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Abstract—De novo genome assembly is aways fragmented.
Assembly fragmentation is more serious using the popular next
generation sequencing (NGS) data because NGS sequences are shorter
than the traditional Sanger sequences. As the data throughput of NGS
is high, the fragmentations in assemblies are usually not the result of
missing data On the contrary, the assembled sequences, called
contigs, are often connected to more than one other contigs in a
complicated manner, leading to the fragmentations. False connections
in such complicated connections between contigs, named a contig
graph, are inevitable because of repeats and sequencing/assembly
errors. Simplifying a contig graph by removing false connections
directly improves genome assembly. In thiswork, we have developed a
tool, SIMGraph, to resolve ambiguous connections between contigs
using NGS data. Applying SIMGraph to the assembly of afungus and
a fish genome, we resolved 27.6% and 60.3% ambiguous contig
connections, respectively. These results can reduce the experimental
efforts in resolving contig connections.

Keywor ds—contig graph, NGS, de novo assembly, scaffold

|. INTRODUCTION

ENOME sequencing and assembly are essentia for

understanding the genomes of organisms. Currently,
next-generation sequencing (NGS) technologies, such as Roche
454 pyrosequencing[1], Illumina Genome Analyzer[2] and ABI
SOLiD system[3], are prevailing due to their low cost and high
throughput. It is now a common practice to obtain a deep
coverage of sequences (also called reads) from awhole genome
with one or a few NGS runs for assembly. However, genome
assembly is gtill highly challenging. None of current programs
can process seguencing reads into one single piece of DNA in
one shot even for a smal microbia genome of a few
mega-bases. The resulting assembly usually appears as a set of
long DNA fragments, called contigs.

A major chalenge of de novo genome assembly arises
because of the presence of repetitive DNA segments, called
repeats, in genomes. When reads come from distinct copies of a
repeat, assembly program wusualy cannot distinguish
betweenthe reads by their genomic locations.
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Thus, the reads from a repeat are often assembled into one
DNA fragment (Figure 1a) with distinct flanking DNA
connected, resulting in complicated connections between
contigs, together called a contig graph (Figure 1).

Repeat problems in genome assembly can be serious for two
reasons. Firgt, repeats can congtitute a significant portion of a
genome. For example, DNA repeats occupy about half of the
human genome[4]. Second, NGS reads are shorter (~400 bpfor
454, 100-150 bp for Illumina, and 75 bp for SOLiD) than
traditional Sanger reads (800-1000 bp). A DNA repeat is
actually not a repeat when the reads are longer than the repeat
because with the unique part of reads outside the repeat, the
reads can be distinguished. When reads are shorter, more DNA
repeats appear. Even for a small microbial genome, repeat
problems often result in acomplicated contig graph (Figure 1b).

In thiswork, we propose a computational tool, SIMGraph, to
simplify a contig graph for improving genome assembly. We
note that with a deep read coverage, the assembled contigs
cannot be connected mainly because of ambiguous connections
instead of missing data]5]. Ambiguous connections arise when
one contig connects to more than one other contig and the extra
connections are fase because of repeats and
sequencing/assembly errors. SIMGraph simplifies a contig
graph by resolving ambiguous contig connections, i.e.,
removing the false connections between contigs. After
removing the false connections, some contigs can be
re-connected unambiguously to improve the assembly.

SIMGraph takes advantage of two types of NGS data, 454
and Illumna paired-end (PE), to simplify a contig graph. More
specifically, it uses I1lumina PE datato resol ve some ambiguous
connections between contigs in a contig graph obtained with
454 data alone. Because 454 reads are longer than Illumina
reads, we expect fewer repeats in the assembly with 454 data
alone. In contrast, an Illumina platform yields a much greater
amount of data than a 454 platform, thus providing a stronger
statistical power for resolving ambiguities in contig
connections.
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Fig. 1De novo genome assembly with the presence of a
repeat.(a)Shown on top are two genomic loci whaoh €olor
represents a unique contig. The bottom graph isgbar so-called
contig graph, which stores the information of ahnections between
contigs. The presence of repeats (segments iead§ to branches of
the contig graph. (b) A contig graph of the Velassembly of the
lllumina PE reads simulated from the E. coli K12 M855 genome
(~4.6 Mb). Each line represents a contig and thenaindicates the
direction. Only the largest connected group of iganis shown here

Applying SIMGraph on the 454 and Illlumina data dfiagus
and a fish genome, we detected 666 and 3,708 apimsgu
connections between contigs. SIMGraph then resoli@d
(27.6%), and 2,236 (60.3%) of the ambiguous colmest
Though SIMGraph was tested using 454 and lllumiBa&a in
this work, it can be applied on lllumina PE datana!.

Il. METHOD

A.NGSdata and draft genome

length), constituting an ~8X and ~41X coveragehefgenome,
respectively.

We also tested SIMGraph on the NGS data of a furvguish
was kindly provided by our collaborators. This datacontains
~4.2M 454 reads and ~7M lllumina PEs, constituing~43X
and ~16X coverage of the genome, respectively geémeme of
this fungus has not been published.

B.Initial assembly of 454 data

We assembled the 454 data of the two genomes with
Newbler[1]with default parameters. The resultingntop
seqeuences (called 454 contigs) and contig grapthe files
454AlIContigs.fna and 454ContigGraph.txt, were sittadto
SIMGraph for assembly improvement.

C.9MGraph algorithm

Figure 2a shows the workflow of SIMGraph. SIMGraph
takes as input the contig sequences and contidngrsgembled
with 454 data, and lllumina PE reads. After théofwing steps,
it outputs the validity judgments of the detectedbauous
contig connections.

SIMGraph first detects a specific type of ambiguous
connections between 454 contigs, named triads, fhencontig
graph (Figure 2a). A triad composes of three canfigming
two possible paths, C1-C3 and C1-C2-C3. In a tgadtigs C1
and C3 can either be connected straightly or caedegith the
contig C2 in the middle. This arises either becabséh
theconnections exist in the genome, or becausebtie two
paths is false and appears due to sequencingembiserrors.

We applied our tool on the NGS data of the fishSIMGraph judges the validity of the two cases usihgnina
Gasterosteusaculeatus, in this study. The draft genome of thePE data. The pseudo-code of the triad detectioorittign in
fish (BROAD S1, Feb 2006) has been released byBROABIMGraph is shown in Figure 2b.

Institute. This draft genome was assembled fromg&an
sequencing data from several mate-pair librariesngus
Arachne2[6, 7]. The same fish sample was later esecpd
again on 454 and lllumina platforms. The draft gasois
461,533,448 bpin length(in 21 chromosomes, 1 mdadhial
DNA, and 1822 scaffolds). We downloaded the dgafiome
from Ensembl[8]. We obtained the NGS data of thle fenome
(sample ID SRS010092, Table I) from NCBI SequeneadR
Archive (SRA) database[9]. We downloaded all thé d&ta of
the fish (a total of 3.7G bases in 11M reads) aedltumina PE
libraries (a total of 19G bases in 125M PEs of f6rbad

SIMGraph then maps the lllumina PE reads onto the
contigsin the detected triads using SOAP2[10]. Trtagpings
of lllumina PEs are classified into two categoriesgular and
bridging (Figure 3). A regular PE has its two reasizpped
onthe different strands of the same contig (Figge From
themappings of regular PEs, SIMGraph calculates the
distributionof the distances between two paireddsedl his
distribution islater used to judge the validity @bntig
connections. A bridgingPE has its two reads mapped
different contigs (Figure 3b).SIMGraph uses thelging PEs
whose two reads are mapped on the contigs C1 amd @iads
for resolving ambiguities in contig connections.

TABLE |
STATISTICS OF THENGSDATA USED IN THIS STUDY

Species No. of 454 reads (bases) No. of lllumina read pair¢bases)
G. aculeatus? 11,109,932 (3,730,459,0: 125,373,070 (19,059,697,5:
Our fungu? 4,203,995(1,413,313,54 6,998,197 (531,862,97

The 454 libraries were found by searching SRA ugtiegsample ID SRS010092 and the keyword “454" /Blael length and insert length of the lllumina lifga

are 76 and 410 bp, respectivéljumina read length is 38 bp
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(@) For each triad, SIMGraph judges the validity of tieo
; contig paths using a statistical analysis and antifasive

454
Contig graph ]

Triad* detection

l

Mapping lllumina data
onto triads

: distancesbetween two paired reads, the paired-estdndes
Contig sequences ] (PEDs), of lllumina data. From the paired reads peajpon C1
; and C3 of a triad, SIMGraph calculates two PE&s and

lumina PE reads ] (Figure 4a). When a triad hadridging PEs wit larger than a
predefined parameteb, SIMGraph obtains the two PED
] distributions of d;; and d;,3; and then uses the
Statistical analysis of PE Quantitative analysis of SE Kolmogorov-Smirnov test (KS-test) to compare theiththe
mapping mapping PED distribution of the regular PEs. Whesb, SIMGraph

* c2 densities—usually named likelihood—of thd;.; andnd; ,.3,
_ o e—— respectively, using the probability distributiomédion in PED
e S — - - m - - distance of the regular PEs. When comparing the 8feDpath

with the regular case, the larger p-value of K$-tes$ikelihood
(b) . indicates that the corresponding path is suppdstetiumina
For each contig { PE data. Specifically, we set a p-value cutoff &détf 0.001,
For each contity that connects ta { adjustable), above which the path is considere@pmied by
Suppose that the ends (5’ or 3")aéndb in this connection are lllumina PE data. Figure 4 shows a sample res@ibiGraph's

a.e andb.e, respectively.For each contighat connects ta.e { statistical analysis. _ )
In the quantitative analysis, SIMGraph treats tlappings of
If b.e connects to the other endcpthena, ¢ andb are

reported as the C1, C2 and C3, respectively of d.tNate .”Iumma _data a.s of single regds without ConSIC@[h_IB pa_lrlng
that C1 and C3 in a triad are interchangeable by the information. Briefly, we obtained the number ofitiina single

definition. Thus ifb, ¢ anda have been reported as a tridd, reads that are mapped at the junction of contigiections. We
than this triad will be ignored. define the support of the C1-C3 path as the nurobeingle
} reads spanning the junction of C1 and C3 (Figure Bbe
support of the C1-C2-C3 path is defined as the lemsilipport
} of C1-C2 and C2-C3. If C2 is shorter than a preusfi
} parameter o, the support of the C1-C2-C3 pathfiselt as the

Fig 2 Workfow and pseudo-codes of SiGraph. WiSraph g0 7 TRSE SIE B0 B e e e
detects triads in the 454 assembly, performs reggping and ) ! )
analyzes the mapping results with two methods.4Biecontig graph  OUter ends (ends not connected to C2) by the quonesing 454
that describes connections between contigs is5i#CbntigGraph.txt  faw reads to enable read mapping. The inner endds(e
of Newbler’s outputs; while the 454 contig sequanaee in connected to C2) of C1 and C3 remain intact dudogtig
‘454AlIContigs.fna’. This study defines a triadaspecific type of ~ extension. This may result in multiple extendeda@d C3 since
ambiguous gap. C1, C2 and C3 are 454 contigs, whersharp ends g 454 contig is usually the consensus of multiié Faw reads.
indicate the 3'-ends. The dashed lines among thelisate their In this condition, the sum of supports of all tkéemded contigs
connections reported by Newb[er. (b) Pseudo-cotigtad detection ;o |,ced. We set a support cutoff, above which wesider the
algorithm in SIMGraph path as accepted by lllumina PE data. Figure 5 steosample
result of SIMGraph’s quantitative analysis.

(@) - - - - - - - —— In the final output, we combine the results of istaal
I —— analysis and quantitative analysis. For each trdmn the two
(b) - - - —— e— inferences agree, the result is strongly suppotfezhe of the
— — analyses does not accept any of the paths, we dmntlie
(c) —— analysis non-informative and use the inferencehef other
I <SE— analysis as the final inference. Such non-informeatiases often
) — arise because only few PEs or reads support the éten
—— both analyses are non-informative, the triad is saered

Fig. 3 Four conditions of mapping lllumina readsoo454 contigs. non-res_olv_abl_e. In contrast,_ if one Qf the anal)em_%lsepts both
Black lines are lllumina reads while color lines @54 contigs. The paths, indicating that the |nfprmat|on content roegh, we
dashed lines in between the two lllumina readsciagi that they are  €Xpect that the other analysis also accepts bathspé the
paired ends. (a) A lllumina PE maps on the samec#Bdig. (0) A other analysis does not accept both paths, we tente
llumina PE maps on two 454 contigs, denoted brigd?E in the ~ conservative and use the inference of the one gmthe final
context. (c) A lllumina SE crosses the junctiorved 454 contigs. (d) inference.
A lllumina SE crosses the two junctions of thred 4bntigs

analysis. The statistical analysis focuses on the

di,5 for the two paths C1-C3 and C1-C2-C3, respegtivel

calculates the two geometric means of probability
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This strategy is reasonable. For example, whetfetigth of
C2 is small, the statistical analysis tends to pcoeth paths
because it cannot distinguish the two paths. tlhémn better to
determine the final inference based on the quaivgtanalysis.
When each of the two analyses infers only one aaththe two
inferred paths disagree, we consider the case $istent.

Ill. CABOGAND SSPACE
We compared the performance of SIMGraph with twtept

programs, CABOG[11, 12] and SSPACE[13]. We empleasi:

that the two programs are not designed to simptfytig graph,
but they contain algorithms that connect contigscdise the
module for contig connections is embedded in CABa

cannot be run separately, we ran CABOG with the 46d

lllumina PE data and used the final assembly fafopmance
comparison. SSPACE is a scaffolder program, andesoras

gives the sequences between contigs on a scaffold.

IV. RESULTS ANDDISCUSSIONS

A Initial 454 assembly

We used Newbler to assemble the 454 reads of thguu
into 20,949 contigs. About half (10,486) of the tigs are at
least of length 100 bp, in which the total numb&bases is
32,828,399. The assembly outputs 31,157 connedbietvgeen
20,919 contigs. Thus, almost all contigs are ingdhin the
contig graph, suggesting a good coverage of the ddid
because. However, for a genome of size about 4Gbinitial
assembly is much more fragmented in our experiéiveelater

(€]

(b).

©

Fig. 4 Statistical analysis of SIMGraph. (a) Schevhdetermination of
paired-end distance (PED) in SIMGraph. Using SOAR®,paired reads (the
two black lines connected with a dashed line) aapmed on two contigs C1
and C3 (blue and red lines). SOAP2 outputs the e@ppsitions of the paired
reads on the contigs, thasndb are known constants. Since the gap sequence
between C1 and C3 is either an empty sequenced2trontig, the PED is

eitherdi.s=a+b ordi.o.z=at+y+b wherey is the length of C2 contig. (b) This
analysis uses Kolmogorov-Smirnov test (KS-tesdmpare the cumulative
distribution functions (c.d.f) of the PEDs of C1-@&th (i.e.ds-3, red line) and
of C1-C2-C3 path (i.edi-2-3 green line) to the background distribution (blue

line). The p-values of KS-test are shown in thehels of the lines. (c)
SIMGraph also provides the probability density fiioras (p.d.f) of PED. (d) If
a triad has too few bridging PEs, SIMGraph resrigelihoods of the PEDs
of C1-C3 path (red lines) and of C1-C2-C3 pathedgiines) belonging in the
background distribution (blue line). The likelihaogre shown in the legends of

the lines

realized that the fungus sample is diploid, whielsonably
explains the abundance of small contigs.

For the assembly of the fish genome, we obtaines]428

contigs. The majority of the contigs (193,423) atdeast of
length 100 bps, in which the total number of bases
407,226,149. The assembly outputs 147,106 conmeci
between 130,182 contigs. That is, a significartipo of the
contigs is not in the contig graph, suggesting tet 8X
coverage of the 454 data is barely enough.

B. Mappings of lllumina PE reads

Using the contigs assembled from 454 data as eerefe, we
found that the majority of the lllumina PE readsuldobe
mapped onto the contigs. In the case of fish, 16388 of the

125,373,010 lllumina reads could be mapped onto

(d)

suppartess

contigs.From these mappings, we found 16,347,30Tlae PEs
and 20,081 bridging PEs. The PED distribution &f tagular
PEs peaked at 291 bp (Figure 4). This distributbRED is a
very accurate source of information for our statitanalysis.
We note that the PED of the downloaded Illuminaalil is
denoted to be about 410 bp, which is quite far afsay our
calculated peak value of distribution. Our selfided PED
distribution is thus an advantage. In the case wfgds,
5,407,881 of the6,998,179lllumina reads are mapped the
contigs.

Fig. 5 Result of the quantitative analysis of SINM@h. This analysis
reports the number of single-end (SE) reads spgrpaths C1-C3 and
C1-C2-C3. (a) The sequence of the path C1-C3, whérand C3 are

connected and>" and ‘<’ indicate the boundary 4f&hd C3,

respectively. (b) Supported SE reads of path C@Btheir
alignments to the sequence connecting C1 and £Bhé&sequence of

the path C1-C2-C3, where ‘.’ indicate C2. (d) Supeed reads and

alignments of path C1-C2-C3. (e) Details of eaghpsuted SE read,
including the overlap with C1, the overlap with @8 smaller overlap
of the previous two and the direction of the SEiréavalid alignment
requires that the smaller overlap exceedsicleotides and at most 5%
mismatch in the whole alignment
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C.SMGraph F. Other types of ambiguous contig connections

From the contig graphs of the fungus and fish abbgm  Currently, SIMGraph focuses on a specific type cdph
SIMGraph detected 666 and 3,708 triads, and redoh&1 structure. In fact, the design of SIMGraph allols possible
(27.6%) and 2,236 (60.3%) triads, respectively (@a). In extensions to other types of graph structures. ifigegty, using
these inferences, we found that the statistical uahtitative lllumina PE data, it is possible to explore allrpadf contigs
analyses were quite consistent. bridged by PEs whatever the connections betweentvtbe

For the fungus and the fish assembly, only in foucontigs are. We have analyzed the contig graphtheftwo
(4/184=2.2%) and 49 (49/2236=2.2%) triads the twalyses adopted genomes. The fish genome has 147,106 gusctf
were inconsistent. which 7,936 (accounting for 5.4%) may be resolved b

Among the 2,236 inferences in the case of fish 91887, SIMGraph. Here junctions are possible connectiogisvéen
and 72 triads were inferred to go with the C1-C3;@-C3, contigs, which were reported but not actually catee by the
and both paths, respectively (Table 2). To investigthe assembler. Thg fungus genome has 31,832 junctiondioh
consistency between the SIMGraph inferences andfishe 1,362 (accounting for 4.3%) may be resolved by St&fB.

genome draft, we aligned the 454 contigs to theogendraft ~ EVENn Wwith such a small percentage, SIMGraph stil
.contributes in three aspects. First, SIMGraph cotsneontigs

using BLAT[14]and checked which of the inferences IWith full sequences instead of a stretch of N'sjclwvhwere
supported on the genome draft. Specifically, werald the C1 observed in some cases using SSPACE. Second, Sp1Gra

and C3 (t:orfn:gs otfhegc;h_trlsdé and c?hecl': whethee_tlsgadé) glA explicitly provides statistical and quantitative asares to
segmen ot leng In-be Weend 3.\/\;0 mapping q validate its predictions (Figure 4 and 5). ThirdM&raph is
and C3. Among our 1849, 387, and 72 inferences, 742, and g iiaple as an extra step in an assembly pip&lingently there

5 inferences were consistent with the case pniﬁhegtenome are only few stand-alone assembly improvement itgos that
draft. We note that these numbers do not direatiyly a low  gre jndependent to the assembly pipeline.

performance of SIMGraph. It is also possible theMGraph
points out some parts in the fish genome draftdkeaerve more V.CONCLUSION
careful inspections because SIMGraph provides ldetai
statistical and quantitative analyses. In additibecause the
coverage of NGS reads is much higher than thathef t

traditional Sanger reads for the fish genome, ritoissurprising Comparedwith two related programs, SIMGraph achieve
that NGS data explore the genome more thoroughly. largest number of resolved ambiguous contig coimesivhile

D.Performance comparision scarifying a bit the accuracy, thus reducing experital
effortsfor such resolutions. SIMGraph provides deta

SIMGraph combines 454 andlllumina data to improve a
genome assembly via simplifying the 454 contig braipe.,

We compared the performance of SIMGraph with tiatesl . o L
programs: CABOG and SSPACE. The two programs ate nsotatlsncal and quantitative analyses for resolvémgbiguities

designed to simplify contig graph, but in each amodule and the two analyses can be extended to resolver oth
that%onnects cgnt' Sis gogntapnéd To standnomralgl tage configurations of contig connections. Moreover,otigh the
9s | ined. efqo 9. Hetailed data provided by SIMGraph, one can stuuy t
we checked whether the three tools connect thagsim the . . .
. . mechanisms of sequencing and assembly errors tpaalithe
detected triads. We found that SIMGraph resolvedendgads .
. ) paths un-supported by llluminadata. Thus, our shalll be of
compared with CABOG and SSPACE (Table 2) in boesaf interest to scientists in the field of genome addgm
the fungus and the fish. When compared to thegstome dratft,
SIMGraph also inferred the largest number of cdesis
inferences. Taken together, SIMGraph achieved teatgst ACKNOWLEDGMENT
number of resolved triads while sacrificing a bi¢ accuracy. We thank Dr. Wen-Hsiung Li for providing us the fus
E. Speed and memory usage NGS dgta, and Dr. Arthur. Chun-Chieh Shih for '.[heaicbf
extending short contigs using 454 raw reads. Thoskvwas

The four steps in Figure 2 can be grouped intodbe® g \oqted by National Science Council Taiwan (NSC
algorithm of SIMGraph (Triad detection, Statistiealalysis of ;77.2221_E.006-259 99-2628-E-006-017 and

PE mapping, and Quantitative analysis of SE mapping the 99-2745-B-006-003). Conflict of Interest: none deed.
read mapping step by SOAP2. The main CPU loadirag ike

read mapping step by SOAP2. For example, the dgogithm

took ~2 hours while SOAP2 took ~10 hours for tteh ftase.
The computational time of SOAP2 is proportional tte

genome size. As for the memory, both the core @lgarand
SOAP2 consumed the size of the genome. Thus, mexchiith
a 4 GB are able to handle a usual mammalian genome.

resolving ambiguous connections between  contigs.
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TABLE Il
RESULTS OFSIMGRAPHON G. ACULEATUS AND A DRAFT FUNGUS GENOME SEQUENCEDBY OUR COLLABORATORS WE NOTE THAT ALTHOUGH THE NUMBER OF
RESOLVEDTRIADS CONSISTENTWITH THE GENOME DRAFT MAY NOT SEEM HIGH, IT DOESNOT IMPLY A LOW PERFORMANCEQF SIMGRAPH. ON THE CONTRARY,
BECAUSESIMGRAPH DOESDETAILED STATISTICAL ANALYSIS AND QUANTITATIVE ANALYSIS, IT ISALSO POSSIBLETHAT THE GENOME DRAFT CAN BE IMPROVED

FURTHER USING SMGRAPH

Organism #C1-c3 #C1-C2-C8  #both pathd  #nopatd  #inconsisterit ~ Solved (%solved)

G. aculeatus

SIMGraph (consistent with genome dr 1,849 (742 387 (149 72 (5 1,351 (447 49 2,236 (60.3%
CABOG (consistent with genome draft) 514 (249) 591 (295) 21 (15) 2,582 (690N/A 1,105 (29.8%)
SSPACE (consistent with genome draft) 160 (86) 90 (52) 7(7) 3,451 (832)N/A 250 (6.7%)

Our fungu:

SIMGrapt 13C 54 49 42¢ 4 184 (27.6%
CABOG 6 5 0 655 N/A 11 (1.7%)
SSPACE 3 14 0 649 N/A 17 (2.6%)

This table shows the numberof triads where 'only C1-C3 was accepted, 2only C1-C2-C3 was accepted, 3both paths were accepted and “4no path was
accepted. SNumber of triads where one analysis accepted only C1-C3 but the other accepted only C1-C2-C3. 6Sum of C1-C3, C1-C2-C3 and the ratio to
the total detected triads.
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