
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

382

Named Entity Recognition using Support Vector
Machine: A Language Independent Approach

Asif Ekbal and Sivaji Bandyopadhyay

Abstract—Named Entity Recognition (NER) aims to classify each
word of a document into predefined target named entity classes and
is now-a-days considered to be fundamental for many Natural Lan-
guage Processing (NLP) tasks such as information retrieval, machine
translation, information extraction, question answering systems and
others. This paper reports about the development of a NER system for
Bengali and Hindi using Support Vector Machine (SVM). Though this
state of the art machine learning technique has been widely applied
to NER in several well-studied languages, the use of this technique
to Indian languages (ILs) is very new. The system makes use of the
different contextual information of the words along with the variety of
features that are helpful in predicting the four different named (NE)
classes, such as Person name, Location name, Organization name and
Miscellaneous name. We have used the annotated corpora of 122,467
tokens of Bengali and 502,974 tokens of Hindi tagged with the
twelve different NE classes 1, defined as part of the IJCNLP-08 NER
Shared Task for South and South East Asian Languages (SSEAL)
2. In addition, we have manually annotated 150K wordforms of
the Bengali news corpus, developed from the web-archive of a
leading Bengali newspaper. We have also developed an unsupervised
algorithm in order to generate the lexical context patterns from a
part of the unlabeled Bengali news corpus. Lexical patterns have
been used as the features of SVM in order to improve the system
performance. The NER system has been tested with the gold standard
test sets of 35K, and 60K tokens for Bengali, and Hindi, respectively.
Evaluation results have demonstrated the recall, precision, and f-score
values of 88.61%, 80.12%, and 84.15%, respectively, for Bengali and
80.23%, 74.34%, and 77.17%, respectively, for Hindi. Results show
the improvement in the f-score by 5.13% with the use of context
patterns. Statistical analysis, ANOVA is also performed to compare
the performance of the proposed NER system with that of the existing
HMM based system for both the languages.

Keywords—Named Entity (NE); Named Entity Recognition
(NER); Support Vector Machine (SVM); Bengali; Hindi.

I. INTRODUCTION

NAMED Entity Recognition (NER) is an important tool
in almost all Natural Language Processing (NLP) ap-

plication areas such as Information Retrieval, Information
Extraction, Machine Translation, Question Answering and
Automatic Summarization etc. The objective of NER is to
identify and classify every word/term in a document into some
predefined categories like person name, location name, or-
ganization name, miscellaneous name (date, time, percentage
and monetary expressions) and ”none-of-the-above”. The chal-
lenge in detection of named entities is that such expressions
are hard to analyze using traditional NLP because they belong

Authors are with the Department of Computer Science and Engi-
neering, Jadavpur University, Kolkata, West Bengal, India-700032, email:
asif.ekbal@gmail.com, sivaji cse ju@yahoo.com

1http://ltrc.iiit.ac.in/ner-ssea-08/index.cgi?topic=3
2http://ltrc.iiit.ac.in/ner-ssea-08

to the open class of expressions, i.e., there is an infinite variety
and new expressions are constantly being invented.

The level of ambiguity in NER makes it difficult to attain
human performance. There has been a considerable amount
of work on NER problem, which aims to address many of
these ambiguities, robustness and portability issues. There are
two kinds of evidences that can be used in NER to solve the
problems involved in NER. The first is the internal evidences
found within the word and/or word string itself, while the
second is the external evidence gathered from its context.
During the last decade, NER has drawn more and more
attention from the named entity (NE) tasks [1] [2] in Message
Understanding Conferences (MUCs) [MUC6; MUC7]. The
problem of correct identification of named entities (NEs) is
specifically addressed and benchmarked by the developers of
Information Extraction System, such as the GATE system [3].
NER also finds application in question-answering systems [4]
and machine translation [5].

Nowadays, machine-learning (ML) approaches are popu-
larly used in NER because these are easily trainable, adoptable
to different domains and languages as well as their mainte-
nance are also less expensive. On the other hand, rule-based
approaches lack the ability of coping with the problems of
robustness and portability. Each new source of text requires
significant tweaking of rules to maintain optimal performance
and the maintenance costs could be quite steep.

The representative machine-learning approaches used in
NER are HMM (BBN’s IdentiFinder in [6] [7]), Maximum En-
tropy (ME)(New York University’s MENE in [8] [9]), Decision
Tree (New York University’s system in [10] and SRA’s system
in [11]) and CRFs [12] [13]. There are other systems based on
Support Vector Machine (SVM) [14], Nave Bayes [15], or the
combination of the above [16]. As a ME model, MEME [9]
makes use of diverse knowledge sources. Maximum Entropy
conditional models like ME markov models [17] and CRFs
[13] were reported to outperform the generative HMM models
on several information extraction tasks.

NER can also be treated as a tagging problem, where each
word in a sentence is assigned a label indicating whether it
is part of a named entity and the entity type. Thus methods
used for part of speech (POS) tagging can also be used for
NER. The papers from the CoNLL-2002 shared task, which
used such methods [18] [19] show results significantly lower
than the best system [20]. However, Zhou and Su [21] have
reported state of the art results on the MUC-6 and MUC-7
data using an HMM-based tagger.

Support Vector Machines (SVMs) based NER system was
proposed by Yamada et al. [22] for Japanese. His system is an

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

383

extension of Kudo’s chunking system [23] that gave the best
performance at CoNLL-2000 shared tasks. The other SVM-
based NER systems can be found in [24] and [25]. Though
this state of the art machine learning technique has been
widely applied to a number of different languages and reported
reasonably good accuracies, the use of this technique to the
NER for Indian languages is very new.

India is a multilingual country with great cultural diversities.
However, the works in the area of NER involving Indian
languages have been started to appear very recently. Gener-
ally, named entity (NE) identification in Indian languages is
difficult and challenging as:

1) Unlike English and most of the European languages,
Indian languages lack capitalization information, which
plays a very important role in identifying NEs.

2) Indian person names are more diverse compared to the
other languages and a lot of these words can be found
in the dictionary with specific meanings.

3) Indian languages are highly inflectional language pro-
viding one of the richest and most challenging sets of
linguistic and statistical features resulting in long and
complex word forms.

4) Indian languages are relatively free order.
5) Bengali and Hindi, like other Indian languages, are

resource poor language - annotated corpora, name dictio-
naries, good morphological analyzers, POS taggers etc.
are not yet available in the required measure.

6) Although Indian languages have a very old and rich
literary history, technological developments are of recent
origin.

7) Web sources for name lists are available in English, but
such lists are not available in Bengali and Hindi forcing
the use of transliteration.

There has been very little work in the area of NER in Indian
languages. In Indian languages particularly in Bengali, the
work in NER can be found in [26] [27] with the pattern di-
rected shallow parsing approach. A semi-supervised technique
based on lexical pattern learning from a newspaper corpus for
NER in Bengali has been discussed in [26] that uses linguistic
features. Two different NER systems, one using the lexical
contextual patterns and the other using the linguistic features
along with the same set of lexical contextual patterns, are
reported in [27]. The statistical Hidden Markov Model(HMM)-
based NER system has been reported in [28], where more
contextual information has been considered during the emis-
sion probabilities. Recently, a SVM-based NER system has
been reported in [29] for Bengali. Other than Bengali, a CRF-
based Hindi NER system can be found in [30]. A HMM-based
Hindi NER system has been described in [31].

In this paper, we have reported a NER system for the two
most popular Indian languages, namely Bengali and Hindi.
Bengali is the seventh most spoken language in the world, sec-
ond in India and the national language of Bangladesh. Hindi is
the third most spoken language in the world and the national
language of India. The motivation behind the use of Support
Vector Machine (SVM) framework is that it is more efficient
than HMM or other conventional statistical methods to deal

with the non-independent, diverse and overlapping features
of the highly inflective Indian languages. The necessary tag
conversion routine has been developed in order to map the
fine-grained NE tagset , defined as part of the IJCNLP-08 NER
Shared Task for SSEAL, to the four tags, namely Person name,
Location name, Organization name and Miscellaneous name.
The Miscellaneous name category includes the date, time,
number, percentages, monetary expressions and measurement
expressions. The system makes use of the different contextual
information of the words along with the variety of orthographic
word level features that are helpful in predicting the various
NE classes. In this work, we have considered only the language
independent features that are applicable to almost all the lan-
guages. Language independent features include the contextual
words, prefix and suffix information of all the words in the
training corpus, several digit features depending upon the
presence and/or the number of digits in a token, length of the
words and the frequency features of the words. Part of speech
information of the words depends on some language specific
phenomenon such as person, number, tense, gender etc. For
example, gender information has a crucial role in Hindi but it
is not an issue in Bengali. There are also some specific issues
with the verbs in Bengali and Hindi. However, we consider
the POS feature as a language independent feature as we have
not used any language specific resources such as the lexicon,
named entity recognizer or variable length word suffixes in
order to handle the unknown word problems. Moreover, we
have considered a coarse-grained POS tagger that has only
three tags. A number of experiments have been carried out to
find out the best-suited set of features for NER in Bengali and
Hindi. An unsupervised algorithm has been used to generate
the lexical context patterns from the unlabeled corpus of 10
million wordforms. These high ranked patterns have been
used as the features of SVM and observed the significant
improvement in the performance. We have also used these
patterns to post-process the output of the SVM based system
that helps to improve the recall values considerably, which in
turn improve the overall performance of the system. The work
reported in this paper differs from that of the work reported
in [29] in terms of the following points:

1) This work deals with NER for two different Indian
languages, namely Bengali and Hindi.

2) The system has been developed only with the help of
language independent features. These features can be
applied for NER in any language including the other
Indian languages also.

3) An unsupervised technique has been developed in or-
der to generate the lexical context patterns from the
unlabeled Bengali news corpus. These patterns have
been used as the features of SVM as well as a mean
to post-process the output of the system. Experimental
results show the effectiveness of these patterns with the
impressive improvement in the overall performance of
the system.

4) Only, 10-fold cross validation results were reported in
[29]. But here, we have reported results with the gold
standard test sets (open test) as well as on the 10-fold

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

384

cross validation tests.
5) ANOVA statistical analysis is performed to compare the

performance between the proposed SVM-based and an
existing HMM-based system for each of the languages.

The rest of this paper is organized as follows. The NER
problems in two Indian languages along with the NE tagset
and SVM framework have been described in Section II.
The unsupervised context pattern learning method has been
described in Section III. Section IV gives the descriptions of
the language independent features that are applicable to both
Bengali and Hindi as well to the other languages. Detailed
evaluation results of the system for the development sets,
test sets and the 10-fold cross validation tests are reported
in Section V. Finally, Section VI concludes the paper.

II. NAMED ENTITY RECOGNITION IN BENGALI AND HINDI

Named entity recognition (NER) in Indian languages is
more difficult and challenging in comparison to English and
European languages. Applying stochastic models to the NER
problem requires large amount of annotated corpus in order to
achieve reasonable performance. Stochastic models have been
applied to English, German and other European languages, for
which large labeled data are available. The problem is difficult
for Indian languages (ILs) due to the lack of such annotated
large corpus. Indian languages are morphologically very rich
and contain one of the most challenging set of linguistic and
statistical features.

Simple HMMs do not work well when small amount
of labeled data are used to estimate the model parameters.
Incorporating diverse features in an HMM-based NE tagger
is difficult and complicates the smoothing typically used in
such taggers. In contrast, a ME [9] or a CRF [13] or a SVM
[22] based method can deal with the diverse and overlapping
features of Indian languages. In this work, we have applied
the SVM framework to identify and classify NEs in Indian
languages, particularly in Bengali and Hindi.

A. Named Entity Tagset

We have used the IJCNLP-08 NER shared task data that
were tagged with the twelve NE tags. The tagset consists of
more tags than the four tags of CoNLL 2003 shared task on
NER. The underlying reason to adopt this finer NE tagset is to
use the NER system in various NLP applications, particularly
in machine translation. The IJCNLP-08 NER shared task tagset
is shown in Table I. One important aspect of the shared task
was to identify and classify the maximal NEs as well as the
nested NEs, i.e, the constituent part of a larger NE. But, the
training data were provided with the type of the maximal NE
only. For example, mahatmA gAndhi roDa (Mahatma Gandhi
Road) was annotated as location and assigned the tag ’NEL’
even if mahatmA (Mahatma) and gAndhi(Gandhi) are NE title
person (NETP), and person name (NEP), respectively. The task
was to identify mahatmA gAndhi roDa as a NE and classify
it as NEL. In addition, mahatmA, and gAndhi were to be
recognized as NEs of the categories NETP (Title person), and
NEP (Person name), respectively. Some NE tags are hard to
distinguish in some contexts. For example, it is not always

clear whether something should be marked as ’Number’ or
as ’Measure’. Similarly, ’Time’ and ’Measure’ is another
confusing pair of NE tags. Another difficult class is ’Technical
terms’ and it is often confusing whether any expression is
to be tagged as the ’NETE’ (NE term expression) or not.
For example, it is difficult to decide whether ’Agriculture’
is ’NETE’, and if no then whether ’Horticulture’ is ’NETE’
or not. In fact, this the most difficult class to identify. Other
ambiguous tags are ’NETE’ and ’NETO’ (NE title-objects).
We have considered only those NE tags that denote person
name, location name, organization name, number expression,
time expression and measurement expressions. The number,
time and measurement expressions are mapped to belong to
the Miscellaneous tag. Other tags of the shared task have been
mapped to the ‘other-than-NE’ category. Hence, the tagset now
becomes as shown in Table II.

In order to properly denote the boundaries of the NEs, the
four NE tags are further subdivided as shown in Table III.
In the output, these sixteen NE tags are directly mapped to
the four major NE tags, namely Person name, Location name,
Organization name and Miscellaneous name.

B. Support Vector Machine

Support Vector Machines (SVMs), first introduced by Vap-
nik [32] [33], are relatively new machine learning approaches
for solving two-class pattern recognition problems. SVMs are
well-known for their good generalization performance, and
have been applied to many pattern recognition problems. In
the field of natural language processing, SVMs are applied
to text categorization, and are reported to have achieved high
accuracy without falling into over-fitting even though with a
large number of words taken as the features [34] [35]. Suppose,
we have a set of training data for a two-class problem:
{(x1, y1), . . . , (xN , yN)} , where xi ∈ RD is a feature vector
of the i-th sample in the training data and y ∈ {+1,−1} is
the class to which xi belongs. In their basic form, a SVM
learns a linear hyperplane that separates the set of positive
examples from the set of negative examples with maximal
margin (the margin is defined as the distance of the hyperplane
to the nearest of the positive and negative examples). In basic
SVMs framework, we try to separate the positive and negative
examples by hyperplane written as:

(w.x) + b = 0 w ∈ Rn, b ∈ R.

SVMs find the “optimal” hyperplane (optimal parameter w, b)
which separates the training data into two classes precisely.
The linear separator is defined by two elements: a weight
vector w (with one component for each feature), and a bias b
which stands for the distance of the hyperplane to the origin.
The classification rule of a SVM is:

sgn(f(x,w, b)) (1)

f(x,w, b) =< w.x > +b (2)

being x the example to be classified. In the linearly separable
case, learning the maximal margin hyperplane (w, b) can be
stated as a convex quadratic optimization problem with a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

385

TABLE I
NAMED ENTITY TAGSET FOR INDIAN LANGUAGES (IJCNLP-08 NER SHARED TASK TAGSET)

NE Tag Meaning Example
NEP Person name sachIna/NEP,

sachIna ramesha tenDUlkara / NEP
NEL Location name kolkAtA/NEL,

mahatmA gAndhi roDa / NEL
NEO Organization name yadabpUra bishVbidyAlYa/NEO,

bhAbA eytOmika risArcha sentAra / NEO
NED Designation cheYArmAn/NED, sA.msada/NED
NEA Abbreviation bi e/NEA, ci em di a/NEA,

bi je pi/NEA, Ai.bi.em/ NEA
NEB Brand fYAntA/NEB
NETP Title-person shrImAna/NED, shrI/NED, shrImati/NED
NETO Title-object AmericAn biUti/NETO
NEN Number 10/NEN, dasha/NEN
NEM Measure tina dina/NEM, p.NAch keji/NEM
NETE Terms hidena markbha madela/NETE,

kemikYAla riYYAkchYAna/NETE
NETI Time 10 i mAgha 1402 / NETI, 10 ema/NETI

TABLE II
TAGSET USED IN THIS WORK

IJCNLP-08 Tagset used Meaning
shared task tagset
NEP Person name Single word/multiword

person name
NEL Location name Single word/multiword

location name
NEO Organization name Single word/multiword

organization name
NEN, NEM, NETI Miscellaneous name Single word/ multiword

miscellaneous name
NED, NEA, NEB,
NETP, NETE NNE Other than NEs

TABLE III
NAMED ENTITY TAGSET (B-I-E FORMAT)

Named Entity Tag Meaning Example
PER Single word sachIna/PER,

person name rabIndranAtha/PER
LOC Single word kolkAtA/LOC, mUmvAi/LOC

location name
ORG Single word infOsIsa/ORG

organization name
MISC Single word 10/MISC, dasha/MISC

miscellaneous name
B-PER Beginning, Internal or sachIna/B-PER ramesha/I-PER
I-PER the End of a multiword tenDUlkara /E-PER,
E-PER person name rabIndranAtha/B-PER

ThAkUra/E-PER
B-LOC Beginning, Internal or mahatmA/B-LOC gAndhi /I-LOC
I-LOC the End of a multiword roDa /E-LOC,
E-LOC location name niU/B-LOC iYorka/E-LOC
B-ORG Beginning, Internal or yadabpUra /B-ORG
I-ORG the End of a multiword bishVbidyAlYa/E-ORG,
E-ORG organization name bhAbA /B-ORG eytOmika/I-ORG

risArcha/I-ORG sentAra /E-ORG
B-MISC Beginning, Internal or 10 i /B-MISC mAgha/I-MISC
I-MISC the End of a multiword 1402/E-MISC,
E-MISC miscellaneous name 10/B-MISC ema/E-MISC
NNE Other than NEs kaRA/NNE, jala/NNE

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

386

Fig. 1. Example of a 2-dimensional SVM

unique solution: minimize ||w||, subject to the constraints (one
for each training example):

yi(< w.xi > +b) ≥ 1 (3)

See an example of a 2-dimensional SVM in Figure 1.
The SVM model has an equivalent dual formulation, char-

acterized by a weight vector α and a bias b. In this case,
α contains one weight for each training vector, indicating the
importance of this vector in the solution. Vectors with non null
weights are called support vectors. The dual classification rule
is:

f(x, α, b) =
N∑

i=1

yiαi < xi.x > +b (4)

The α vector can be calculated also as a quadratic optimization
problem. Given the optimal α∗ vector of the dual quadratic
optimization problem, the weight vector w∗ that realizes the
maximal margin hyperplane is calculated as:

w∗ =
N∑

i=1

yiα
∗

i xi (5)

The b∗ has also a simple expression in terms of w∗ and the
training examples (xi, yi)

N

i=1.
The advantage of the dual formulation is that efficient

learning of non-linear SVM separators, by introducing kernel
functions. Technically, a kernel function calculates a dot prod-
uct between two vectors that have been (non linearly) mapped
into a high dimensional feature space. Since there is no need
to perform this mapping explicitly, the training is still feasible
although the dimension of the real feature space can be very
high or even infinite.

By simply substituting every dot product of xi and xj in
dual form with any kernel function K(xi,xj), SVMs can
handle non-linear hypotheses. Among the many kinds of ker-
nel functions available, we will focus on the d-th polynomial
kernel:

K(xi,xj) = (xi.xj + 1)d

Use of d-th polynomial kernel function allows us to build an
optimal separating hyperplane which takes into account all
combination of features up to d.

The SVMs have advantage over conventional statistical
learning algorithms, such as Decision Tree, Hidden Markov
Models, Maximum Entropy Models, from the following two
aspects:

1) SVMs have high generalization performance indepen-
dent of dimension of feature vectors. Conventional algo-
rithms require careful feature selection, which is usually
optimized heuristically, to avoid overfitting. So, it can
more effectively handle the diverse, overlapping and
morphologically complex Indian languages.

2) SVMs can carry out their learning with all combinations
of given features without increasing computational com-
plexity by introducing the Kernel function. Conventional
algorithms cannot handle these combinations efficiently,
thus, we usually select important combinations heuris-
tically with taking the trade-off between accuracy and
computational complexity into consideration.

We have developed our system using SVM [34] [32],
which perform classification by constructing an N-dimensional
hyperplane that optimally separates data into two categories.
Our general NER system includes two main phases: train-
ing and classification. The training has been carried out by
YamCha 3 toolkit, an SVM based tool for detecting classes
in documents and formulating the NER task as a sequential
labeling problem. For classification, We have used TinySVM-
0.07 4 classifier that seems to be the best optimized among
publicly available SVM toolkits. Here, the pairwise multi-class
decision method and the polynomial kernel function have been
used.

During testing, it is possible that the classifier produces a
sequence of inadmissible classes (e.g., B-PER followed by
LOC). To eliminate such sequences, we define a transition
probability between word classes P (ci|cj) to be equal to 1 if
the sequence is admissible, and 0 otherwise. The probability
of the classes assigned to the words in a sentence ‘s’ in a
document ‘D’ is defined as follows:

P (c1, c2 . . . , cn|s, D) =
n∏

i=1

P (ci|s, D)× P (ci|ci−1)

where, P (ci|s, D) is determined by the SVM classifier.

III. UNSUPERVISED LEXICAL PATTERN LEARNING FROM

THE UNLABELED BENGALI CORPUS

We have developed a method to generate the lexical context
patterns from a portion, containing 10 million wordforms,
of the unlabeled Bengali news corpus [36] and annotated
corpus of 272K wordforms in an unsupervised way. Given
a small seed examples and an unlabeled corpus, the algorithm
can generate the lexical context patterns in a bootstrapping
manner. The seed name serves as a positive example for its
own NE class, negative example for other NE classes and
error example for non-NEs. In the literature, unsupervised
algorithms (bootstrapping from seed examples and unlabeled
data) have been discussed in [37], [38], and [39]. Using

3http://chasen-org/ taku/software/yamcha/
4http://cl.aist-nara.ac.jp/ taku-ku/software/TinySVM

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

387

a parsed corpus, the proper names that appear in certain
syntactic contents were identified and classified in [37]. The
procedures to identify and classify proper names in seven
languages, learning character-based contextual, internal, and
morphological patterns are reported in [39]. This algorithm
does not strictly require capitalization but recall was much
lower for the languages that do not have case distinctions.
Others, such as [40] relied on structures such as appositives
and compound nouns. Contextual patterns that predict the
semantic class of the subject, direct object, or prepositional
phrase object are reported in [41] and [42]. The techniques
to use the windows of tokens to learn contextual and internal
patterns without parsing are described in [43] and [44]. The
technique reported in [44] enabled discovery of generalized
names embedded in larger noun groups. An algorithm for
unsupervised learning and semantic classification of names
and terms is reported in [44]. They considered the positive
example and negative example for a particular name class. We
have developed an unsupervised algorithm that can generate
the lexical context patterns form the unlabeled corpus. This
work differs from the previous works in the sense that here we
have also considered the patterns that yield negative examples.
These negative examples can be effective to generate new
patterns of the other categories. Apart from accuracy, we have
also considered the relative frequency of a pattern in order to
decide its inclusion into the final set of patterns. The final set
of lexical context patterns have been used as features of the
classifier as well as to post-process the output of the system.

A. Seed list preparation

Three different seed lists of person names, location names
and organization names have been created.

The most frequently words automatically extracted from the
reporter, location and agency tags of the Bengali news corpus
[36], developed from the web archive of a leading Bengali
newspaper, are treated as the initial seed data and put into
the appropriate seed lists. The location, reporter, and agency
tags present in the web pages have been automatically NE
tagged. These tags are useful to identify only the NEs that
appear in some fixed places of the newspaper. These tags can
not identify the NEs that appear in the actual news body. In
addition to these extracted words, the NEs retrieved from the
NE tagged corpus of 272,467 tokens are also added to the
appropriate seed lists. There are 123, 87, and 32 entries in the
person, location, and organization seed lists, respectively. We
have not prepared any seed list for miscellaneous entities as
these can be recognized by some fixed patterns.

B. Lexical pattern generation

The unlabeled corpus is tagged with the elements from the
seed lists. For example,
<Person name> sonia gandhi < /Person name>,
<Location name> kolkata < /Location name>
<Organization name> jadavpur viswavidyalya
< /Organization name>.

For each tag T inserted in the training corpus, the algorithm
generates a lexical pattern p using a context window of

maximum width 6 (excluding the tagged NE) around the left
and the right tags, e.g.,
p = [l−3l−2l−1 < T > . . . < /T > l+1l+2l+3]
where, l±i are the context of p.

Any of l±i may be a punctuation symbol. In such cases,
the width of the lexical patterns will vary. All these pat-
terns, derived from the different tags of the training corpus,
are stored in a Pattern Table (or, set P), which has four
different fields namely, pattern id (identifies any particular
pattern), pattern example (the pattern itself), pattern type
(Person name/Location name/Organization name) and relative
frequency (indicates the number of times any pattern of a
particular type appears in the entire training corpus relative
to the total number patterns generated of that type). This table
has 31,986 entries, out of which 23,031 patterns are distinct.
We have also generated the context patterns by extracting the
examples from the labeled training data of 272K wordforms
and this yields 5,488 number of patterns. Finally, the set P has
25,233 distinct patterns.

C. Evaluation of patterns

Every pattern p in the set P is matched against the same
unannotated corpus. In a place, where the context of p matches,
p predicts the occurrence of the left or right boundary of name.
The POS information of the words as well as some linguistic
rules and/or length of the entity have been used in detecting
the other boundary of the entity. A CRF-based part of speech
tagger [45] has been used to tag the unannotated corpus.
A regular expression NNPC∗NNP+ is used to detect the
boundary of the NE, where NNPC denotes the initial words
of a compound proper noun and NNP denotes the last word
of the compound proper noun. The extracted entity may fall
in one of the following categories:

1) positive example: The extracted entity is of the same NE
type as that of the pattern.

2) negative example: The extracted entity is of the different
NE type as that of the pattern.

3) error example: The extracted entity is not at all a NE.

D. Candidate pattern acquisition

For each pattern p, we have maintained three different
lists for the positive, negative and error examples. The type
of the extracted entity is determined by checking whether it
appears in any of the seed lists (person/location/organization);
otherwise, its type is determined manually. The positive and
negative examples are added to the appropriate seed lists.
Then, we compute the pattern’s accuracy as follows:
accuracy(p) = |positive(p)|/[|positive(p)|+|negative(p)|+
|error(p)|]

A threshold value of accuracy has been chosen and the
patterns below this threshold values are discarded. A pattern
is also discarded if its total positive count is less than a
predetermined threshold value. The remaining patterns are
ranked by their relative frequency values. The n top high
frequent patterns are retained in the pattern set P and this
set is denoted as Accept Pattern.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

388

E. Generation of new patterns

All the positive and negative examples extracted by a pattern
p in Step D can be used to generate further patterns from the
same training corpus. Each new positive or negative instance
(not appearing in the seed lists) is used to further tag the
training corpus. We repeat steps B-E for each new NE until
no new patterns can be generated. The threshold values of
accuracy, positive count and relative frequency are chosen in
such a way that in each iteration of the algorithm at least
5% new patterns are added to the set P . A newly generated
pattern may be identical to a pattern that is already in the set
P . In such case, the type and relative frequency fields in the
Pattern Table (set, P) are updated accordingly. Otherwise, the
newly generated pattern is added to the table with the type
and relative frequency fields set properly. At the end of 17
iterations, there are 27,098 distinct patterns in the set P .

IV. NAMED ENTITY FEATURES

Feature selection plays a crucial role in the Support Vector
Machine (SVM) framework. Experiments have been carried
out in order to find out the most suitable features for NER
in Indian languages, particularly for Bengali and Hindi. The
main features for the NER task have been identified based
on the different possible combination of available word and
tag context. The features also include prefix and suffix for
all words. The term prefix/suffix is a sequence of first/last
few characters of a word, which may not be a linguistically
meaningful prefix/suffix. The use of prefix/suffix information
works well for highly inflected languages like the Indian
languages. We have considered different combination from the
following set for inspecting the best feature set for the NER
task:

F={wi−m, . . . , wi−1, wi, wi+1, . . . wi+n, |prefix| ≤
n, |suffix| ≤ n, NE tag(s) of previous word(s), POS
tag(s) of the current and/or the surrounding word(s), First
word, Length of the word, Digit information, Rare word
feature}.

The set ‘F’ contains only the language independent fea-
tures. These features are applicable for NER in any language
including the Indian languages.

Following are the details of the set of features that have
been applied to the NER task:

1) Context word feature: Preceding and following words
of a particular word can be used as the features. This is
based on the observation that the surrounding words are
very effective in the identification of NEs.

2) Word suffix: Word suffix information is helpful to iden-
tify NEs. This is based on the observation that the
NEs share some common suffixes. A fixed length (say,
n) word suffix of the current and/or the surrounding
word(s) can be treated as feature. If the length of the
corresponding word is less than or equal to n− 1 then
the feature values are not defined and denoted by ND.
The feature value is also not defined (ND) if the token
itself is a punctuation symbol or contains any special
symbol or digit. We have defined this feature in this way

due to the unavailability of stemmer or morphological
analyzers.

3) Word prefix: Word prefixes are also helpful and based
on the observation that NEs share some common prefix
strings. This feature has been defined in a similar way as
that of the fixed length suffixes. The use of stemmer or
morphological analyzer may be more effective to extract
this feature.

4) Named Entity Information: The NE tag(s) of the previ-
ous word(s) has been used as the only dynamic feature
in the experiment.

5) First word: This is used to check whether the current
token is the first word of the sentence or not. Though
Bengali and Hindi are relatively free order languages,
the first word of the sentence is most likely a NE as it
appears in the subject position most of the time.

6) Digit features: Several binary valued digit features
have been defined depending upon the presence and/or
the number of digits in a token (e.g., ContainsDigit
[token contains digits], FourDigit [token consists of
four digits], TwoDigit [token consists of two digits]),
combination of digits and punctuation symbols (e.g.,
ContainsDigitAndComma [token consists of digits and
comma], ConatainsDigitAndPeriod [token consists of
digits and periods]), combination of digits and symbols
(e.g., ContainsDigitAndSlash [token consists of digit
and slash], ContainsDigitAndHyphen [token consists of
digits and hyphen], ContainsDigitAndPercentage [token
consists of digits and percentages]). These binary valued
features are helpful in recognizing miscellaneous NEs,
such as time expressions, measurement expressions and
numerical numbers etc.

7) Infrequent word: The frequencies of the words in the
training corpus have been calculated. A cut off frequency
has been chosen in order to consider the words that occur
less than the cut off frequency in the training corpus. The
cut off frequencies are set to 10, and 20 for Bengali, and
Hindi, respectively. A binary valued feature ‘RareWord’
is defined to check whether the current token appears
in this list or not. This feature has been included as the
frequently occurring words are rarely named entities.

8) Length of a word: This binary valued feature is used
to check whether the length of the current word is less
than three or not. This is based on the observation that
the very short words are rarely NEs.

9) Part of Speech information: For POS tagging, we have
used a CRF-based POS tagger [45] that was originally
developed with the help of a tagset of 26 different POS
tags 5, defined for the Indian languages. This POS tagger
had an accuracy of 90.2%. We have used a coarse-
grained POS tagger that has only three tags, namely
Nominal, PREP (Postposition) and Other. Postpositions
have been considered as these often occur after the NEs.
The language specific resources such as the variable
length word suffixes, lexicon [46] and the NER system
[29] were not considered for handling the unknown word

5http://shiva.iiit.ac.in/SPSAL2007/iiit tagset guidelines.pdf

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

389

problems in POS tagging. The same POS tagger has
been evaluated for Hindi. The POS tagger has been
trained with the Bengali and Hindi data, obtained from
the NLPAI Contest06 6 and SPSAL2007 competition 7.

The above set of language independent features along with
their descriptions are shown in Table IV.

V. EXPERIMENTAL RESULTS

We have used the annotated corpora of 122,467 tokens of
Bengali and 502,974 tokens of Hindi tagged with the twelve
different NE classes 8, defined for the IJCNLP-08 NER Shared
Task for South and South East Asian Languages (SSEAL) 9.
An appropriate tag conversion routine has been developed in
order to convert the twelve NE tagged corpora to the forms,
tagged with the four NE tags. In addition to it, a Bengali
news corpus [36], developed from the archive of a leading
Bengali newspaper available in the web, has been also used.
This corpus contains approximately 34 million wordforms. A
portion of this corpus containing 150K wordforms have been
manually annotated with four NE tags, namely Person name,
Location name, Organization name and Miscellaneous name.
This annotations were carried out with the help of Sanchay
Editor 10, a text editor for the Indian languages. This manually
tagged corpus is added to that of the 122,467 tokens and
thus the resultant training set for Bengali consists of 272,467
tokens. A subset of each training set has been selected as the
development set to identify the best set of features for each
of the languages. Out of 272,467, and 502,974 tokens, 30K,
and 50K tokens have been selected as the development sets
for Bengali, and Hindi, respectively. The rest, i.e., 242,467,
and 452,974 tokens are used as the training sets of Bengali,
and Hindi, respectively. System has been tested with the gold
standard test sets of 35K, and 60K tokens of Bengali, and
Hindi, respectively.

We define the baseline model as the one where the NE tag
probabilities depend only on the current word:

P (t1, t2, . . . , tn|w1, w2, . . . , wn) =
∏

i=1,...,n

P (ti|wi).

In this model, each word in the test data is assigned the
NE tag which occurred most frequently for that word in the
training data.

The performance of the system has been evaluated in terms
of the standard recall, precision and f-score parameters as
defined below:

Recall =
NEs retrieved by the system
NEs present in the test set

× 100

Precision =
NEs correctly retrieved by the system

NEs retrieved by the system
× 100

F-Score =
2× Recall× Precision

Recall + Precision
× 100

6http://ltrc.iiitnet/nlpai contest06/
7http://shiva.iiit.ac.in/SPSAL2007/
8http://ltrc.iiit.ac.in/ner-ssea-08/index.cgi?topic=3
9http://ltrc.iiit.ac.in/ner-ssea-08
10Sourceforge.net/project/nlp-sanchay

A. Experimental results on the development sets

Forty nine and thirty five different experiments were con-
ducted taking the different combinations from the set of fea-
tures that are applicable to both Bengali and Hindi. From our
empirical analysis, we found that the following combination
gives the best result for the development sets of Bengali and
Hindi.

F=[wi−3wi−2wi−1wiwi+1wi+2, |prefix| ≤ 3, |suffix| ≤ 3,
NE information of the previous two words, POS information
of the window [−1,−1], FirstWord, Length, RareWord, Digit
features]

The meanings of the notations, used in the experimental
results, are defined below:
cw, pw, nw: Current, previous and the next word; pwi, nwi:
Previous and the next ith word; pre, suf: Prefix and suffix of
the current word; pt: NE tag of the previous word; pti: NE tag
of the previous ith word; psuf, ppre: Suffix and prefix of the
previous word; nsuf, npre: Suffix and prefix of the next word.

Evaluation results of the system for the development set in
terms of f-score (FS) are presented in Table V for Bengali. It
is observed from Table V (2nd-6th rows) that word window
[−3, +2] gives the best result (5th row) with the ‘FirstWord’
and ’Length’ features. The use of ‘RareWord’ feature increases
the f-score value by 0.84% (5th and 7th rows). The intuition of
using this feature is that the most frequently occurring words
in the training corpus have the possibility of not being the
NEs. The NE information of the word is the only dynamic
feature in the experiment and it has the important role in
the overall performance of the system. Evaluation results
(7th and 8th rows) show that the performance of the system
increases by 2.29% with the addition of NE information of
the previous word only. It is also evident (8th-10th rows)
that the NE information of the previous two words are the
most effective and have demonstrated the f-score value of
71.92%. It is indicative from the results (9th and 11th rows)
that inclusion of prefix and suffix features of all the words are
very effective in improving the performance of the system.
Clearly, the results (11th-18th rows) indicate that the prefixes
and suffixes of length up to three characters (12th row) of
the current word only are more effective than the others.
Evaluation results (13th -16th rows) also show the fact that
surrounding word suffixes and/or prefixes do not increase the
f-score value. It is also observed (17th -18 rows) that inclusion
of the surrounding word suffixes and/or prefixes along with the
suffixes and prefixes of the current word reduce the f-score
value. The overall f-score value is further improved by 1.81%
(12th and 19th rows) with the various digit features.

Results (20th-23rd rows) show that POS information of
the current and/or the surrounding word(s) are very helpful
and plays an important role in the overall performance im-
provement of the system. Results also suggest that the POS
information of the window [−1, +1] is more effective (f-score=
79.82%) than the POS information of the windows [−1, 0],
[0, +1] or the current word alone. We also conducted exper-
iments by considering the POS information of the windows
[-2, +2], [-2, +1], [−2, 0], [0, +2], [−2,−1] and [+1, +2] and
observed that the f-score value of the system get reduced

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

390

TABLE IV
DESCRIPTIONS OF THE LANGUAGE INDEPENDENT FEATURES FOR BENGALI AND HINDI. HERE, i REPRESENTS THE POSITION OF THE CURRENT WORD

AND wi REPRESENTS THE CURRENT WORD

Feature Description
ContexT ContexTi = wi−m, . . . , wi−1, wi, wi+1, wi+n,

where wi−m, and wi+n are the previous mth, and the next nth word

Suf Sufi(n) =

⎧⎨
⎩

Suffix string of length n of wi if |wi| ≥ n

ND(= 0) if |wi| ≤ (n − 1)
or wi is a punctuation symbol
or wi contains any special symbol or digit

Pre Prei(n) =

⎧⎨
⎩

Prefix string of length n of wi if |wi| ≥ n
ND(= 0) if |wi| ≤ (n − 1)

or wi is a punctuation symbol
or wi contains any special symbol or digit

NE NEi = NE tag of wi

FirstWord FirstWordi =

{
1, if wi is the first word of a sentence
0, Otherwise

CntDgt CntDgti =

{
1, if wi contains digit
0, otherwise

FourDgt FourDgti =

{
1, if wi consists of four digits
0, otherwise

TwoDgt TwoDgti =

{
1, if wi consists of two digits
0, otherwise

CntDgtCma CntDgtCmai =

{
1, if wi contains digit and comma
0, otherwise

CntDgtPrd CntDgtPrdi =

{
1, if wi contains digit and period
0, otherwise

CntDgtSlsh CntDgtSlshi =

{
1, if wi contains digit and slash
0, otherwise

CntDgtHph CntDgtHphi =

{
1, if wi contains digit and hyphen
0, otherwise

CntDgtPrctg CntDgtPrctgi =

{
1, if wi contains digit

and percentage
0, otherwise

RareWord RareWordi = I{Infrequent word list}(wi)

Length Lengthi =

{
1, if wi ≥ 3
0, otherwise

TABLE V
EXPERIMENTAL RESULTS ON THE DEVELOPMENT SET FOR BENGALI

Feature (word, tag) F-Score
(in %)

pw, cw, nw, FirstWord, Length 67.01
pw, cw, nw, FirstWord, Length 67.82
pw2, pw, cw, nw, nw2, FirstWord, Length 67.11
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length 68.28
pw3, pw2, pw, cw, nw, nw2, nw3, FirstWord, Length 68.11
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord 69.12
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt 71.41
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2 71.92
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, pt3 71.53
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |suf| ≤4, |pre| ≤4 74.56
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |suf| ≤3, |pre| ≤ 3 75.96
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |psuf| ≤3, |ppre| ≤ 3 74.57
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |nsuf| ≤3, |npre| ≤ 3 73.98
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |npre| ≤3, |ppre| ≤3 73.52
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |psuf| ≤3, |nsuf| ≤3 73.95
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |suf| ≤3, |pre| ≤ 3,
|psuf| ≤3, |nsuf| ≤3 73.28
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |suf| ≤3, |pre| ≤ 3,
|npre| ≤3, |nsuf| ≤3 73.16
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |suf| ≤3, |pre| ≤ 3, Digit 77.77
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |suf| ≤3, |pre| ≤ 3, Digit, pp, cp, np 79.82
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |suf| ≤3, |pre| ≤ 3, Digit, cp 77.79
pw3, pw2, pw, cw, nw, nw2, FirstWord, RareWord, pt, pt2, |suf| ≤3, |pre| ≤3, Digit, pp, cp 78.89
pw3, pw2, pw, cw, nw, nw2, FirstWord, RareWord, pt, pt2, |suf| ≤3, |pre| ≤3, Digit, cp, np 78.12

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

391

compared to the POS information of the window [−1, +1] in
each of the cases. It is also indicative from the results (22nd
and 23rd rows) that the POS information of the window [−1, 0]
is more helpful than the POS information of the window
[0, +1].

Evaluation results of the system for the development set are
presented in Table VI for Hindi. Results (2nd-6th rows) show
that the system performs the best for the window [−3, +2] with
the ‘FirstWord’ and ’Length’ features only. An overall f-score
value of 70.53% is obtained by including the NE information
of the window [−2,−1] and the ‘RareWord’ feature (7th-
10th rows). The prefixes and suffixes of length up to three
characters of the current word only increases the f-score value
to 74.95% (11th- 18th rows). It is also observed (13th-18th
rows) that the surrounding word suffixes and/or prefixes do not
increase the f-score value. The introduction of digit features
improve the f-score value by 1.91% (12th and 19th rows).
Evaluation results (20th row) show an improvement of 1.22%
in the overall f-score value with the POS information of the
current, previous and next words. It is also evident from the
experimental results (20th-23rd rows) that POS information of
the window [−1, +1] is more effective than the others.

One important observation is that the system performs
better for Bengali though the size of the Hindi training
corpus is approximately twice to that of the Bengali. One
possible reason is the presence of less number of NEs in
the Hindi data in comparison to Bengali. In order to achieve
the reasonable performance, the training corpus should have
enough evidences of the target NE classes. Model performance
can degrade if the distribution of non-names is very high in
the training corpus. Thus, it can be decided that appropriate
training data that contains the evenly distributed names and
non-names is very essential.

1) Use of context patterns as features for Bengali: High
ranked patterns of the Accept Pattern set (discussed in section
III) can be used as the features of SVM. Words in the left
and/or the right contexts of person, location and organization
names carry effective information that could be helpful for
their identification. These words are used as the trigger words.
A particular trigger word may appear in more than one pattern
type. A feature ‘ContextInformation‘ is defined as below by
observing the three preceding and following words of the
current word:

• If the window W [−3, +3] (three words spanning to left
and right) of the current word contains any trigger word
of Person name then the feature value is set to 1.

• If the window W [−3, +3] contains any trigger word of
Location name then the feature value is set to 2.

• If the window W [−3, +3] contains any trigger word of
Organization name then the feature value is set to 3.

• If the window W [−3, +3] contains any trigger word that
appears in more than one NE type pattern then feature
value is set to 4.

• Otherwise, the value of the feature is set to 0.

Experimental results of the system for the development set
have demonstrated the f-score value of 82.93%, which is an
improvement of 3.11% with the use of context features.

B. Experimental results on the test sets

The best set of features for NER in Bengali and Hindi
are identified by training the SVM based NER system with
242,467, and 452,974 tokens and testing with the develop-
ment sets of 30K, and 50K tokens, respectively. Now, the
development sets are included as part of the training sets
and the resultant training sets thus consist of 272,467 and
502,974 tokens for Bengali and Hindi, respectively. Now,
the gold standard test sets of 35K, and 60K tokens have
been used in order to report the experimental results for
Bengali, and Hindi, respectively . There are approximately
17%, and 15% unknown NEs in the test sets of Bengali and
Hindi, respectively. Evaluation results of the system have been
presented in Table VII for the test sets. Table also shows the
results of the baseline models.

1) Use of context patterns in Bengali: The high ranked
patterns of the Accept Pattern set (discussed in section III)
are used as the features of SVM. The inclusion of this feature
has demonstrated the recall, precision, and f-score values of
83.78%, 80.35%, and 82.03%, respectively. So, it can be
decided that context patterns are very useful to improve the
performance of the system. Results show an improvement of
3.06% f-score with the use of context features. Results also
show that the context patterns are more effective to improve
the precision (an improvement of 4.28%) value in comparison
to the recall (an improvement of 1.57%) value.

A detailed look to the evaluation results reveals that the
errors are mostly concerned with the unseen words. Some NEs
are also tagged as NNE by the system. To deal with these
two particular problems, the high ranked patterns contained in
the Accept Pattern set set are used to post-process the output
generated by the SVM based system. Each pattern is looked
for a match in the output file of the form (word, tag), generated
by the classifier. Lexical pattern induction component is then
used to change and/or assign the NE tag to the current token
if it is either unknown or tagged as NNE by the system.
Evaluation results have demonstrated the recall, precision, and
f-score values of 88.61%, 80.12%, and 84.15%, respectively.
Hence, this is a significant improvement in the recall value
(approximately, 5%) by including this module. However, the
recall value drops by 0.23%. Thus, it results in the overall
f-score gain by 2.12%.

C. Evaluation results of the 10-fold cross validation tests

The resultant training sets of Bengali and Hindi consist of
272,467 tokens and 502,974 tokens. Each of these training sets
has been distributed into 10 equal subsets. One of the subsets
is kept as the test set and the remaining nine subsets are used
as the training sets of the system. This process is repeated 10
times to yield an average result, which is called the 10-fold
cross validation test.

During all these 10 experiments in Bengali, the system is
initially trained with all the language independent features. The
context features are then incorporated into the system. After
each test, the high ranked patterns are used to change and/or
assign the NE tag(s) in the output of the SVM based system.
For Hindi, we have conducted the 10-fold cross validation

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

392

TABLE VI
EXPERIMENTAL RESULTS ON THE DEVELOPMENT SET FOR HINDI

Feature (word, tag) F-Score
(in %)

pw, cw, nw, FirstWord, Length 65.91
pw, cw, nw, FirstWord, Length 66.23
pw2, pw, cw, nw, nw2, FirstWord, Length 66.81
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length 67.37
pw3, pw2, pw, cw, nw, nw2, nw3, FirstWord, Length 67.02
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord 67.58
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt 69.91
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2 70.53
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, pt3 69.81
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |suf| ≤4, |pre| ≤4 73.74
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |suf| ≤3, |pre| ≤ 3 74.95
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |psuf| ≤3, |ppre| ≤ 3 72.91
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |nsuf| ≤3, |npre| ≤ 3 71.79
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |npre| ≤3, |ppre| ≤3 72.47
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |psuf| ≤3, |nsuf| ≤3 72.92
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |suf| ≤3, |pre| ≤ 3,
|psuf| ≤3, |nsuf| ≤3 73.16
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |suf| ≤3, |pre| ≤ 3,
|npre| ≤3, |nsuf| ≤3 73.11
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |suf| ≤3, |pre| ≤ 3, Digit 76.86
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |suf| ≤3, |pre| ≤ 3, Digit, pp, cp, np 78.08
pw3, pw2, pw, cw, nw, nw2, FirstWord, Length, RareWord, pt, pt2, |suf| ≤3, |pre| ≤ 3, Digit, cp 77.79
pw3, pw2, pw, cw, nw, nw2, FirstWord, RareWord, pt, pt2, |suf| ≤3, |pre| ≤3, Digit, pp, cp 77.92
pw3, pw2, pw, cw, nw, nw2, FirstWord, RareWord, pt, pt2, |suf| ≤3, |pre| ≤3, Digit, cp, np 77.59

TABLE VII
EXPERIMENTAL RESULTS ON THE TEST SETS

Language Model Recall Precision F-Score
Bengali Baseline 64.73 52.21 57.80
Hindi Baseline 64.67 52.01 57.65
Bengali SVM 82.21 76.07 79.02
Hindi SVM 80.23 74.34 77.17

test only with the language independent features. Evaluation
results of the 10-fold cross validation tests are reported in
Table VIII for Bengali and in Table IX for Hindi. The system
has demonstrated the overall average recall, precision, and f-
score values of 88.69%, 80.35%, and 84.31%, respectively,
for Bengali. The system has shown the overall average recall,
precision, and f-Score values of 80.48%, 74.54%, and 77.39%,
respectively, for Hindi.

D. Comparisons with other systems

The existing Bengali NER systems reported in [27] and in
[28] have been trained and tested under the same experimental
setup. Two models, namely A and B have been reported in
[27]. These models are based on a pattern directed shallow
parsing approach. An unsupervised algorithm was developed
to tag the unlabeled corpus with the seed entities of Person
name, Location name and Organization name. Model A uses
only the seed lists to tag the training corpus whereas in
model B, we have used the various gazetteers along with
the seed entities for tagging. The lexical context patterns
generated in such way are used to generate further patterns in a
bootstrapped manner. The algorithm terminates until no new
patterns can be generated. During testing, model A can not
deal with the NE classification disambiguation problem (i.e,
can not handle the situation when a particular word is tagged
with more than one NE type) but model B can handle with

this problem with the help of gazetteers and various language
dependent features.

A HMM-based NER system has been reported in [28],
where more context information has been considered during
emission probabilities and the word suffixes have been used for
handling the unknown words. Comparative evaluation results
for the test set are presented in Table X. Result show that the
proposed system outperforms the least performing model A
by 15.83% and the existing HMM-based system by 6.57%.
One reason behind the rise in recall, precision and f-score
values in the SVM based NER system is its ability to handle
the non-independent, diverse and overlapping features of the
morphologically rich Indian languages more efficiently than
the HMM.

A HMM-based Hindi NER system has been reported in
[31]. This system has been trained and tested with the same
Hindi training and test sets. Evaluation results of the test set
have demonstrated the recall, precision, and f-score values of
76.37%, 74.99%, and %, 75.99, respectively.

Experimental results of the 10-fold cross validation test
for the HMM-based NER system [28] are presented in Table
XI. The system has demonstrated the overall average recall,
precision, and f-score values of 78.81%, 76.64%, and 77.62%,
respectively. Results of the 10-fold cross validation tests of the
HMM-based Hindi NER system [31] are shown in Table XII.
Results show the overall average recall, precision, and f-score

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

393

TABLE VIII
RESULTS OF 10-FOLD CROSS VALIDATION TEST FOR BENGALI USING SVM AND CONTEXT PATTERN

Test Set No Recall Precision F-Score
1 87.89 79.97 83.74
2 88.54 80.32 84.23
3 88.73 80.21 84.26
4 88.69 80.27 84.27
5 88.98 80.31 84.42
6 88.45 80.54 84.31
7 88.91 80.33 84.40
8 88.93 80.31 84.41
9 88.89 80.61 84.55
10 88.87 80.65 84.57
Average 88.69 80.35 84.31

TABLE IX
RESULTS OF 10-FOLD CROSS VALIDATION TEST FOR HINDI USING SVM

Test Set No Recall Precision F-Score
1 80.21 74.30 77.14
2 80.17 74.80 77.39
3 80.22 74.33 77.16
4 80.34 74.31 77.21
5 80.71 74.39 77.42
6 80.72 75.11 77.81
7 80.54 75.12 77.74
8 80.51 74.19 77.22
9 80.44 74.25 77.21
10 80.93 74.61 77.64
Average 80.48 74.54 77.39

TABLE X
COMPARATIVE EVALUATION RESULTS (A: PATTERN DIRECTED SHALLOW PARING APPROACH WITHOUT LINGUISTIC KNOWLEDGE, B: PATTERN

DIRECTED SHALLOW PARSING APPROACH WITH LINGUISTIC KNOWLEDGE)

Model Recall Precision F-Score
A 69.57 67.12 68.32
B 72.17 70.09 71.11
HMM 78.81 76.39 77.58
SVM 88.61 80.12 84.15

TABLE XI
RESULTS OF 10-FOLD CROSS VALIDATION TEST FOR BENGALI USING HMM

Test Set No. Recall Precision F-Score
1 78.75 76.33 77.52
2 78.83 76.41 77.6
3 78.81 76.51 77.64
4 78.49 76.41 77.44
5 78.92 76.53 77.71
6 78.87 76.69 77.73
7 78.89 76.22 77.53
8 78.88 76.41 77.63
9 78.79 76.67 77.72
10 78.87 76.68 77.76
Average 78.81 76.64 77.62

TABLE XII
RESULTS OF 10-FOLD CROSS VALIDATION TEST FOR HINDI USING HMM

Test Set No. Recall Precision F-Score
1 76.34 74.47 75.39
2 76.55 74.92 75.72
3 76.31 75.19 75.75
4 76.52 75.22 75.86
5 76.84 74.97 75.89
6 76.12 74.11 75.10
7 76.03 74.23 75.11
8 76.29 75.16 75.72
9 76.41 75.01 75.70
10 76.44 74.98 75.71
Average 76.39 74.83 75.59

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

394

values of 76.39%, 74.83%, and 75.59%, respectively.

1 2
78

80

82

84

86

88

R
ec

al
l

Methods

Fig. 2. Boxplot of the Recall values obtained by SVM (1) and HMM (2)
based NER approach for Bengali

1 2
76

76.5

77

77.5

78

78.5

79

79.5

80

80.5

P
re

ci
si

on

Methods

Fig. 3. Boxplot of the Precision values obtained by SVM (1) and HMM (2)
based NER approach for Bengali

1 2

78

79

80

81

82

83

84

F
−

S
co

re

Methods

Fig. 4. Boxplot of the F-Score values obtained by SVM (1) and HMM (2)
based NER approach for Bengali

ANOVA [47] statistical analysis is performed on the com-
bined results of the two NER systems (HMM based and SVM
based) for Bengali and Hindi both. In statistics, ANOVA is
short for analysis of variance. Analysis of variance is a col-
lection of statistical models, and their associated procedures,
in which the observed variance is partitioned into components
due to different explanatory variable. The initial techniques
of the analysis of variance were developed by the statistician
and geneticist R.A. Fisher in the 1920s and 1930s, and is
sometimes known as Fisher’s ANOVA or Fisher’s analysis of
variance, due to the use of Fisher’s F-distribution as part of
the test of statistical significance. There are three conceptual
classes of such models:

1 2

76

76.5

77

77.5

78

78.5

79

79.5

80

80.5

81

R
ec

al
l

Methods

Fig. 5. Boxplot of the Recall values obtained by SVM (1) and HMM (2)
based NER approach for Hindi

1 2
76

76.5

77

77.5

78

78.5

79

79.5

80

80.5

P
re

ci
si

on
Methods

Fig. 6. Boxplot of the Precision values obtained by SVM (1) and HMM (2)
based NER approach for Hindi

1) Fixed-effects models assumes that the data came from
normal populations which may differ only in their
means.

2) Random effects models assume that the data describe a
hierarchy of different populations whose differences are
constrained by the hierarchy.

3) Mixed-effect models describe situations where both
fixed and random effects are present.

In practice, there are several types of ANOVA depending
on the number of treatments and the way they are applied to
the subjects in the experiment. One-way ANOVA is used to
test for differences among two or more independent groups.
Typically, however, the One-way ANOVA is used to test for
differences among at least three groups, since the two-group
case can be covered by a T-test ([48]). When there are only
two means to compare, the T-test and the F-test are equivalent;
the relation between ANOVA and t is given by F = t2.
One-way ANOVA for repeated measures is used when the
subjects are subjected to repeated measures; this means that
the same subjects are used for each treatment. The One-Way
ANOVA procedure produces a one-way analysis of variance
for a quantitative dependent variable (here, it is three different
evaluation criterion) by a single independent variable (here,
it is the algorithm, SVM and HMM). Analysis of variance
is used to test the hypothesis that several means are equal.
Here, ANOVA analysis is carried out on the results of 10-fold
cross validation tests obtained by SVM and HMM for Bengali
and Hindi both. The One-Way ANOVA procedure produces
a one-way analysis of variance for a quantitative dependent
variable (here, it is 3 different evaluation criterion) by a single

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

395

TABLE XIII
ESTIMATED MARGINAL MEANS AND PAIRWISE COMPARISON OF NER TECHNIQUES USING SVM AND HMM ON RECALL, PRECISION AND F-SCORE

VALUES OBTAINED BY ANOVA TESTING FOR BENGALI

Evaluation Algo. Mean of I Algo. Mean Mean Diff. Significance value
criterion (I) (J) (I-J)
Recall SVM 88.6880 ± 0.1094 HMM 78.8100 ± 0.0153 9.8780 ± 0.1016 0
Precision SVM 80.3500 ± 0.0397 HMM 76.4760 ± 0.0218 3.8740 ± 0.0186 0
F-Score SVM 84.3132 ± 0.0529 HMM 77.6254 ± 0.0108 6.6878 ± 0.0366 0

TABLE XIV
ESTIMATED MARGINAL MEANS AND PAIRWISE COMPARISON OF NER TECHNIQUES USING SVM AND HMM ON RECALL, PRECISION AND F-SCORE

VALUES OBTAINED BY ANOVA TESTING FOR HINDI

Evaluation Algo. Mean of I Algo. Mean Mean Diff. Significance value
criterion (I) (J) (I-J)
Recall SVM 80.4790 ± 0.0639 HMM 76.3850 ± 0.0521 4.0940 ± 0.1155 0
Precision SVM 74.5410 ± 0.1242 HMM 74.8260 ± 0.1646 −0.2850 ± 0.5092 0.1108
F-Score SVM 77.3959 ± 0.0630 HMM 75.5971 ± 0.0835 1.7987 ± 0.2376 1.5030e − 011

1 2

78

79

80

81

82

83

84

F
−

S
co

re

Methods

Fig. 7. Boxplot of the F-Score values obtained by SVM (1) and HMM (2)
based NER approach for Hindi

independent variable (here, it is the algorithm (SVM based
method and HMM based method)). Analysis of variance is
used to test the hypothesis that several means are equal. The
results for Bengali, and Hindi are reported in Tables XIII, and
XIV, respectively.

From the statistical test ANOVA, it is found that the
difference in the mean recall, precision and f-score values
obtained by the SVM based method with those obtained by
the HMM based method for Bengali and Hindi are statistically
significant as in all the cases the significance value < 0.05.

In a descriptive statistics, box plot is a convenient way of
graphically depicting groups of numerical data through their
five no. summaries:the smallest observation, lower quartile
(Q1), median (Q2), upper quartile (Q3) and largest obser-
vation. A box plot may also indicate which observations
can be considered as ’outliers‘. Box plot can be useful to
display differences between populations without making any
assumptions of the underlying statistical distribution. The
spacing between the different parts of the box help to indicate
the degree of dispersion (spread) and skewness in the data
and identify ‘outliers’. A quartile is any of the three values
which divide the sorted data into 4 equal parts, so that each
part represents 1/4 of the sampled population. The box plots
(showing the mean and the variances) of the three evaluation
criterion for these two approaches of Bengali are also shown
in Figures 2-4. Similarly, the box plots (showing the mean and
the variances) of the three evaluation criterion for these two

approaches of Hindi are also shown in Figures 5-7.

VI. CONCLUSION

In this paper, we have presented a NER system for two most
popular Indian languages (ILs), namely Bengali and Hindi
with the SVM framework. The NER system uses only the
language independent features. These features can be applied
for NER in any language including the Indian languages.
A number of experiments have been conducted to find out
the best set of features for NER in Bengali and Hindi. The
system has demonstrated the overall f-score values of 84.15%,
and 77.17% for Bengali, and Hindi, respectively. We have
generated the lexical context patterns from the unlabeled
Bengali news corpus. These patterns are used as the features
of SVM as well as the means to post-process the output
of SVM. Evaluation results have demonstrated the overall
performance gain by 5.13% f-score with the use of context
patterns. The 10-fold validation tests have demonstrated the
recall, precision, and f-score values of 88.69%, 80.35%, and
84.31%, respectively, for Bengali and 80.48%, 74.54%, and
77.39%, respectively, for Hindi. We have also compared the
performance between the proposed SVM based systems and
the existing HMM based systems and shown that the perfor-
mance improvement are statistically significant for both of the
languages.

A detailed look to the evaluation results of the system for
Bengali reveals that the system performs poorly for some
specific situations, such as for the common words that can
appear in the dictionary with other valid meanings, can not
efficiently handle the short names and the variation of NEs.
Also, the uneven ratio between the names and non-names is
the another reason behind the poor performance for Hindi.

Future works include development of the NER system for
the other Indian languages, particularly for Telugu, Oriya and
Urdu using the same set of language independent features.
We would like to incorporate the language specific features of
Bengali and Hindi in order to achieve better performance.

REFERENCES

[1] N. Chinchor, “MUC-6 Named Entity Task Definition (Version 2.1),” in
MUC-6, 1995.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

396

[2] N. Chinchor, “MUC-7 Named Entity Task Definition (Version 3.5),” in
MUC-7, 1998.

[3] H. Cunningham, “GATE, a General Architecture for Text Engineering,”
Computers and the Humanities, vol. 36, pp. 223–254, 2002.

[4] D. Moldovan, S. Harabagiu, R. Girju, P. Morarescu, F. Lacatusu,
A. Novischi, A. Badulescu, and O. Bolohan, “LCC Tools for Question
Answering,” in Text REtrieval Conference (TREC) 2002, 2002.

[5] B. Babych and A. Hartley, “Improving Machine Translation Quality with
Automatic Named Entity Recognition,” in Proceedings of EAMT/EACL
2003 Workshop on MT and other Language Technology Tools, pp. 1–8,
2003.

[6] S. Miller, M. Crystal, H. Fox, L. Ramshaw, R. Schawartz, R. Stone,
R. Weischedel, and the Annotation Group, “BBN: Description of the
SIFT System as Used for MUC-7,” in MUC-7, (Fairfax, Virginia), 1998.

[7] D. M. Bikel, R. L. Schwartz, and R. M. Weischedel, “An Algorithm
that Learns What’s in a Name,” Machine Learning, vol. 34, no. 1-3,
pp. 211–231, 1999.

[8] A. Borthwick, Maximum Entropy Approach to Named Entity Recogni-
tion. PhD thesis, New York University, 1999.

[9] A. Borthwick, J. Sterling, E. Agichtein, and R. Grishman,
“NYU:Description of the MENE Named Entity System as Used
in MUC-7,” in MUC-7, 1998.

[10] S. Sekine, “Description of the Japanese NE System used for MET-2,”
in MUC-7, (Fairfax, Virginia), 1998.

[11] S. W. Bennet, C. Aone, and C. Lovell, “Learning to Tag Multilingual
Texts Through Observation,” in Proceedings of Empirical Methods of
Natural Language Processing, (Providence, Rhode Island), pp. 109–116,
1997.

[12] A. McCallum and W. Li, “Early results for Named Entity Recognition
with Conditional Random Fields, Feature Induction and Web-enhanced
Lexicons,” in Proceedings of CoNLL, (Canada), pp. 188–191, 2003.

[13] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional Random
Fields: Probabilistic Models for Segmenting and Labeling Sequence
Data,” in Proceedings of the 18th International Conference on Machine
Learning (ICML), pp. 282–289, 2001.

[14] A. Sun, “Using Support Vector Machine for Terrorism Information Ex-
traction,” in Proceedings of the 1st NSF/NIJ Symposium on Intelligence
and Security, 2003.

[15] A. De Sitter and W. Daelemans, “Information Extraction via Double
Classification,” in Proceedings of International Workshop on Adaptive
Text Extraction and Mining, (Dubrovnik), 2003.

[16] N. Kushmerick, E. Johnston, and S. McGuinness, “Information Extrac-
tion by Text Classification,” in Proceedings of IJCAI-01 Workshop on
Adaptive Text Extraction and Mining, (Seattle, WA), 2001.

[17] A. McCallum, D. Freitag, and F. Pereira, “Maximum Entropy Markov
Models for Information Extraction and Segmentation,” in Proceedings
of the 17th International Conference on Machine Learning (ICML),
pp. 591–598, 2000.

[18] R. Malouf, “Markov Models for Language Independent Named Entity
Recognition,” in Proceedings of the 6th Conference on Natural Lan-
guage Learning (CoNLL-2002), (Taipei, Taiwan), pp. 187–190, 2002.

[19] J. D. Burger, J. C. Henderson, and T. Morgan, “Statistical Named Entity
Recognizer Adaption,” in Proceedings of the CoNLL Workshop, (Taipei,
Taiwan), pp. 163–166, 2002.

[20] X. Carrears, L. Marquez, and L. Padro, “Named Entity Recognition
using AdaBoost,” in Proceedings of the CoNLL Workshop, (Taipei,
Taiwan), pp. 167–170, 2002.

[21] G. Zhou and J. Su, “Named Entity Recognition using an HMM-based
Chunk Tagger,” in Proceedings of ACL, (Philadelphia), pp. 473–480,
2002.

[22] H. Yamada, T. Kudo, and Y. Matsumoto, “Japanese Named Entity
Extraction using Support Vector Machine,” In Transactions of IPSJ,
vol. 43, no. 1, pp. 44–53, 2001.

[23] T. Kudo and Y. Matsumoto, “Chunking with Support Vector Machines,”
in Proceed-ings of NAACL, pp. 192–199, 2001.

[24] K. Takeuchi and N. Collier, “Use of Support Vector Machines in Ex-
tended Named Entity Recognition,” in Proceedings of the 6th Conference
on Natural Language Learning (CoNLL-2002), pp. 119–125, 2002.

[25] A. Masayuki and Y. Matsumoto, “Japanese Named Entity Extraction
with Redundant Morphological Analysis,” in NAACL ’03: Proceedings
of the 2003 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics on Human Language Technology,
(Morristown, NJ, USA), pp. 8–15, Association for Computational Lin-
guistics, 2003.

[26] A. Ekbal and S. Bandyopadhyay, “Pattern Based Bootstrapping Method
for Named Entity Recognition,” in Proceedings of the 6th International

Conference on Advances in Pattern Recognition (ICAPR), pp. 349–355,
World Scientific, 2007.

[27] A. Ekbal and S. Bandyopadhyay, “Lexical Pattern Learning from Corpus
Data for Named Entity Recognition,” in Proceedings of 5th International
Conference on Natural Language Processing (ICON), (India), pp. 123–
128, 2007.

[28] A. Ekbal, S. Naskar, and S. Bandyopadhyay, “Named Entity Recognition
and Transliteration in Bengali,” Named Entities: Recognition, Classifi-
cation and Use, Special Issue of Lingvisticae Investigationes Journal,
vol. 30, no. 1, pp. 95–114, 2007.

[29] A. Ekbal and S. Bandyopadhyay, “Bengali Named Entity Recognition
using Support Vector Machine,” in Proceedings of Workshop on NER
for South and South East Asian Languages, 3rd International Joint
Conference on Natural Languge Processing (IJCNLP), (India), pp. 51–
58, 2008.

[30] W. Li and A. McCallum, “Rapid Development of Hindi Named Entity
Recognition using Conditional Random Fields and Feature Induction,”
ACM Transactions on Asian Languages Information Processing, vol. 2,
no. 3, pp. 290–294, 2004.

[31] A. Ekbal and S. Bandyopadhyay, “A Hidden Markov Model Based
Named Entity Recognition System: Bengali and Hindi as Case Studies,”
in Proceedings of the 2nd International Conference on Pattern Recog-
nition and Machine Intelligence (PReMI 2007), pp. 545–552, Springer
Verlag, 2007.

[32] V. N. Vapnik, The nature of statistical learning theory. New York, NY,
USA: Springer-Verlag New York, Inc., 1995.

[33] C. C and V. N. Vapnik, “Support Vector Networks,” Machine Learning,
vol. 20, pp. 273–297, 1995.

[34] T. Joachims, “Making large-scale support vector machine learning
practical,” pp. 169–184, 1999.

[35] H. Taira and M. Haruno, “Feature Selection in SVM Text Categoriza-
tion,” in Proceedings of AAAI-99, 1999.

[36] A. Ekbal and S. Bandyopadhyay, “A Web-based Bengali News Corpus
for Named Entity Recognition,” Language Resources and Evaluation
Journal, vol. 42, no. 2, 2008.

[37] M. Collins and Y. Singer, “Unsupervised models for named entity
classification,” in Proceedings of the Joint SIGDAT Conference on
Empirical Methods in Natural Language Processing and Very Large
Corpora, 1999.

[38] S. Cucerzon and D. Yarowsky, “Language Independent Named Entity
Recognition Combining Morphological and Contextual Evidence,” in
Proceedings of the 1999 Joint SIGDAT conference on EMNLP and VLC,
(Washington, D.C.), 1999.

[39] S. Cucerzan and D. Yarowsky, “Language Independent NER using a
Unified Model of Internal and Contextual Evidence,” in Proceedings of
CoNLL 2002, pp. 171–175, 2002.

[40] W. Phillips and E. Riloff, “Exploiting Strong Syntactic Heuristics and
Co-training to Learn Semantic Lexicons,” in EMNLP ’02: Proceedings
of the ACL-02 conference on Empirical methods in natural language
processing, (Morristown, NJ, USA), pp. 125–132, Association for Com-
putational Linguistics, 2002.

[41] E. Riloff and R. Jones, “Learning Dictionaries for Information Extraction
by Multi-level Bootstrapping,” in AAAI ’99/IAAI ’99: Proceedings of the
sixteenth national conference on Artificial intelligence and the eleventh
Innovative applications of artificial intelligence conference innovative
applications of artificial intelligence, (Menlo Park, CA, USA), pp. 474–
479, American Association for Artificial Intelligence, 1999.

[42] M. Thelen and E. Riloff, “A Bootstrapping Method for Learning
Semantic Lexicons using Extraction Pattern Contexts,” in EMNLP ’02:
Proceedings of the ACL-02 conference on Empirical methods in natural
language processing, (Morristown, NJ, USA), pp. 214–221, Association
for Computational Linguistics, 2002.

[43] T. Strzalkowski and J. Wang, “A Self-learning Universal Concept Spot-
ter,” in Proceedings of the 16th conference on Computational linguistics,
(Morristown, NJ, USA), pp. 931–936, Association for Computational
Linguistics, 1996.

[44] R. Yangarber, W. Lin, and R. Grishman, “Unsupervised Learning of
Generalized Names,” in Proceedings of the 19th international confer-
ence on Computational linguistics, (Morristown, NJ, USA), pp. 1–7,
Association for Computational Linguistics, 2002.

[45] A. Ekbal, R. Haque, and S. Bandyopadhyay, “Bengali Part of Speech
Tagging using Conditional Random Field,” in Proceedings of Seventh
International Symposium on Natural Language Processing (SNLP2007),
2007.

[46] A. Ekbal and S. Bandyopadhyay, “Lexicon Development and POS
Tagging using a Tagged Bengali News Corpus,” in Proceedings of the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

397

20th International Florida AI Research Society Conference (FLAIRS-
2007), (Florida), pp. 261–263, 2007.

[47] T. W. Anderson and S. Scolve, Introduction to the Statistical Analysis
of Data. Houghton Mifflin, 1978.

[48] W. S. Gosset, “The Probable Error of a Mean,” in Biometrika, vol. 6,
pp. 1–25, 1908.

