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Abstract—We consider the development of an eight order Adam’s
type method, with A-stability property discussed by expressing them
as a one-step method in higher dimension. This makes it suitable
for solving variety of initial-value problems. The main method and
additional methods are obtained from the same continuous scheme
derived via interpolation and collocation procedures. The methods
are then applied in block form as simultaneous numerical integrators
over non-overlapping intervals. Numerical results obtained using the
proposed block form reveals that it is highly competitive with existing
methods in the literature.

Keywords—Block Adam’s type Method; Periodic Ordinary Differ-
ential Equation; Stability.

I. INTRODUCTION

WE propose seven-step eighth order LMM for first order

IVPs of the form

y′ = f(t, y), y(t0) = y0 , x ǫ [t0, Tn] (1)

where f satisfies the Lipschitz condition as given in Henrici

[1]). The main method is conventionally written as

k
∑

j=0

αjyn+j = h

k
∑

j=0

βjfn+j (2)

Which has 2k + 1 unknown parameters α’s and β’s and

therefore can be of order 2k, where k is the step number,

however, according to Dahlquist[2], the order of (2) cannot

exceed k + 1 (k is odd) or k + 2 (k is even) for the method

to be stable.

Several types of block methods for the solution of (1)

have been proposed in literature for the numerical solution of

systems of ordinary differential equations (ODEs). A list of

related references may be found in [[3],[4],[5] ,[6],[7],[8],[9]]

and references therein. Our algorithm is based on collocation

and interpolation methods designed with periodic stiff systems

of ODEs in mind. Most of the block methods in literature

use a predictor- corrector approach requiring starting value

through the use of special methods for their implementa-

tion for instance (see[[5] ,[8],[9]]), while our methods as in

[[?],[10],[11],] preserve the Runge Kuta traditional advantage

of being self starting . we propose a class of continuous
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Adam’s type methods that are assembled into block matrix

equations for solving first order ODEs. The continuous rep-

resentation of the algorithm generates main discrete meth-

ods to provide the approximate solution yn+j at the points

t = tn+j , j = 1, . . . , 7.

The paper is presented as follows: In section 2, we discuss

the basic idea behind the algorithm and obtain a continuous

representation Y (t) for the exact solution y(t) which is used

to generate members of the block method for solving (1). In

section 3, we present the order of accuracy of the method.

section 4 we present the analysis of our block algorithm. In

section 5, we show the accuracy of our methods. Finally, in

section 6 we present some concluding remarks.

II. FORMULATION OF THE METHOD

Our objective is to derive a continuous method and use it

to generate the standard method (2) and additional methods

which are combined to form our continuous block Adams

type methods (CABM) of order 8. We proceed by seeking an

approximation to the exact solution by assuming a continuous

solution of the form

Y (t) =
8

∑

j=0

biφj(t) (3)

where bj are unknown coefficients to be determined and

φjt are polynomial basis function of degree 8. We thus

construct the seven step continuous Adam’s method with

φjt = tj , j = 0, . . . , 8 by imposing that the interpolating

function (3) coincides with the analytical solution at the point

tn+i, i = 6 to obtain the equation

8
∑

j=0

bjt
j
n+i = yn+6 (4)

If the function (3) satisfies the differential equation (1) at

the points tn+i, i = 0, 1, . . . , 7 we obtain the following set of

eight equations

8
∑

j=0

jbjt
j−1
n+i = fn+i, i = 0, 1, . . . , 7 (5)

where yn+i is the approximation for the exact solution

y(tn+i), fn+i = f(tn+i, yn+i) and n is the grid index. It

should be noted that equation (4) and (5) lead to a system

of equations which must be solved to obtain the coefficients
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bj , j = 0, . . . , 8 which are substituted into (3) and after some

algebraic computation, our continuous representation yields

the form

Y (t) = yn+6 + h

7
∑

i=0

βi(t)fn+i (6)

where βi(t) are continuous coefficients. The method (6) is then

used to generate the 7 − step standard Adams method (7) at

point t = tn+7 .

The additional methods are the obtained by evaluating at

the points t = tn+i, i = 0, . . . , 5. Thus we have the additional

methods as (8).

The methods (7) and (8) are then combined

and implemented as a one block, self starting

methods to simultaneously generate the solution

{yn+1, yn+2, yn+3, yn+4, yn+5, yn+6, yn+7} for equation

(1) at points {tn+1, tn+2, tn+3, tn+4, tn+5, tn+6, tn+7}

III. ORDER OF ACCURACY AND LOCAL TRUNCATION

ERROR

Following Fatunla [12] and Lambert [13] we define the local

truncation error associated with (3) to be the linear difference

operator Assuming that y(t) is sufficiently differentiable, we

can expand the terms in (10) as a Taylor series about the point

t to obtain the expression

L[y(t), h] = C0y(t) + C1y
′(t) + . . .+ Csh

sy(s)(t) + . . . ,

where the constant coefficients Cs, s = 0, 1, . . . are given as

follows:

C0 =
∑k

j=0 αj ,

C1 =
∑k

j=0 jαj ,
...

Cs =
1
s! [

∑k
j=0 j

sαj − s(
∑k

j=0 j
s−1βj)]

According to [1], we say that the method (2) has order m if

C0 = C1 = . . . = Cm, Cm+1 6= 0
therefore, Cm is the error constant and Cm+1h

m+1y(m+1)(tn)
the principal local truncation error at the point tn. Thus, we

can write the local truncation error (LTE) of the method of

order m as

LTE = Cm+1h
m+1y(m+2)(tn) +©(hm+2).

It is established from our calculations that the block

Adam’s methods (7) together with (8) have order

m = (8, 8, 8, 8, 8, 8, 8) and relatively small error constants

(− 33953
3628800 ,

9
1400 ,− 425

145152 ,− 13
14175 ,− 81

44800 ,− 127
113400 ,− 7297

3628800 )
T

respectively.

IV. ANALYSIS OF THE METHOD

In what follows, (7) and (8) can be rearranged and rewritten

as a matrix finite difference equation of the form

where

Yω+1 = (yn+1, yn+2, yn+3, yn+4, yn+5, yn+6, yn+7)
T

Yω = (yn−6, yn−5, yn−4, yn−3, yn−2, yn−1, yn)
T

Fω+1 = (fn+1, fn+2, fn+3, fn+4, fn+5, fn+6, fn+7)
T

Fω = (fn−6, fn−5, fn−4, fn−3, fn−2, fn−1, fn)
T

for ω = 0, . . . and n = 0, 7, . . . , N − 7, and the matrices

A(1), A(0), B(1) and B(0) are 7 by 7 matrices whose entries

are given by the coefficients of (7) and (8). In particular, the

matrices are defined as equation (11).

A. Zero-stability

It is worth noting that zero-stability is concerned with the

stability of the difference system in the limit as h tends to

zero. Thus, as h → 0, the method (10) tends to the difference

system

A1Yω+1 = A0Yω

whose first characteristic polynomial ρ(R) is given by

ρ(R) = det(RA(1) −A(0)) = R6(1−R) (12)

Following Fatunla[12], the block method (10) is zero-stable,

since from (??), ρ(R) = 0 satisfies |Rj | ≤ 1, j = 1, . . . , ν,

and for those roots with |Rj | = 1, the multiplicity does not

exceed 1.

1) Consistency: The block method (10) is consistent as it

has order m > 1. According to Henrici[1],convergent, since

convergence = zerostability + consistency.

B. Linear stability

The linear stability properties of the CABM are determined

by expressing them in the form (10) and applying them to the

test equation

y′ = λy , λ < 0

which is applied to (10) to yield

Yω+1 = D(z)Yω , z = λh, (13)

where the matrix D(z) is given by

D(z) = (A(1) − zB(1))
−1(A0 + zB0)

From (13) we obtain the stability function R(z) : C → C

which is a rational function with real coefficients given by

(14).

The stability domain of the method (or region of absolute

stability), S, is defined as

S = [z ∈ C : R(z) ≤ 1] (15)

Specifically, when the left-half complex plane is contained

in S, the method is said to be A-stable. Below in Fig. 1, we

show the plot with rectangle representing the zeros and plus

sign representing the poles of (14). The plot in white represents

the stability region which corresponds to the stability function

(14). Clearly, from the figure, it is obvious that our method

is A- stable since according to Hairer and Wanner [14] it has

no pole of the stability function (14) in the left half complex

plane.

Implementation The implementation of the above block

methods is summarized as follows:

Summary
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yn+7 = yn+6 + h[
275

24192
fn −

11351

120960
fn+1 +

1537

4480
fn+2 −

88547

120960
fn+3 +

123135

120960
fn+4 −

4511

4480
fn+5 +

139849

120960
fn+6 +

5257

17280
fn+7]

(7)

yn = yn+6 + h[−41
140

fn −

54
35
fn+1 −

27
140

fn+2 −
68
35
fn+3 −

27
140

fn+4 −
54
35
fn+5 −

41
140

fn+6 + 0fn+7]

yn+1 = yn+6 + h[ 275
24129

fn −

9355
24192

fn+1 −
1075
896

fn+2 −
22375
24192

fn+3 −
22375
24192

fn+4 −
1075
896

fn+5 −
9355
24192

fn+6 +
275

24192
fn+7]

yn+2 = yn+6 + h[0fn + 8
945

fn+1 −
38
105

fn+2 −
136
105

fn+3 −
664
945

fn+4 −
136
105

fn+5 −
38
105

fn+6 +
8

945
fn+7]

yn+3 = yn+6 + h[ 13
4480

fn −

117
4480

fn+1 +
513
4480

fn+2 −
2777
4480

fn+3 −
3897
4480

fn+4 −
1107
896

fn+5 −
337
896

fn+6 +
9

896
fn+7]

yn+4 = yn+6 + h[ 1
756

fn −

2
189

fn+1 +
1
28
fn+2 −

52
945

fn+3 −
1153
3780

fn+4 −
46
35
fn+5 −

1363
3780

fn+6 +
8

945
fn+7]

yn+5 = yn+6 + h[ 13
4480

fn −

2999
120960

fn+1 +
1283
13440

fn+2 −
2987
13440

fn+3 +
44797
120960

fn+4 −
11261
13440

fn+5 −
5311
13440

fn+6 +
275

24192
fn+7]



































































(8)

L[y(t), h] =

k
∑

j=0

{αjy(t+ jh)− hβjy
′(t+ jh)} (9)

A(1)Yω+1 = A(0)Yω + h[B(1)Fω+1 +B(0)Fω] (10)

A1 =



















1 0 0 0 0 −1 0
0 1 0 0 0 −1 0
0 0 1 0 0 −1 0
0 0 0 1 0 −1 0
0 0 0 0 1 −1 0
0 0 0 0 0 −1 0
0 0 0 0 0 −1 1



















A0 =



















0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 0 0



















B(1) =



















−

9355
24192

−

1075
896

−

22375
24129

−

22375
24129

−

1075
896

−

9355
24192

275
24192

−

8
945

−

38
105

−

136
105

−

664
945

−

136
105

−

38
105

8
945

−

117
4480

513
4480

−

2777
4480

−

3897
4480

−

1107
896

−

337
896

9
896

−

2
189

1
28

−

52
945

−

1153
3780

−

46
35

−

1363
3780

8
945

−

2999
120960

1283
13440

−

2987
13440

44797
120960

−

11261
13440

−

5311
13440

275
24129

−

54
35

−

27
140

−

68
35

−

27
140

−

54
35

−

41
140

0
−

11351
120960

1537
4480

−

88547
120960

123133
120960

−

4511
4480

139849
120960

5257
17280



















B(0) =



















0 0 0 0 0 0 275
24192

0 0 0 0 0 0 0
0 0 0 0 0 0 13

4480

0 0 0 0 0 0 1
756

0 0 0 0 0 0 13
4480

0 0 0 0 0 0 −

41
140

0 0 0 0 0 0 275
24192
















































































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





















































































































































(11)

R(z) =
1680 + 5880z + 9660z2 + 9800z3 + 6769z4 + 3283z5 + 1089z6 + 210z7

1680− 5880z + 9660z2 − 9800z3 + 6769z4 − 3283z5 + 1089z6 − 210z7
(14)

On the partition IN : {a = t0 < t1 < . . . < tN−1 < tN =
b,n = 0, 1, 2, . . . , N − 1.

Step 1. Choose N for k = 7, h = b−a
N the number of blocks

π = N
7 using (10) n = 0, ω = 0 the values (y1, y2, . . . , y7)

T

are generated simultaneously over the subinterval [t0, t7] as y0
are known from the IVP (1).
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Fig. 1. Stability Region

Step 2. for n = 8, ω = 1, (y8, y9, . . . , y14)
T are obtained

over the subinterval [t7, t14] since y7 is known from the first

block.

Step 3. The process is continued for n = 2k, . . . , N−k and

ω = 2, . . . , π to obtain approximate solutions to (1) on sub-

intervals [t0, tk], . . . , [tN−k, tN ] N is a positive integer and n
the grid index.

V. NUMERICAL EXAMPLES

We give three numerical examples to illustrate the accuracy

of the method. We find absolute of the approximate solution

on the partition πN as |y − y(x)|. The rate of convergence is

calculated using the formula Rate = log2(E
2h/Eh), Eh is

the maximum absolute error obtained using the step size h.

All computations were carried out using our written Matlab

code.

A. Example 1

Our first example is the given linear system on the range

on the range 0 ≤ t ≤ 1

Example 1:

y′1 = −21y1 + 19y2 − 20y3, y1(0) = 1
y′2 = 19y1 − 21y2 + 20y3, y2 = 0
y′3 = 40y1 − 40y2 + 40y3, y3 = −1

The exact solution of the system is given by

y1(x) =
1
2 (e

−2x + e−40x(cos(40x) + sin(40x)))
y2(x) =

1
2 (e

−2x − e−40x(cos(40x) + sin(40x)))
y3(x) =

1
2 (2e

−40x(sin(40x)− cos(40x)))

This problem was also solved by Brugnano and Trigiante

[6] using the Generalized Backward Backward Differentiation

TABLE I
A COMPARISON OF METHODS FOR EXAMPLE 1

h GBDF (p = 7) Rate CABM (p = 8) Rate

1.00× 10−2 1.187× 10−3 - 3.953× 10−6 -

5.00× 10−3 1.389× 10−5 6.42 2.913× 10−8 7.08

2.50× 10−3 1.079× 10−7 7.00 2.206× 10−10 7.06

1.25× 10−3 1.079× 10−9 6.64 6.650× 10−13 8.36

6.25× 10−4 9.409× 10−12 6.84 2.689× 10−15 7.95

Formulas (GBDF) of order seven. The results for the GBDF

are reproduced in table 1 and compared with the results given

by the CABM of order eight. It is seen from table 1 that the

CABM performs better than the GBDF by gaining three digits

in accuracy. In all cases the rate of convergence is consistent

with the order of the methods as the step-size is decreased.

Thus, for this example, our method is superior in terms of

accuracy.

B. Example 2

Example 2: Next, we consider the Bessel ODE (see Vigo-

Aguiar and Ramos [15]) given by

t2y′′+ty′+(t2−0.25)y = 0, y(1) =

√

2

π
sin 1 ≃ 0.6713967071418031

y′(1) = (2 cos 1− sin 1)/
√
2π ≃ 0.0954005144474746

Exact : y(t) = J1/2(t) =

√

2

πt
sin t

We reduced the above second order equation to the form (1)

as

y′1 = y2 y1(1) =
√

2
π sin 1 ≃ 0.6713967071418031

t2y′2 + ty2 + (t2 − 0.25)y1 = 0

y2(1) =
(2 cos 1−sin 1)√

2π
≃ 0.0954005144474746

Exact : y1(t) = J1/2(t) =
√

2
πt sin

Exact : y2(t) = J ′
1/2(t) =

√

2
πt cos−

√

1
2π

√

( 1t )
3 sin

The theoretical solution at t = 8 is y(8) =
√

2
8π sin(8) ≃

0.279092789108058969. The absolute errors for the y1-

component were obtained at t = 8 using our method for fixed

step-sizes h = 7/67, 7/82, 7/97, 7/112, 7/125 corresponding

to the number of steps N = 67, 82, 97, 112, 125 as shown in

Table 2. Similar results were obtained for the same problem

in [15] using the variable-step Falker method of order eight

(m = 8) implemented in the predictor corrector mode (PC). It

is seen that although we used fixed step-sizes, our method is

more efficient in terms the number of function evaluation than

the method in [15], which was implemented in a predictor-

predictor mode with special techniques for supplying the

starting values and for varying the step-size. Our method is

self-starting and implemented without predictors.
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TABLE II
ABSOLUTE ERRORS,‖y − y‖, FOR EXAMPLE 2 WHERE

y(x) = J1/2(x) =
√

2
πx

sinx

steps VAR (m=8) NFEs CABM (m=8) 8 NFEs

67 7.1122× 10−7 134 2.978× 10−9 71

82 9.2632× 10−8 164 9.3971× 10−10 85

97 8.7834× 10−9 194 1.2447× 10−10 99

112 1.2108× 10−10 224 3.2552× 10−11 113

125 2.7068× 10−11 250 5.8148× 10−11 126

TABLE III
RESULT FOR CABM8 Error = Maxi|yi − y(ti)| FOR EXAMPLE 3

h
Error

Steps CABM8

1.00× 10−1 200 7.14060× 10−10

5.00× 10−2 400 1.89718× 10−12

2.50× 10−2 800 7.08808× 10−14

1.25× 10−2 1600 1.04916× 10−14

6.25× 10−3 3200 4.29379× 10−14

C. Example 3

Example 3: Finally we solve without comparison our last

example the two body problem in the range 0 ≤ t ≤ 20

y′1 = y3, y1(0) = 1
y′2 = − y1√

(y2

1
−y2

2
)3
, y2(0) = 0

y′3 = y4, y3(0) = 0
y′4 = − y2√

(y2

1
−y2

2
)3
, y4(0) = 1

With exact solution given as

y1(t) = cos(t), y2(t) = sin(t)

y3(t) = −sin(t), y4(t) = cos(t)

VI. CONCLUSION

A seven step continuous block Adams type block method

CABM of order eight has been proposed and implemented

as self starting methods for solution of ordinary differential

equations,. Details of our numerical results indicate that the

method is promising and they may be competitive with other

methods that are frequently used for periodic ordinary differ-

ential equations.
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