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Abstract—Traveling salesman problem (TSP) is hard to resolve 

when the number of cities and routes become large. The frequency 
graph is constructed to tackle the problem. A frequency graph 
maintains the topological relationships of the original weighted graph. 
The numbers on the edges are the frequencies of the edges emulated 
from the local optimal Hamiltonian paths. The simplest kind of local 
optimal Hamiltonian paths are computed based on the four vertices 
and three lines inequality. The search algorithm is given to find the 
optimal Hamiltonian circuit based on the frequency graph. The 
experiments show that the method can find the optimal Hamiltonian 
circuit within several trials. 
 

Keywords—Traveling salesman problem, frequency graph, local 
optimal Hamiltonian path, four vertices and three lines inequality. 

I. INTRODUCTION 
HE objective of TSP is to find the optimal Hamiltonian 
circuit (OHC) in a tourist map. It has been proven to be an 

NP-hard problem because the number of the Hamiltonian 
circuits (HC) increases exponentially in proportion to the 
number of the cities in the map [1]. The TSP has been widely 
studied in the field of combinatorial optimization, graph theory 
and computer science due to its theoretical and practical values 
once it is resolved within a reasonable computation time. 

The traditional graph search algorithms [2], linear 
programming [3] and dynamic programming [4] methods are 
exact methods to obtain the OHC. Some of them are efficient 
when the tourist map includes no more than a thousand cities. 
For the TSP with over a thousand cities, these exact methods 
must depend on the powerful computers or the computation 
time is too long. However, the research on the polynomial 
algorithms for the hard problem will still continue until P≠NP is 
verified in the future.  

The approximate methods play an important role for the TSP 
although they do not guarantee to find the OHC. The advantage 
is that they can detect the c-optimal solutions (c is bigger than 1 
for the MIN TSP and less than 1 for the MAX TSP) with the 
common computer in a polynomial computation time. The LK 
and LKH algorithms are taken as the most competitive 
algorithms for the TSP [5]. It is reported that the algorithms are 
robust to deal with a large TSP with thousands of cities, up to 
more than 3,000,000 cities [6]. However, the tours quality is 
hard to evaluate because the actual OHCs are usually not 
known for the complex TSP.  
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The metaheuristic algorithms detect the optimal or 
near-optimal solutions according to the evolutionary rules [7], 
such as heuristic neural network [8], the genetic algorithms [9] 
and the consultant-guided search algorithm [10], etc. The 
approximate methods and the metaheuristic methods are 
combined together to enhance their performance with each 
other [4]. The metaheuristic methods show good performance, 
and they are apt to return the local and not the global optimal 
solutions. Therefore, improvements of these methods are 
always concentrated on.  

Until 2005, researchers [11] claimed that P = NP was still 
one of the great unanswered questions in mathematics. In order 
to find the OHC, the frequency graph is constructed according 
to the edge frequencies emulated from the local optimal 
Hamiltonian paths (LOHP). The LOHPs are derived from the 
weighted graph based on the four vertices and three lines 
inequality. The edge frequency is taken as the local heuristic 
information to generate the OHC. The search algorithm is 
designed to find the OHC based on the frequency graph. 

II. THE OPTIMAL HAMILTONIAN CIRCUIT AND LOCAL OPTIMAL 
HAMILTONIAN PATH 

The graph G including n vertices is represented as G=<V, E>, 
where V=<v1, v2,…, vn> are the vertex sets and E=<e1×2, 
e1×3,…, e(n-1)×n> are the edge sets. vi (1≤i≤n) is the vertex and 
ei×j(1≤i, j≤n) is the edge linking the two vertices vi and vj. The 
graph G is represented as the adjacent matrix A(G)={ai×j} (1≤i, 
j≤n), where ai×j=1 if (vi, vj)∈E(G), and vi and vj are adjacent in 
the graph G. Otherwise, ai×j=0. When the weights W=<w1×2, 
w1×3, …, w(n-1)×n> are assigned to the edges, the graph G 
becomes one weighted graph (WG). For the symmetrical TSP, 
wi×j is equal to wj×i. The objective of TSP is to find the OHC 
from the WG in mathematics. For the MIN TSP, the length of 
the OHC is shortest among those of the HCs, and each vertex is 
contained in the HC once and only once. The HC wih n vertices 
is represented as HCn+1=(v1, v2, v3,…, vi,…, vn, v1), and the two 
end vertices are identical. The superscript n+1 denotes the 
number of the vertices in the HC. 

The HC is composed of the local Hamiltonian paths (LHP), 
and the OHC is composed of the local optimal Hamiltonian 
paths (LOHP). The LHP or LOHP containing i vertices is 
represented as LHPi=(v1, v2, …, vi-1, vi) or LOHPi=(v1, v2, …, 
vi-1, vi), where i indicates the number of the vertices in the LHP, 
v1 and vi are the end vertices, and the other vertices between v1 
and vi are the middle vertices. There are no two identical 
vertices in the LHP or LOHP. For an arbitrary LOHP in the 
OHC, the orders of the vertices in the LOHP are determined. By 
extracting one LOHP from the OHC, the two end vertices in the 
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LOHP are concluded. Comparing with the other LHPs 
including the same vertices, the length of the LOHP is the 
minimum in the case that the two end vertices of these LHPs are 
identical.  

For the symmetrical complete graph including n vertices, the 
number of the LOHPis (2≤i≤n) is computed as the equation (1). 
If one end vertex is appointed, the number of LOHPis is 
computed as the equation (2).  
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Where i
nP is the number of permutations in the case that i 

vertices are selected from the n vertices, and i
nC  is the number 

of the combinations in the case that i vertices are selected from 
the n vertices. It is found that the number of LOHPis is much 

smaller than the total number of LHPis, 
)!(

!Pi
n in

n
−

= . The 

number of LOHPis changes as the binomial coefficient 
multiplied by a factor with the increment of number i. It 
increases at first, and then decreases. However, the number of 
the LHPs is always increasing as number i grows. For the 
symmetrical complete graph, the total number of the LOHPis is 
computed using equation (3) with respect to equation (1). 
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As we see from equation (1), the number of LOHPis 
increases not exponentially, but rather polynomially, in 
proportion to the scale of the TSP when i is far from n/2. On the 
other hand, the total number of LOHPis increases exponentially 
in proportion to the number of the vertices in the WG with 
respect to the equation (3).  The three equations are the 
basement to reduce the search space of the useful HCs in the 
complex WG.  

III. THE FOUR VERTICES AND THREE LINES INEQUALITY 
In practice, the number of the LOHPis is still large when the 

WG includes a lot of vertices and i is near to n/2. When i is 
small and far from n/2, the LOHPis can be computed within 
polynomial computation time. When i is equal to 2, 3, all the 
LHP2s and LHP3s are LOHPs. There is no distinction between 
these LHP2s or LHP3s. When i is above 3, the number of the 

LOHPis is smaller than that of the LHPis for a simple WG. 
When i=4, the four vertices and three lines inequality (4) holds 
for all the LOHP4s and it is convenient to compute the 
LOHP4=(vi-1, vi, vj, vj+1) (2≤i≤n, 1≤j≤n-1) in the WG. 
l(i-1)×i + li×j + lj×(j+1)≤ l(i-1)×j + lj×i + li×(j+1) (4) 

Where li×j is the length of edge ei×j between the vertices vi and 
vj (2≤i≤n, 1≤j≤n-1). 

The four vertices and three lines inequality meet the four 
point conditions summarized by Vladimir [12] for symmetrical 
TSP. It is the extension of one of the four point conditions, and 
it can be derived from the HCs instead of the original WG. The 
precondition is that there is at least one HC in the WG. It can be 
also applied to the asymmetrical TSP. The principle of the four 
vertices and three lines inequality is illustrated as Fig. 1.  

 
Fig. 1 The principle of four vertices and three lines inequality 

Two HCs including n vertices are shown in Fig. 1 (a) and (b), 
and the HC in Fig. 1 (a) is the OHC. One of the LOHP4s in Fig. 
1 (a) is LOHP4=(vi-1, vi, vj, vj+1) (2≤i≤n, 1≤j≤n-1). The LHP4 in 
Fig. 1 (b) includes the same four vertices vi-1, vj, vi, vj+1 and it is 
noted as LHP4=(vi-1, vj, vi, vj+1). Given the two rest LHPn-4s are 
identical except the LOHP4 and LHP4 in Fig. 1 (a) and (b), the 
length of the two LHPn-4s is the same and they are noted as Lrest 
in Fig. 1 (a) and (b). For the LOHP4 and LHP4, li×j is the length 
of the edge ei×j linking the two vertices vi and vj. Two pairs of 
three edges e(i-1)×i, ei×j, ej×(j+1) and e(i-1)×j, ej×i, ei×(j+1) link the four 
vertices vi-1, vi, vj, vj+1 in LOHP4 and LHP4. The length of the 
LOHP4 is computed as l(i-1)×i+li×j+lj×(j+1) and the length of the 
LHP4 is computed as l(i-1)×j+ lj×i+li×(j+1). Because the length of 
the OHC is shorter than or equal to the length of the HC, the 
four vertices and three lines inequality holds. 

When i is big, the LOHPis also can be computed using the 
similar inequalities. However, the number of the necessary 
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inequalities is exponentially in proportion to the number of the 
vertices in the LOHPis. 

IV. THE CONSTRUCTION OF THE FREQUENCY GRAPH 
Because the number of LOHPis is equal to the binomial 

coefficient multiplied by a factor, it will consume a great deal 
of computation resources to generate the LOHPis once n is big. 
To reduce the computation complexity, three hypotheses are 
given to construct the frequency graph for the TSP.  

(1) The longer LOHPjs are composed of the shorter LOHPis, 
e.g. i≤j.  In other words, the LOHPi is included in LOHPj. 

(2) The OHC exists in the WG, and it is composed of n 
distinct LOHP2s (edges). 

(3) The WG is a simple graph, e.g. two adjacent vertices vi 
and vj are connected with one edge ei×j. 

The longer LOHPjs are composed of the shorter LOHPis, and 
the OHC is composed of the LOHPs. If the longer LOHPjs are 
obtained, the frequency of the shorter LOHPis can be counted 
from the longer LOHPjs. The bigger j is, the more accurately 
the LOHPjs approximate the OHC, and the bigger the 
frequencies of the LOHPis in the OHC are. When OHCn+1 is 
considered as the LOHPj, the frequency of the LOHPi in it is 
equal to 1 and the frequency of the other LOHPs (and LHPs) is 
equal to zero. In view of hypothesis (2), the frequencies of the 
LOHP2s (edges) should be computed from the LOHPjs (1≤j≤n). 
When the frequencies of the LOHP2s are emulated from the 
LOHPjs, the frequency graph is obtained. The LOHP2s with 
high frequencies are considered as possible edges in the OHC, 
and the LOHP2s with low frequencies are excluded from the 
consideration. The frequencies on the edges are the local 
heuristic information to connect the vertices into the OHC. The 
two vertices connected by the edges with high frequencies 
should be adjacent in the OHC or near OHCs. The more 
vertices the LOHPjs have, the more appropriate the LOHP2s 
with the high frequencies is in the OHC and the longer the 
computation time is used to generate the LOHPjs. In reverse, 
the frequencies of the LOHP2s in the OHC will not be high in 
the frequency graph and the computation time will be less. 
Therefore, when the frequencies of the LOHP2s are emulated 
from the LOHPjs including a smaller number of vertices, 
several LOHP2s with higher frequencies connected to each 
vertex should be considered as candidates (nearest neighbors) 
for searching for the OHC.  

The LOHP4s are relatively easy to compute based on the four 
vertices and three lines inequality. The number of LOHP4s is 

4
)3()2()1( −×−×−× nnnn for the symmetrical complete 

graph including n vertices. To reduce the computation time 
further, the m LOHP4s containing each edge with the shortest 
length are computed. There are a total of n×(n+1)/2 edges and 
the total number of the shortest LOHP4s is m×n×(n+1)/2. The 
frequencies of the LOHP2s (edges) are computed from the 
m×n×(n+1)/2 LOHP4s. m is taken as the variable and its 
maximum value is (n-2) ×(n-3)/2. It is expected that the m value 
does not cause the OHC to be missed in the frequency graph. 

V.  THE SEARCH ALGORITHM BASED ON THE FREQUENCY 
GRAPH 

Given the WG including n vertices, the m×n×(n+1)/2 
LOHP4s are computed, and the frequencies of the n×(n+1)/2 
LOHP2s (edges) are calculated from the LOHP4s, and the 
frequency graph is constructed. The search algorithm based on 
the frequency graph is designed as that in Table I. The initial 
HC or near OHC is searched for based on the frequency graph. 
From an arbitrary vertex, the next vertex is connected to the 
previous vertex considering the edge between them with the 
highest frequency until all the vertices are traversed. 

There are two computation loops in the algorithm. In the 
inner computation loop, the vertices in the LOHPis (1≤i≤n-1) in 
the near OHC can be substituted by the candidate vertices 
simultaneously. In this case, the computation time will be 
lengthened but the better solutions will be obtained. The 
maximum computation complexity of the inner computation 
loop is O(n3). The four vertices and three lines inequality can be 
applied to the searched near OHCs to generate shorter near 
OHCs in the computation process, and the convergence of the 
algorithm is accelerated. 

The search algorithm aims to find a tour in which each vertex 
is connected to two vertices where the edges between them 
have high frequencies. The performance of the algorithm 
depends on the frequency graph. If the frequency graph is 
constructed with the longer LOHPs, the OHC will be found 
quickly. Otherwise, it will spend much time to find the OHC or 
near OHCs.  

VI. THE ILLUSTRATIVE EXAMPLES 
TABLE II 

THE COMPUTATION RESULTS BASED ON THE FREQUENCY GRAPH 
Name Number 

of cities 
m Computation 

results 
Length 
of OHC 

Computation 
time/ms 

Berlin52 52 6 7544.366211 7542 3532 
Eil76 76 6 544.369056 538 61141 
Kora100 100 6 21285.437500 21282 9085 
Tsp225 225 6 3920.518757 3919 62266 

 
The TSP instances are downloaded from the website: 

www2.iwr.uni-heidelberg.de/groups/comopt/software 
/TSPLIB95/tsp/. The method is coded with the C++ language 

TABLE I 
THE SEARCH ALGORITHM BASED ON THE FREQUENCY GRAPH 

Build one initial HC or near OHC with respect to the frequency graph. 

While(the terminal condition is not met) 

          While(current vertex from 1 to n) 

Generate the candidate vertices adjacent to the current 
vertex considering the higher edge frequency between them  

Select the candidate vertices and substitute the adjacent 
vertices of the current vertex in the near OHC 

Compute the length of the new near OHC and maintain the 
shorter near OHC 

End 

End search algorithm for TSP 
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and runs on a Lenovo computer with a 2.3GHz processor and 
2G of inner memory. The computation cycles are taken as the 
terminal condition. The maximum computation cycle is set as 
the scale of the TSP. m is set as 6 for generating the LOHP4s. 
The computation results and computation time is shown in 
Table II. Because floating numbers are used in the computation 
process, the results are always bigger than the length of the 
given OHC. The maximum computation complexity of the 
algorithm is O(n4). Therefore, the computation time is longer 
than the LKH algorithm. 

The OHCs of the TSP instances are found based on the 
frequency graph. In our experiments, the OHCs of some TSP 
instances are not found in one experiment, but they can be 
found in several trials. The change process of the HCs for 
Berlin52 is shown in Figure 2. Before the 40th computation 
cycle, the OHC is found. In view of Figure 2, the length of HCs 
decreases in great scope in the former computation cycles, 
which illuminates that the algorithm has a rapid convergence 
rate.  

It also found that the OHC is not unique for some particular 
TSP instances. Though the orders of the vertices are different, 
the length of the OHCs is nearly the same. It is simple to 
generate the frequency graph with the LOHP4s. On the other 
hand, the frequency graph will be more accurate for detecting 
the OHC if the LOHPs including more vertices are utilized to 
generate the frequency graph. 

 
Fig. 2 The change processes of the HCs  

VII. CONCLUSION 
The number of the LOHPs is computed, which increases as 

the binomial coefficient multiplied by a factor. In principle, all 
the LOHPs can be computed in a polynomial computation time 
once the scale of TSP is determined. The LOHPs with a smaller 
number of vertices are easy computed, especially for the 
LOHP4s based on the four vertices and three lines inequality. 
The OHC is composed of the LOHPs and the longer LOHPs are 
composed of the shorter LOHPs. The frequencies of the shorter 
LOHPs in the OHC are high when they are emulated from the 
longer LOHPs. The frequency graph is constructed with the 
frequencies of the LOHP2s computed from the longer LOHPs. 
The algorithm nearly always finds the OHC based on the 
frequency graph. The longer the LOHPs are used to construct 
the frequency graph, the more accurate the frequency graph is 
at finding the OHC.  

The future work is to improve the structure and performance 
of the algorithm based on the frequency graph. 
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