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Abstract—De novo genome assembly is always fragmented. 

Assembly fragmentation is more serious using the popular next 
generation sequencing (NGS) data because NGS sequences are shorter 
than the traditional Sanger sequences. As the data throughput of NGS 
is high, the fragmentations in assemblies are usually not the result of 
missing data. On the contrary, the assembled sequences, called 
contigs, are often connected to more than one other contigs in a 
complicated manner, leading to the fragmentations. False connections 
in such complicated connections between contigs, named a contig 
graph, are inevitable because of repeats and sequencing/assembly 
errors. Simplifying a contig graph by removing false connections 
directly improves genome assembly. In this work, we have developed a 
tool, SIMGraph, to resolve ambiguous connections between contigs 
using NGS data. Applying SIMGraph to the assembly of a fungus and 
a fish genome, we resolved 27.6% and 60.3% ambiguous contig 
connections, respectively. These results can reduce the experimental 
efforts in resolving contig connections. 
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I. INTRODUCTION 

ENOME sequencing and assembly are essential for 
understanding the genomes of organisms. Currently, 

next-generation sequencing (NGS) technologies, such as Roche 
454 pyrosequencing[1], Illumina Genome Analyzer[2] and ABI 
SOLiD system[3], are prevailing due to their low cost and high 
throughput. It is now a common practice to obtain a deep 
coverage of sequences (also called reads) from a whole genome 
with one or a few NGS runs for assembly. However, genome 
assembly is still highly challenging. None of current programs 
can process sequencing reads into one single piece of DNA in 
one shot even for a small microbial genome of a few 
mega-bases. The resulting assembly usually appears as a set of 
long DNA fragments, called contigs. 

A major challenge of de novo genome assembly arises 
because of the presence of repetitive DNA segments, called 
repeats, in genomes. When reads come from distinct copies of a 
repeat, assembly program usually cannot distinguish 
betweenthe reads by their genomic locations.  
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Thus, the reads from a repeat are often assembled into one 

DNA fragment (Figure 1a) with distinct flanking DNA 
connected, resulting in complicated connections between 
contigs, together called a contig graph (Figure 1).  

Repeat problems in genome assembly can be serious for two 
reasons. First, repeats can constitute a significant portion of a 
genome. For example, DNA repeats occupy about half of the 
human genome[4]. Second, NGS reads are shorter (~400 bpfor 
454, 100-150 bp for Illumina, and 75 bp for SOLiD) than 
traditional Sanger reads (800-1000 bp). A DNA repeat is 
actually not a repeat when the reads are longer than the repeat 
because with the unique part of reads outside the repeat, the 
reads can be distinguished. When reads are shorter, more DNA 
repeats appear. Even for a small microbial genome, repeat 
problems often result in a complicated contig graph (Figure 1b). 

In this work, we propose a computational tool, SIMGraph, to 
simplify a contig graph for improving genome assembly. We 
note that with a deep read coverage, the assembled contigs 
cannot be connected mainly because of ambiguous connections 
instead of missing data[5]. Ambiguous connections arise when 
one contig connects to more than one other contig and the extra 
connections are false because of repeats and 
sequencing/assembly errors. SIMGraph simplifies a contig 
graph by resolving ambiguous contig connections, i.e., 
removing the false connections between contigs. After 
removing the false connections, some contigs can be 
re-connected unambiguously to improve the assembly. 

SIMGraph takes advantage of two types of NGS data, 454 
and Illumna paired-end (PE), to simplify a contig graph. More 
specifically, it uses Illumina PE data to resolve some ambiguous 
connections between contigs in a contig graph obtained with 
454 data alone. Because 454 reads are longer than Illumina 
reads, we expect fewer repeats in the assembly with 454 data 
alone. In contrast, an Illumina platform yields a much greater 
amount of data than a 454 platform, thus providing a stronger 
statistical power for resolving ambiguities in contig 
connections. 
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Fig. 1 De novo genome assembly with the presence of a 

repeat.(a)Shown on top are two genomic loci where each color 
represents a unique contig. The bottom graph is part of a so-called 

contig graph, which stores the information of all connections between 
contigs. The presence of repeats (segments in red) leads to branches of 

the contig graph. (b) A contig graph of the Velvet assembly of the 
Illumina PE reads simulated from the E. coli K12 MG1655 genome 
(~4.6 Mb). Each line represents a contig and the arrow indicates the 
direction. Only the largest connected group of contigs is shown here 

 
Applying SIMGraph on the 454 and Illumina data of a fungus 

and a fish genome, we detected 666 and 3,708 ambiguous 
connections between contigs. SIMGraph then resolved 184 
(27.6%), and 2,236 (60.3%) of the ambiguous connections. 
Though SIMGraph was tested using 454 and Illumina PE data in 
this work, it can be applied on Illumina PE data alone. 

II.  METHOD 

A. NGS data and draft genome 

We applied our tool on the NGS data of the fish, 
Gasterosteusaculeatus, in this study. The draft genome of the 
fish (BROAD S1, Feb 2006) has been released byBROAD 
Institute. This draft genome was assembled from Sanger 
sequencing data from several mate-pair libraries using 
Arachne2[6, 7]. The same fish sample was later sequenced 
again on 454 and Illumina platforms. The draft genome is 
461,533,448 bpin length(in 21 chromosomes, 1 mitochondrial 
DNA, and 1822 scaffolds).  We downloaded the draft genome 
from Ensembl[8]. We obtained the NGS data of the fish genome 
(sample ID SRS010092, Table I) from NCBI Sequence Read 
Archive (SRA) database[9]. We downloaded all the 454 data of 
the fish (a total of 3.7G bases in 11M reads) and the Illumina PE 
libraries (a total of 19G bases in 125M PEs of 76 bp read 

length), constituting an ~8X and ~41X coverage of the genome, 
respectively. 

We also tested SIMGraph on the NGS data of a fungus, which 
was kindly provided by our collaborators. This dataset contains 
~4.2M 454 reads and ~7M Illumina PEs, constituting an ~43X 
and ~16X coverage of the genome, respectively. The genome of 
this fungus has not been published. 

B. Initial assembly of 454 data 

We assembled the 454 data of the two genomes with 
Newbler[1]with default parameters. The resulting contig 
seqeuences (called 454 contigs) and contig graph, in the files 
454AllContigs.fna and 454ContigGraph.txt, were submittedto 
SIMGraph for assembly improvement. 

C. SIMGraph algorithm 

Figure 2a shows the workflow of SIMGraph. SIMGraph 
takes as input the contig sequences and contig graph assembled 
with 454 data, and Illumina PE reads. After the following steps, 
it outputs the validity judgments of the detected ambiguous 
contig connections. 

SIMGraph first detects a specific type of ambiguous 
connections between 454 contigs, named triads, from the contig 
graph (Figure 2a). A triad composes of three contigs forming 
two possible paths, C1-C3 and C1-C2-C3. In a triad, contigs C1 
and C3 can either be connected straightly or connected with the 
contig C2 in the middle. This arises either because both 
theconnections exist in the genome, or because one of the two 
paths is false and appears due to sequencing or assembly errors. 
SIMGraph judges the validity of the two cases using Illumina 
PE data. The pseudo-code of the triad detection algorithm in 
SIMGraph is shown in Figure 2b. 

SIMGraph then maps the Illumina PE reads onto the 
contigsin the detected triads using SOAP2[10]. The mappings 
of Illumina PEs are classified into two categories: regular and 
bridging (Figure 3). A regular PE has its two reads mapped 
onthe different strands of the same contig (Figure 3a). From 
themappings of regular PEs, SIMGraph calculates the 
distributionof the distances between two paired reads. This 
distribution islater used to judge the validity of contig 
connections. A bridgingPE has its two reads mapped on 
different contigs (Figure 3b).SIMGraph uses the bridging PEs 
whose two reads are mapped on the contigs C1 and C3 of triads 
for resolving ambiguities in contig connections. 

 
TABLE I 

STATISTICS OF THE NGS DATA USED IN THIS STUDY 

Species No. of 454 reads (bases) No. of Illumina read pairs (bases) 

G. aculeatus1 11,109,932 (3,730,459,022) 125,373,070 (19,059,697,520) 

Our fungus2 4,203,993 (1,413,313,543) 6,998,197 (531,862,972) 
1The 454 libraries were found by searching SRA using the sample ID SRS010092 and the keyword “454”.The read length and insert length of the Illumina libraries 
are 76 and 410 bp, respectively.2Illumina read length is 38 bp 
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(a) 

 
(b) 
For each contig a { 

For each contig b that connects to a { 

Suppose that the ends (5’ or 3’) of a and b in this connection are 
a.e and b.e, respectively.For each contig c that connects to a.e { 

If b.e connects to the other end ofc, then a, c and b are 
reported as the C1, C2 and C3, respectively of a triad. Note 
that C1 and C3 in a triad are interchangeable by the 
definition. Thus if b, c and a have been reported as a triad, 
than this triad will be ignored. 

} 

} 

}  

Fig. 2 Workflow and pseudo-codes of SIMGraph. (a) SIMGraph 
detects triads in the 454 assembly, performs read mapping and 

analyzes the mapping results with two methods. The 454 contig graph 
that describes connections between contigs is in ‘454ContigGraph.txt’ 

of Newbler’s outputs; while the 454 contig sequences are in 
‘454AllContigs.fna’. This study defines a triad as a specific type of 

ambiguous gap. C1, C2 and C3 are 454 contigs, where the sharp ends 
indicate the 3’-ends. The dashed lines among them indicate their 

connections reported by Newbler. (b) Pseudo-codes of triad detection 
algorithm in SIMGraph 

 

 
Fig. 3 Four conditions of mapping Illumina reads onto 454 contigs. 
Black lines are Illumina reads while color lines are 454 contigs. The 
dashed lines in between the two Illumina reads indicate that they are 
paired ends. (a) A Illumina PE maps on the same 454 contig. (b) A 
Illumina PE maps on two 454 contigs, denoted bridging PE in the 

context. (c) A Illumina SE crosses the junction of two 454 contigs. (d) 
A Illumina SE crosses the two junctions of three 454 contigs 

 

For each triad, SIMGraph judges the validity of the two 
contig paths using a statistical analysis and a quantitative 
analysis. The statistical analysis focuses on the 
distancesbetween two paired reads, the paired-end distances 
(PEDs), of Illumina data. From the paired reads mapped on C1 
and C3 of a triad, SIMGraph calculates two PEDs, d1-3 and 
d1-2-3, for the two paths C1-C3 and C1-C2-C3, respectively 
(Figure 4a). When a triad has n bridging PEs with n larger than a 
predefined parameter b, SIMGraph obtains the two PED 
distributions of d1-3 and d1-2-3, and then uses the 
Kolmogorov-Smirnov test (KS-test) to compare them with the 
PED distribution of the regular PEs. When n<b, SIMGraph 
calculates the two geometric means of probability 
densities—usually named likelihood—of the nd1-3 and nd1-2-3, 
respectively, using the probability distribution function in PED 
distance of the regular PEs. When comparing the PED of a path 
with the regular case, the larger p-value of KS-test or likelihood 
indicates that the corresponding path is supported by Illumina 
PE data. Specifically, we set a p-value cutoff (default 0.001, 
adjustable), above which the path is considered accepted by 
Illumina PE data. Figure 4 shows a sample result of SIMGraph’s 
statistical analysis. 

In the quantitative analysis, SIMGraph treats the mappings of 
Illumina data as of single reads without considering the pairing 
information. Briefly, we obtained the number of Illumina single 
reads that are mapped at the junction of contig connections. We 
define the support of the C1-C3 path as the number of single 
reads spanning the junction of C1 and C3 (Figure 3c). The 
support of the C1-C2-C3 path is defined as the smaller support 
of C1-C2 and C2-C3. If C2 is shorter than a predefined 
parameter o, the support of the C1-C2-C3 path is defined as the 
number of mapped single reads spanning C1, C2 and C3 (Figure 
3d). If C1 and/or C3 are shorter than o, SIMGraph extends their 
outer ends (ends not connected to C2) by the corresponding 454 
raw reads to enable read mapping. The inner ends (ends 
connected to C2) of C1 and C3 remain intact during contig 
extension. This may result in multiple extended C1 and C3 since 
a 454 contig is usually the consensus of multiple 454 raw reads. 
In this condition, the sum of supports of all the extended contigs 
is used. We set a support cutoff, above which we consider the 
path as accepted by Illumina PE data. Figure 5 shows a sample 
result of SIMGraph’s quantitative analysis. 

In the final output, we combine the results of statistical 
analysis and quantitative analysis. For each triad, when the two 
inferences agree, the result is strongly supported. If one of the 
analyses does not accept any of the paths, we consider the 
analysis non-informative and use the inference of the other 
analysis as the final inference. Such non-informative cases often 
arise because only few PEs or reads support the path. When 
both analyses are non-informative, the triad is considered 
non-resolvable. In contrast, if one of the analyses accepts both 
paths, indicating that the information content is enough, we 
expect that the other analysis also accepts both paths. If the 
other analysis does not accept both paths, we tend to be 
conservative and use the inference of the one path as the final 
inference.  
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This strategy is reasonable. For example, when the length of 
C2 is small, the statistical analysis tends to accept both paths 
because it cannot distinguish the two paths. It is then better to 
determine the final inference based on the quantitative analysis. 
When each of the two analyses infers only one path and the two 
inferred paths disagree, we consider the case inconsistent. 

III.  CABOG AND SSPACE 

We compared the performance of SIMGraph with two other 
programs, CABOG[11, 12] and SSPACE[13]. We emphasize 
that the two programs are not designed to simplify contig graph, 
but they contain algorithms that connect contigs. Because the 
module for contig connections is embedded in CABOG and 
cannot be run separately, we ran CABOG with the 454 and 
Illumina PE data and used the final assembly for performance 
comparison. SSPACE is a scaffolder program, and sometimes 
gives the sequences between contigs on a scaffold. 

IV. RESULTS AND DISCUSSIONS 

A. Initial 454 assembly 

We used Newbler to assemble the 454 reads of the fungus 
into 20,949 contigs. About half (10,486) of the contigs are at 
least of length 100 bp, in which the total number of bases is 
32,828,399. The assembly outputs 31,157 connections between 
20,919 contigs. Thus, almost all contigs are involved in the 
contig graph, suggesting a good coverage of the 454 data 
because. However, for a genome of size about 40 Mb, this initial 
assembly is much more fragmented in our experience. We later 
realized that the fungus sample is diploid, which reasonably 
explains the abundance of small contigs. 

For the assembly of the fish genome, we obtained 235,498 
contigs. The majority of the contigs (193,423) are at least of 
length 100 bps, in which the total number of bases is 
407,226,149. The assembly outputs 147,106 connections 
between 130,182 contigs.  That is, a significant portion of the 
contigs is not in the contig graph, suggesting that the 8X 
coverage of the 454 data is barely enough. 

B. Mappings of Illumina PE reads 

Using the contigs assembled from 454 data as a reference, we 
found that the majority of the Illumina PE reads could be 
mapped onto the contigs. In the case of fish, 16,367,388 of the 
125,373,010 Illumina reads could be mapped onto the 
contigs.From these mappings, we found 16,347,307 regular PEs 
and 20,081 bridging PEs. The PED distribution of the regular 
PEs peaked at 291 bp (Figure 4). This distribution of PED is a 
very accurate source of information for our statistical analysis. 
We note that the PED of the downloaded Illumina library is 
denoted to be about 410 bp, which is quite far away from our 
calculated peak value of distribution. Our self-derived PED 
distribution is thus an advantage. In the case of fungus, 
5,407,881 of the6,998,179Illumina reads are mapped onto the 
contigs. 

 
Fig. 4 Statistical analysis of SIMGraph. (a) Scheme of determination of 

paired-end distance (PED) in SIMGraph. Using SOAP2, two paired reads (the 
two black lines connected with a dashed line) are mapped on two contigs C1 

and C3 (blue and red lines). SOAP2 outputs the mapped positions of the paired 
reads on the contigs, thus a and b are known constants. Since the gap sequence 
between C1 and C3 is either an empty sequence or the C2 contig, the PED is 
either d1-3=a+b  or d1-2-3=a+y+b where y is the length of C2 contig. (b) This 
analysis uses Kolmogorov-Smirnov test (KS-test) to compare the cumulative 

distribution functions (c.d.f) of the PEDs of C1-C3 path (i.e., d1-3, red line) and 
of C1-C2-C3 path (i.e., d1-2-3, green line) to the background distribution (blue 

line). The p-values of KS-test are shown in the legends of the lines. (c) 
SIMGraph also provides the probability density functions (p.d.f) of PED. (d) If 
a triad has too few bridging PEs, SIMGraph resorts to likelihoods of the PEDs 
of C1-C3 path (red lines) and of C1-C2-C3 paths (green lines) belonging in the 
background distribution (blue line). The likelihoods are shown in the legends of 

the lines 
 

 
Fig. 5 Result of the quantitative analysis of SIMGraph. This analysis 
reports the number of single-end (SE) reads spanning paths C1-C3 and 
C1-C2-C3. (a) The sequence of the path C1-C3, where C1 and C3 are 

connected and‘>’ and ‘<’ indicate the boundary of C1 and C3, 
respectively. (b) Supported SE reads of path C1-C3 and their 

alignments to the sequence connecting C1 and C3. (c) The sequence of 
the path C1-C2-C3, where ‘.’ indicate C2. (d) Supported reads and 

alignments of path C1-C2-C3. (e) Details of each supported SE read, 
including the overlap with C1, the overlap with C3, the smaller overlap 
of the previous two and the direction of the SE read. A valid alignment 
requires that the smaller overlap exceeds o nucleotides and at most 5% 

mismatch in the whole alignment 
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C. SIMGraph 

From the contig graphs of the fungus and fish assembly, 
SIMGraph detected 666 and 3,708 triads, and resolved 184 
(27.6%) and 2,236 (60.3%) triads, respectively (Table 2). In 
these inferences, we found that the statistical and quantitative 
analyses were quite consistent.  

For the fungus and the fish assembly, only in four 
(4/184=2.2%) and 49 (49/2236=2.2%) triads the two analyses 
were inconsistent. 

Among the 2,236 inferences in the case of fish, 1849, 387, 
and 72 triads were inferred to go with the C1-C3, C1-C2-C3, 
and both paths, respectively (Table 2). To investigate the 
consistency between the SIMGraph inferences and the fish 
genome draft, we aligned the 454 contigs to the genome draft 
using BLAT[14]and checked which of the inferences is 
supported on the genome draft. Specifically, we aligned the C1 
and C3 contigs of each triad, and check whether there is a DNA 
segment of length C2 in-between the two mapping loci of C1 
and C3. Among our 1849, 387, and 72 inferences, 742, 149, and 
5 inferences were consistent with the case on the fish genome 
draft. We note that these numbers do not directly imply a low 
performance of SIMGraph. It is also possible that SIMGraph 
points out some parts in the fish genome draft that deserve more 
careful inspections because SIMGraph provides detailed 
statistical and quantitative analyses. In addition, because the 
coverage of NGS reads is much higher than that of the 
traditional Sanger reads for the fish genome, it is not surprising 
that NGS data explore the genome more thoroughly. 

D. Performance comparision 

We compared the performance of SIMGraph with two related 
programs: CABOG and SSPACE. The two programs are not 
designed to simplify contig graph, but in each program a module 
that connects contigs is contained. To stand on equal footage, 
we checked whether the three tools connect the contigs in the 
detected triads. We found that SIMGraph resolved more triads 
compared with CABOG and SSPACE (Table 2) in both cases of 
the fungus and the fish. When compared to the fish genome draft, 
SIMGraph also inferred the largest number of consistent 
inferences. Taken together, SIMGraph achieved the greatest 
number of resolved triads while sacrificing a bit the accuracy. 

E. Speed and memory usage 

The four steps in Figure 2 can be grouped into the core 
algorithm of SIMGraph (Triad detection, Statistical analysis of 
PE mapping, and Quantitative analysis of SE mapping) and the 
read mapping step by SOAP2. The main CPU loading is at the 
read mapping step by SOAP2. For example, the core algorithm 
took ~2 hours while SOAP2 took ~10 hours for the fish case. 
The computational time of SOAP2 is proportional to the 
genome size. As for the memory, both the core algorithm and 
SOAP2 consumed the size of the genome. Thus, machines with 
a 4 GB are able to handle a usual mammalian genome. 

 

F. Other types of ambiguous contig connections 

Currently, SIMGraph focuses on a specific type of graph 
structure. In fact, the design of SIMGraph allows the possible 
extensions to other types of graph structures. Specifically, using 
Illumina PE data, it is possible to explore all pairs of contigs 
bridged by PEs whatever the connections between the two 
contigs are. We have analyzed the contig graphs of the two 
adopted genomes. The fish genome has 147,106 junctions of 
which 7,936 (accounting for 5.4%) may be resolved by 
SIMGraph. Here junctions are possible connections between 
contigs, which were reported but not actually connected by the 
assembler. The fungus genome has 31,832 junctions of which 
1,362 (accounting for 4.3%) may be resolved by SIMGraph. 

Even with such a small percentage, SIMGraph still 
contributes in three aspects. First, SIMGraph connects contigs 
with full sequences instead of a stretch of N’s, which were 
observed in some cases using SSPACE. Second, SIMGraph 
explicitly provides statistical and quantitative measures to 
validate its predictions (Figure 4 and 5). Third, SIMGraph is 
suitable as an extra step in an assembly pipeline. Currently there 
are only few stand-alone assembly improvement algorithms that 
are independent to the assembly pipeline. 

V. CONCLUSION 

SIMGraph combines 454 andIllumina data to improve a 
genome assembly via simplifying the 454 contig graph, i.e., 
resolving ambiguous connections between contigs. 
Comparedwith two related programs, SIMGraph achieved the 
largest number of resolved ambiguous contig connections while 
scarifying a bit the accuracy, thus reducing experimental 
effortsfor such resolutions. SIMGraph provides detailed 
statistical and quantitative analyses for resolving ambiguities 
and the two analyses can be extended to resolve other 
configurations of contig connections. Moreover, through the 
detailed data provided by SIMGraph, one can study the 
mechanisms of sequencing and assembly errors leading to the 
paths un-supported by Illuminadata. Thus, our tool shall be of 
interest to scientists in the field of genome assembly. 
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TABLE II 

RESULTS OF SIMGRAPHON G. ACULEATUS AND A DRAFT FUNGUS GENOME SEQUENCED BY OUR COLLABORATORS. WE NOTE THAT ALTHOUGH THE NUMBER OF 

RESOLVED TRIADS CONSISTENT WITH THE GENOME DRAFT MAY NOT SEEM HIGH, IT DOES NOT IMPLY A LOW PERFORMANCE OF SIMGRAPH. ON THE CONTRARY, 
BECAUSE SIMGRAPH DOES DETAILED STATISTICAL ANALYSIS AND QUANTITATIVE ANALYSIS, IT IS ALSO POSSIBLE THAT THE GENOME DRAFT CAN BE IMPROVED 

FURTHER USING SIMGRAPH 

Organism  #C1-C31 #C1-C2-C32 #both paths3 #no path4 #inconsistent5 Solved (%solved)6 

G. aculeatus        

SIMGraph (consistent with genome draft)  1,849 (742) 387 (149) 72 (5) 1,351 (447) 49 2,236 (60.3%) 

  CABOG (consistent with genome draft)  514 (249) 591 (295) 21 (15) 2,582 (690) N/A 1,105 (29.8%) 

  SSPACE (consistent with genome draft)  160 (86) 90 (52) 7 (7) 3,451 (832) N/A 250 (6.7%) 

Our fungus        

SIMGraph  130 54 49 429 4 184 (27.6%) 

  CABOG  6 5 0 655 N/A 11 (1.7%) 

  SSPACE  3 14 0 649 N/A 17 (2.6%) 

This table shows the number of triads where 1only C1-C3 was accepted, 2only C1-C2-C3 was accepted, 3both paths were accepted and 4no path was 

accepted. 5Number of triads where one analysis accepted only C1-C3 but the other accepted only C1-C2-C3. 6Sum of C1-C3, C1-C2-C3 and the ratio to 

the total detected triads. 
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