classic
unconstraint optimization methods. In this case, in order to
avoid moving to the restricted area (i.e. zero), the log-barrier
function given in (6) is applied, where log(·) is the natural
logarithm and λ is the value that determines the impact of the
barrier over the function.

flog(u) = −λ
∑
x∈Ω

logcx(u)

{
u ∈ �d|cx(u) > 0 for all x ∈ Ω

}
∇flog(u) = −

∑
x∈Ω

λ

cx(u)
∇cx(u)

(6)

Therefore, using (4), (5) and (6), the energy functional
becomes differentiable as can be seen in next Equation

argmin
u

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2

∑
x∈Ω

|(Ia(u(x) + x)− If (x))|
︸ ︷︷ ︸

Ed

+α
∑
x∈Ω

|(∇u1(x),∇u2(x))|
︸ ︷︷ ︸

Er

−λ
∑
x∈Ω

logcx(u)

︸ ︷︷ ︸
flog

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7)

where cx(u) = u2. Since, the resulting minimization problem
described in (7) is a smooth optimization problem, it can be
solved using standard unconstrained methods. In this case, the

Fig. 2 Identification of the zone of interest is carried out
once at the beginning of the process, after that, this zone is
handled by N*N control points that which allows calculating
the displacement field.
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Newton’s method is applied, which allows having an excellent
global convergence.

B. �2-Based Formulation

The class of �2-regularized optimization is the most
popular way to deal with ill-posed problems since the
optimization process is straightforward. That is, the functional
is differentiable and the derivatives are continuous. In the
case of the first term of (1), Ed, reformulation is given
using Sum of Squared Differences (SSD) method. Apart
from its differentiability, its simplicity and low computational
cost makes this method a good candidate to measure the
discrepancy between the two given images, If and Ia. Thus,
rewriting first term from (1) using SSD, it becomes in

Ed =
1

2

∫
Ω

(If (x)− Ia(u(x) + x))2dx

=
1

2

∑
x∈Ω

(If (x)− Ia(u(x) + x))2
(8)

It is worth noting that this method is sensitive to changes
of intensities, hence, a normawlization is advisable. The
regularization term, Er, is generated using Tikhonov method.
Therefore, Er is given by

Er =
1

2

d∑
i=1

∫
Ω

|∇ud(x)|2dx

=
1

2

∑
x∈Ω

|∇u1(x)|2 + |∇u2(x)|2
(9)

Then using (8) and (9) the total energy becomes

argmin
u

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2

∑
x∈Ω

(If (x)− Ia(u(x) + x))2

︸ ︷︷ ︸
Ed

+
α2

2

∑
x∈Ω

|∇u1(x)|2 + |∇u2(x)|2

︸ ︷︷ ︸
Er

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(10)

In order to minimize (10), it is necessary to choose an
optimization method. Traditional methods for solving �2
include Gradient Descent (GD) [28], Newton’s method (NM),
Nonlinear Conjugate Gradient [29] (NCG), Evolutionary
Optimization Algorithms(EOA) [30] etc. However, they
present some drawbacks. They can get stuck at local
minima; sometimes need an infinite number of iterations to
converge; or have a slow rate of convergence. A common
alternative used in this context to avoid these issues is the
well-known Levenberg-Marquardt (LM) [31], [32]. Although
LM outperforms above inconvenients, in some cases it has to
deal with the slow convergence problem. A more attractive
option, which offers an excellent quality of results with better
computational time than LM, is the Powell’s dogleg (DL) [33].
The idea behind this method is to take the best of different
methods, that is, the convergence speed of the gauss-newton,
the excellent global convergence of the gradient descent,

handling them via an explicit trust-region. DL is used to
minimize (10) in order to improve the optimization process.
This method is chosen because of their characteristics, and
because its performance has not been yet explored in this
context.

IV. EXPERIMENTAL RESULTS

This section illustrates the performance of the
methodologies presented in Section III. Experiments
have been conducted using a realistic data set from The
Hamlyn Centre Laparoscopic [34]. The video sequence has a
duration of 60.2 sec. in which the cardiac surface is affected
by respiration and cardiac motion. Simulated experiments
have been performed using a PC intel Core i7, 8GB RAM,
and Nvidia GeForce GT 540M.

Firstly, it is worth noting that despite dealing with specular
highlights it is not the topic of this work, this phenomenon has
been kept in mind in order to avoid decreasing the available
information. This process can be seen in Fig. 3, in which a step
of detection using intensity information is carried out, after
that, elimination of specular reflections are done, and finally,
a inpainting method, using a priori knowledge, is applied in
order to recover the loss information.

In order to evaluate both methodologies different factors
have taken into account: computational cost (average time
per frame in seconds); convergence characteristic (average
number of iterations per frame); average error which is given
in mm.; and desirable characteristics (plausible deformation
and behaviour with complex deformations). In our test, a grid
of 6 ∗ 6 control points is used with a defined separation space
of 30 pixels.

In Fig. 6 part of the image sequence is shown, in which error
decrease when regularization is used. Also, a well-defined
displacement field is generated. In comparison with the

Fig. 3 Specular highlights cause loss of information and
errors, thus, a strategy of three steps is applied in order to
deal with them. That is, not only detection and elimination
are carried out but inpainting.
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space of solution given as a result plausible deformation. In contrast, unplausible deformation is obtained when regularization
term is not included.
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unregularized version, in which a significant increase can be
seen in the computational cost and average error (see Table I).
In Fig. 5 x− and y− coordinates are retrieved of five control
points of the defined lattice. These displacements are used to
guide the surgical instruments. The global evaluation can be
seen in Fig. 6 and Table I, in which a numerical comparison
between both approach, �1− and �2− is displayed. According
with these results, the best performance was offered by the
�1−Regularized class.

Approach Avg. Time Avg. #Iterations Avg. Error
per Frame [sec] per Frame [mm]

�1−Unreg. 0.023 22 0.2098
�1−Reg. 0.011 15 0.0980
�2−Unreg. 0.031 24 0.2911
�2−Reg. 0.014 18 0.1002

V. DISCUSSION

This paper presented two approaches to compensate the
physiological motion based on the class of: �1− and
�2−regularized optimizations. In this context, the exploration
of �1− was proposed as well as the benefits of using explicit
regularization. According to the results, we suggest the use
of the class of �1−regularized optimization for solving this
problem, since it completed the tasks with the shortest time
(0.011 sec.), the smallest error (0.0980 mm.) and demonstrated
to be stable in presence of complex deformation. That is, this
class offers more robustness and efficiency in comparison with
the class of �2. Although this work is focussed on the heart
motion compensation, this methodology can also be applied in
different application, in which deformation recovery is needed.

Fig. 4 Behaviour of both approaches during the image sequence. The �1− and �2− regularized versions allow restricting the

Fig. 5 (Right to left) The zone of interest is handled a uniformly spaced lattice of 6*6. A point of interest is selected as well
as its four neighboring points which displacements in x and y coordinates are retrieved.

Fig. 6 (a) Average time per frame using the regularized
and unregularized version of both methodologies (b) Average
number of iteration in the optimization process per Frame

TABLE I PERFORMANCE ANALYSIS



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:8, No:9, 2014

553

Some examples are suturing [35], tissue property estimation
[36], virtual reality [37] among others. As future work, this
methodology will be extended in 3 dimensions and unified
with our work in force prediction [38] that avoid damaging
the tissue.
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