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Connectivity Estimation from the Inverse
Coherence Matrix in a Complex Chaotic
Oscillator Network
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Abstract—We present on the method of inverse coherence matrix
for the estimation of network connectivity from multivariate time
series of a complex system. In a model system of coupled chaotic
oscillators, it is shown that the inverse coherence matrix defined asthe
inverse of cross coherence matrix is proportional to the network
connectivity. Therefore the inverse coherence matrix could be used for
the distinction between the directly connected links from indirectly
connected links in a complex network. We compare the result of
network estimation using the method of the inverse coherence matrix
with the results obtained from the coherence matrix and the partial
coherence matrix.
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|. INTRODUCTION

HYTHMIC oscillations are observed ubiquitously in many
complex biological, social, and physical systems. As the
generators of oscillation are coupled in a large complex
network, there have been many effortsto identify the underlying
network connectivity from the measured multivariate time
series. If two oscillators are connected in a complex network,
we expect strong coherence between the two oscill ators. Based
on the coherence or correlation between the time series, as a
reverse engineering, there have been several attempts to
estimate the network connectivity [1]. Recently the method of
coherence analysis has been applied for the identification of
global organization in a brain network using the
neuro-physiological data of the EEG, MEG, and fMRI [2][3].
One of the problems in this method is how to distinguish
directly connected links from indirectly connected links. If two
oscillators are driven by a common node in a network, we
expect strong coherence between the two oscillators although
there is no direct connection between them. To resolve this
problem, the Granger causality problem [4], several attemptsto
identify directly connected links have been proposed. Recently
the partial phase synchronization matrix which is defined asthe
inverse of the phase synchronization matrix normalized by the
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diagonal component of the inverse matrix was proposed for the
estimation of the network connectivity [5]. In rather small
network systems, it was shown that the partia phase
synchronization index could distinguish directly connected
links from indirectly connected links.

But, in large complex networks with hub nodes and many
peripheral nodes asshownin Fig. 1, we observed that the partial
phase synchronization index between any two nodes connected
directly is strongly attenuated in proportion to the product of
degree of two nodes [6]. Therefore identification of directly
connected links, especially the links connecting two hub nods,
becomes very ambiguous from the measurement of the partial
phase synchronization index. We observed that thisis dueto the
scaling of the normalization factor [6], the diagonal component
of the inverse phase synchronization index, which grows in
proportion to the node degree in a binary network [7]. So we
used the inverse phase synchronization index, instead of the
partial phase synchronization index, for the estimation of link
strength in a weighted complex network. It was shown that the
inverse phase synchronization index grows in proportion to the
link strength. Therefore it was possible to reconstruct the
origina network from the phase synchronization index of
coupled phase oscillators [6].

Fig. 1 A schematic diagram shows a complex network with
high-degree hub nodes and small-degree peripheral nodes. Two
chaotic oscillators on two hub nodes are not connected directly, but
could be strongly correlated as they are coupled through many indirect
connections

For nonlinear time series, in general, the method of inverse
phase synchronization matrix is not applicable as the phase
variables are not available [8]. In this paper, we show that
network estimation still becomes possible if the inverse phase
synchronization matrix is replaced by the inverse coherence
matrix of the nonlinear time series. For this, we use the coupled
chaotic oscillators on a complex network. The chaotic network
of Rosdler oscillator is defined as:
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where the summation is over al neighbors with adjacency
matrix elements A; equal to one. Here we take a=0.15, b=0.2,
¢=10, and ¢ is taken randomly from the interval [0.95, 1.05].
The white Gaussian noise &(t) with intensity D satisfies

(£®)=0, (&M®&))=Ds,5(-t). @)

In this work, we take D=1.0, and the network with N=512
nodes and Npn,s=1024 links has a scale-free degree distribution
P(k) « k7, where the degree of anode i is defined as k=%; A;

Il. METHODS

To estimate the adjacency matrix A;; of the network, we apply
the method of inverse coherence matrix. The idea is to remove
the contribution of indirect links from the measurement of
coherence between two nodes. For the computation of the
coherence matrix in this paper, we use the correlation
coefficient Rj for X; and X; of two chaotic oscillators. It is
defined as:

_ <[X; ()= < X; > ][ X;(t)- < X; > ] >, 3
DX - < X > 0P <X - < X, >0 >,

In terms of the correlation coefficient measure, the
correlation matrix R of N chaotic oscillators is constructed as:

1 F‘)1,2 Ri,N
Bt @
RN,l RN,z RN,N

Note that the correlation matrix R is a symmetric matrix.

Recently the partial coherence was proposed to compute the
genuine component of the coherence between two nodes X; and
X;, removing the contributions coming from the indirect
connections mediated by the remaining nodes X, z=1,...,N with
z#i,j. It was shown that the partial coherence computed from the
correlation coefficient is given by [10][11]

PR iz :—7”%'] ®)

RIR

We note that the matrix IR is defined as the inverse of the
correlation matrix:

IR=R™* 6)

Therefore the partial correlation matrix PR is defined as the
minus of the inverse correlation matrix normalized by the
diagonal components of the inverse correlation matrix.

I1l. RESULTS

In Fig. 2(a), the correlation matrix element for both directly
connected and indirectly connected links are plotted versus the
degree product of two nodes on the link. When the coupling
strength is bigger than the critical coupling strength K~0.1
where global network synchronization occurs, strong
enhancement of correlation coefficient between two oscillators
is observed. It is noted that the correlation coefficient between
two nodes which are not connected directly is also very strong
because of the many indirect connections connecting two nodes.
As strong overlap between the correlation coefficient of directly
connected and indirectly connected links occurs, the distinction
between two connections become very difficult from the
measurement of the link correlation coefficient [12].
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Fig. 2 The correlation (a), partial correlation (b), and inverse
correlation (c) matrix element for the directly connected (red) and
indirectly connected links (blue) are plotted versus the mean degree of
two nodes for K=0.001, 0.01, 0.10, and 1.0. The mean degree of alink
connecting two node i and j is defined as (k; k )

InFig. 2(c), the plot of the inverse correlation matrix element
for strong coupling shows that the inverse correlation matrix
elements of the directly connected links are much bigger those
of links not connected directly. Therefore the distinction
between directly connected links from indirectly connected
linksis possible by measuring theinverse correlation coefficient
matrix elements. For strong coupling strength, the inverse
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correlation coefficient is almost constant independent of the
mean degree. Considering the binary network where the link
weight is constant, the constancy of the inverse correlation
coefficient implies that the inverse correlation matrix is
proportional to the network link strength. Thisis consistent with
our previous result where the inverse phase synchronization
matrix is proportional to the link weight matrix in a coupled
phase oscillator network [6].

In Fig. 2(b), in comparison, we plot the partial correlation
matrix element is plotted. It is shown that the partia correlation
coefficient between any two oscillators connected directly is
attenuated with the mean degree. This is to be compared with
the inverse correlation matrix, where the strong dependence on
the mean degree is completely removed.

Aswe plot the diagonal component of the inverse correlation
matrix in Fig. 3, the diagonal component increases with the node
degree for strong coupling strength. Therefore the strong
attenuation of the partial correlation coefficient for a link
connecting two hub nodes is due to the scaling behavior of the
normalization factors, the diagonal component of the inverse
correlation coefficient matrix, in the definition of the partia
coherence matrix in Eg. (5). As a conseguence, the
normalization problem does not appear in the inverse
correlation matrix. Therefore the inverse correlation matrix, not
the partial correlation matrix, is used for the estimation of
network connectivity in a complex network.
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Fig. 3 Plot of the diagonal component of the inverse correlation matrix
IR;; versus the degree k; of anodei for K=0.1, 0.5, 1.0, 2.0, and 4.0

The result presented in Fig. 2 implies that the network
connectivity could be estimates using the inverse correlation
matrix. As a test, we apply the method of inverse correlation
matrix for the reconstruction of Ny direct connections used in
the Eqg. (1). For this, we assume that the links with inverse
correlation within top Ngns-th are connected, and disconnected
otherwise. Here the estimation is quantified by the number of
physical connections not identified by the method, the false
negative connections Ngy, and also by the number of indirect
connections which was misidentified as connected, the false
positive connections Nep. In Fig. 4, the fraction of false positive
connection Rep = Nep/Npnys @nd false negative connection Rey
=Nen/Nonys are plotted versus the coupling strength and mean

degree of two nodes on the link.

For the inverse correlation matrix, the estimation is very
successful, so the fraction of both false positive and negative
connection are very low when the coupling strength is quite
strong (K>K). On the other hand, for the correlation matrix, a
significant fraction of false positive connection is produced
when the degree product of two nodesis quite large. That is, the
links connecting hub nodes are more often misclassified as
connected, as the synchronization in a complex network is
dominated by hub nodes with higher degree. Instead, the
fraction of false negative connection is high when the mean
degree of a link connecting peripheral nodes is small. For the
partial correlation matrix, the fraction of false negative
connection is significant when the mean degree is quite large.
This is due to the strong attenuation effect introduced by the
normalization of the partial correlation matrix in Eqg. (5).

False Positive False Negative
Error Error

w07 107 10 10 10 i 0 0 10 10

K K

Fig. 4 Plots show the fractions of false positive (left) and fal se negative

(right) estimation versus the coupling strength and the mean degree of

two nodes using the correlation (top), partial correlation (middle), and
inverse correlation (bottom) matrix

IV. DISCUSSION AND SUMMARY

Recently we used the inverse phase synchronization matrix
for the estimation of network connectivity in a coupled phase
oscillators [6]. It was based on the observation that the inverse
phase synchronization matrix element is proportiona to the
corresponding the link weight [6][7].

Here we have shown that the method of the inverse phase
synchronization matrix could be extended to the case of couple
chaotic oscillators where the phase variable is not defined
properly. We have shown that the inverse correlation matrix in a
complex chaotic oscillator network is proportional to the
network connectivity, so it could distinguish the directly
connected links from the indirectly connected links. On the
other hand, the partial correlation matrix suffers a serious
normalization problem: the partial correlation matrix element
connecting two hub nodes is strongly attenuated. Thisis due to
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the scaling behavior of the diagonal component of the inverse Vi =<[XiO)-<X; > J[X;(O-< X; > ] >,
correlation matrix which was used as the normalization factors Fo =<[X/)-< X/ >][X|t)-<X| >]>, @
in Eq. (5). Because of the normalization problem, the inverse X'() = X, (t) - X(1),
correlation matrix, not the partial correlation matrix, should be 7' 1 'N
used for the estimation of network connectivity. X(t) = Nz X, (t)
i=1

False Positive False Negative
Error

The plots of the fraction of false positive and false negative
connection obtained from the inverse covariance and inverse
co-fluctuation in Fig. 5 and 6, respectively, show that the
method of inverse coherence matrix is also successful if the
inverse covariance or the inverse co-fluctuation matrix is used.
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inverse covariance (bottom) matrix

Fig. 6 Plots show the fractions of fal se positive (left) and false negative
(right) estimation versus the coupling strength and the mean degree of
two nodes using the co-fluctuation (top), partia co-fluctuation
(middle), and inverse co-fluctuation (bottom) matrix

Here the method of inverse coherence matrix was developed
using the correlation coefficient. But the proposed method
could be also extended to other measures of coherence, such as,
the covariance V, and co-fluctuation F [7] defined as follows:
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