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Abstract—Surface metrology with image processing is a 

challenging task having wide applications in industry. Surface 
roughness can be evaluated using texture classification approach. 
Important aspect here is appropriate selection of features that 
characterize the surface. We propose an effective combination of 
features for multi-scale and multi-directional analysis of engineering 
surfaces. The features include standard deviation, kurtosis and the 
Canny edge detector. We apply the method by analyzing the surfaces 
with discrete wavelet transform (DWT) and dual-tree complex 
wavelet transform (DT-CWT). We used Canberra distance metric for 
similarity comparison between the surface classes. Our database 
includes the surface textures manufactured by three machining 
processes namely Milling, Casting and Shaping. The comparative 
study shows that DT-CWT outperforms DWT giving correct 
classification performance of 91.27% with Canberra distance metric.  
 

Keywords—Dual-tree complex wavelet transform, surface 
metrology, surface roughness, texture classification.  

I. INTRODUCTION 
HE need for quality control and performance testing has 
become an integral part of the production procedure. 

Surface finish plays an important role in several engineering 
applications. The study of surface texture is commonly 
referred to as Surface Metrology. It involves the measurement 
and characterization of surfaces and their relationship to the 
manufacturing process that generated the part and functional 
performance measures of the component.  

A typical engineering surface consists of a range of spatial 
wavelengths with different amplitudes. The high frequency or 
short wavelength components are referred to as roughness, the 
medium frequencies as waviness and low frequency 
components as form [1]. Different aspects of the 
manufacturing process generate different wavelength regimes 
and these affect the function of the manufactured part 
differently. By separating surface profile into various bands, it 
is possible to map the frequency spectrum of each band to the 
manufacturing process that generated it or to the functional 
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aspects of the part. Thus filtering of surface profiles serves as 
a useful tool for process control and functional correlation. As 
current manufacturing trends are towards higher performance 
and tighter tolerances, there is a need for close monitoring of 
the process. Thus filtering of profiles to obtain finer 
bandwidths that better reflect the variations in the process or 
the intended function of the component is required. Use of 
wavelets for texture analysis is advantageous but real discrete 
wavelet transform (DWT) has two discouraging aspects: lack 
of shift invariance and poor directional selectivity. It is found 
that both the problems can be solved effectively by the 
complex wavelet transform (CWT) by introducing limited 
redundancy into the transform. In CWT, filters have complex 
coefficients and generate complex output samples. However, a 
further problem arises here because perfect reconstruction 
becomes difficult to achieve for complex wavelet 
decomposition beyond level 1, when the input to each level 
becomes complex. To overcome this problem, Kingsbury [2], 
[3] has proposed dual-tree complex wavelet transform (DT-
CWT) which allows perfect reconstruction while still 
providing the other advantages of complex wavelets. Further 
after studying the metrological characteristics [4], it has been 
stated that DT-CWT filter is very suitable for the separation 
and extraction of the frequency components such has surface 
roughness, waviness and form. In many attempts to 
characterize and categorize surfaces with wavelet transform 
the features like energy, standard deviation, weighted standard 
deviation were used. The goal of feature extraction is to 
improve the effectiveness and efficiency of analysis and 
classification. 

In this paper, we propose a combination of three texture 
descriptors namely Standard Deviation, Kurtosis and Canny 
edge detector. DWT and DT-CWT are used as the tools for 
analysis. Euclidean and Canberra distance metrics are used for 
similarity estimation.  

II. THE DUAL-TREE COMPLEX WAVELET TRANSFORM 
In DT-CWT, to achieve perfect reconstruction and good 

frequency characteristics, two parallel fully decimated trees 
with real filter coefficients are used [2]. The 1-D DT-CWT 
decomposes a signal )(xf  in terms of a complex shifted and 

dilated mother wavelet )(xψ  and scaling function ).(xφ  
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where ljs ,0
 is scaling coefficient and  ljc ,  is complex 

wavelet coefficient with 
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φ and lj ,ψ complex: 
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with two times redundancy. The real and imaginary parts of 
the DT-CWT are computed using separate filter bank 
structures with wavelet filters 0h  and 1h  for the real part and 

0g , 1g for the imaginary part.  
The DT-CWT is implemented using separable transforms 

and by combining subband signals appropriately. Specifically, 
the 1-D DT-CWT is implemented using two filter banks in 
parallel operating on the same data as illustrated in Fig. 1. 
Thus far, the dual tree does not appear to be a complex 
transform at all. However, when the outputs from the two 
trees in Fig. 1 are interpreted as the real and imaginary parts 
of complex coefficients, the transform effectively becomes 
complex. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In 2-D, the CWT decomposes an image ),( yxf using 

dilation and translations of a complex scaling function and six 
complex wavelet functions 
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Impulse response of these six wavelets associated with 2-D 
complex wavelet transform is illustrated in Fig. 2 as a gray-
scale image. These six wavelet subbands of the 2-D DT-CWT 
are strongly oriented in { }75,45,15,75,45,15 −−−+++=θ  

direction and captures image information in that direction. 
Frequency-domain partition of complex wavelet transform 

resulting from two levels decomposition is shown in Fig. 3. 
The complex wavelet transform, shown in Fig. 3, can 
discriminate between features at positive and negative 
frequencies. Hence, there are six subbands capturing features 
along lines at angles of { }75,45,15,75,45,15 −−−+++ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

III. THE PROPOSED SYSTEM 
The proposed system has four major stages. 

A. Image Acquisition 
The first stage of the system is that of image acquisition. 

We used Nikon D70S digital camera with 105 mm F 2.8 
macro lens to acquire images of engineered surfaces. Fig. 4 
shows the experimental set-up with camera and the light 
source system to acquire the digital images on the interfaced 
computer system. 

 

 
Fig. 4 Experimental set-up for Image Acquision 

 

B. Feature Extraction 
Feature extraction is concerned with the quantification of 

texture characteristics in terms of a collection of descriptors or 
quantitative feature measurements, often referred to as a 

 
Fig. 1 The 1-D dual-tree complex wavelet transform  

 Fig. 2 Impulse response of six wavelet filters of complex 
transform 

 
Fig. 3 Frequency domain partition in complex wavelet transform 

resulting from two level decomposition 
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feature vector. The choice of appropriate descriptive 
parameters will radically influence the reliability and 
effectiveness of subsequent feature qualification through 
classification. 

Algorithm for texture analysis and feature extraction with 
DT-CWT: 
1) Subject the gray scale texture image to an L-level dual-

tree complex wavelet transform decomposition. We use 
the Near-symmetric 13,19 tap filters as the level 1 filter 
and Q-shift 14,14 tap filters for other level filtering, 
which are described in Kingsbury’s paper [3]. 

2) At each level (i=1, 2, …L), there are six sub-images at 
orientations 75,45,15,75,45,15 −−−+++  for 
real part of complex wavelet as well as six sub-images at 
similar orientations for complex part of the wavelet. For 
each sub-image, compute the following three features. 

i. Edge descriptor 
Using Canny edge detection method [5], find out 
the edges in the sub-image. If edge is found 
represent the pixel as 1 and compute total number 
of such pixels containing edges in the image. 

ii. Standard deviation 
The standard deviation of the image gives a 
measure of the amount of detail in that subband. 

iii. Kurtosis 
It measures the peakedness or flatness of the 
distribution and is given by 
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where μ  is the sample mean of the N pixels 
within the image and  σ  is standard deviation 

3) Compute the three features for original image also.  
Thus the length of the feature vector is 3 features * [(L * 
12 subimages at each level) + original image]. 

C. Training 
We use supervised classification method. So we need to 

define the texture classes first. We used three texture 
databases namely Milling, Casting and Shaping. Milling 
database has six classes, Casting has nine classes and Shaping 
has eight classes. In the training phase, for each texture class 
twenty samples are selected randomly and using proposed 
algorithm feature set is formed. Average of these features for 
each texture class is stored in the respective texture feature 
database. This feature database is used for texture 
classification.  

D. Texture Classification 
In the texture classification phase, the texture feature set, 

for the test sample X is computed using the proposed 
algorithm. The feature database of texture classes k prepared 
during training phase is used to compare the features of test 
image.  

The distance metric can be termed as similarity measure. 

The distance between the texture classes stored in the database 
and the test image is computed and used for classification. The 
test image is more similar to the database class if the distance 
is smaller. If N is the number of features in feature set f, 

)(xf j  is the jth texture feature of the test sample X and 

)(kf j  is the jth texture feature of kth texture class in the 

database, then the Euclidean and Canberra distance metrics 
are described as below: 

Euclidean or Minkowsky L2 metric 
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In Canberra distance metric, the individual feature 
components are normalized before finding the distance 
between the two images. 

IV. EXPERIMENTAL RESULTS 
We have carried out the experiments on three texture 

databases. The databases are prepared by taking images of the 
standard (master) roughness comparison specimen 
manufactured by three machining processes namely Milling, 
Casting and Shaping. (Only flat i.e. non-curved surfaces are 
used.) We used the image acquisition system as shown in Fig. 
4 to take the images. Milling database has six classes, Casting 
database has nine classes whereas Shaping database has eight 
classes. One image from each class in the database can be 
seen in Fig. 5~7. Label associated with an image indicates 
surface roughness value. 

For each class we are having thirty gray scale images. Thus 
for milling 180 images, Casting 270 images and Shaping 240 
images of size 256 X 256 pixel are used. Twenty from each 
class are used for training purpose whereas 690 images are 
tested for classification. Correct classification of an image 
ultimately describes the surface roughness value. 

We implemented the approach with DWT and DT-CWT as 
analysis tools. The classification performance is the rate of 
correct classification of surface textures. Euclidean and 
Canberra distance measures are used. The comparative chart is 
shown in Fig. 8. It is found that Canberra distance 
outperforms Euclidean distance. 

A. Implementation with DT-CWT 
As per the proposed algorithm a 4-level decomposition 

scheme is used. Thus for each class feature set includes 
3*[(4*12)+1]=147 features. We have tested all the 
combinations of three texture descriptors and compared the 
performances. The classification results using Canberra 
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distance metric with various combinations of texture 
descriptors are summarized in Table I.  

It is found that the feature set comprising 147 features 
having the Canny edge descriptor, standard deviation and 

kurtosis features is robust and gives the best performance of 
95.56%, 84.07% and 94.17% on Milling, Casting and Shaping 
databases respectively resulting in the overall  performance of 
correct classification as 91.27%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 Milling Database 

 
Fig. 7 Shaping Database 

 
Fig. 6 Casting Database 

TABLE I 
CLASSIFICATION PERFORMANCE  - DT-CWT WITH DIFFERENT TEXTURE  DESCRIPTORS 

Texture Descriptor [Number of Features] TD   
 
 
                       

Class CED [49] SD [49] 
Kurtosis 

[49] 
CED + SD 

[98] 

CED + 
Kurtosis 

[98] 

SD + 
Kurtosis 

[98] 

CED + SD 
+ Kurtosis 

[147] 

Mill 1.5s 80.00 70.00 63.33 83.33 73.33 80.00 86.67 

Mill  3s 90.00 76.67 83.33 86.67 86.67 90.00 96.67 

Mill 6s 100.00 83.33 100.00 93.33 100.00 96.67 100.00 

Mill 12s 96.67 100.00 63.33 100.00 83.33 96.67 96.67 

Mill 25s 96.67 90.00 96.67 100.00 100.00 100.00 100.00 

Mill 50s 80.00 93.33 60.00 96.67 83.33 90.00 93.33 

Milling DB 90.56 85.56 77.78 93.33 87.78 92.22 95.56 
Cast 6s 73.33 63.33 80.00 66.67 90.00 66.67 66.67 

Cast 12s 76.67 93.33 100.00 93.33 100.00 100.00 100.00 

Cast 25s 70.00 76.67 90.00 80.00 96.67 80.00 83.33 

Cast 35s 66.67 50.00 73.33 66.67 83.33 70.00 73.33 

Cast 50s 83.33 76.67 80.00 80.00 83.33 86.67 90.00 

Cast 70s 60.00 83.33 70.00 86.67 73.33 86.67 86.67 

Cast 100s 66.67 56.67 66.67 63.33 66.67 83.33 83.33 

Cast 280s 80.00 76.67 63.33 80.00 70.00 83.33 83.33 

Cast 400s 76.67 80.00 76.67 96.67 80.00 90.00 90.00 

Casting DB 72.59 72.96 77.78 79.26 82.59 82.96 84.07 
Shape 0.8s 70.00 80.00 80.00 80.00 86.67 80.00 83.33 

Shape 1.5s 53.33 83.33 86.67 90.00 93.33 90.00 90.00 

Shape 3s 56.67 73.33 86.67 76.67 93.33 80.00 80.00 

Shape 6s 70.00 100.00 46.67 93.33 53.33 100.00 100.00 

Shape 12s 66.67 100.00 80.00 100.00 83.33 100.00 100.00 

Shape 25s 80.00 100.00 100.00 100.00 100.00 100.00 100.00 

Shape 50s 90.00 100.00 100.00 100.00 100.00 100.00 100.00 

Shape 100s 86.67 100.00 100.00 100.00 100.00 100.00 100.00 

Shaping DB 71.67 92.08 85.00 92.50 88.75 93.75 94.17 
OVERALL 
PERFORMANCE 78.27 83.53 80.19 88.36 86.37 89.65 91.27 
        

CED = Canny Edge Detector, SD = Standard Deviation
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B. Implementation with DWT 
We carried out similar experiments with DWT [6] as an 

analysis tool and the same texture descriptors. We carried out 
4-level DWT decomposition of original image and four 
counter parts of it namely the images rotated by 900, 1800, 
2700 and the complemented image. In our previous 
experiments [7] it has been found that Battle-Lemarie wavelet 
bases are good for surface metrology applications; so we use 
the same as the mother wavelet. We computed the proposed 
features from each sub-image. Also we computed SD, kurtosis 
and edge descriptor of original image. Thus the length of the 
feature vector is 5 images * [3 texture descriptors * (4 Levels 
* 3 subimages + 1)] + 3 features of original image that is total 
198 features. We achieved the correct classification 
performance of 83.24% with Canberra distance metric over all 
three databases. The comparative results are depicted in Fig. 
9. 

V. CONCLUSION 
It is found that in this application of surface metrology DT-

CWT out performs DWT showing the improvement in the 
correct rate of classification. DT-CWT extracts information in 
six directions where as DWT extracts information in 
horizontal, vertical and diagonal orientations. The DWT 
performance with only original image having 42 features was 
73.22%. We tried to improve the DWT approach by using 
rotated and complemented images and achieved the 
performance of 83.24%.  

In case of DT-CWT, when CED, SD and Kurtosis are used 
separately as texture descriptors we got the performances as 
78.27%, 83.53% and 80.19% respectively. Our experiments 
suggest that the combination of these three descriptors is 
useful to categorize surfaces with their roughness values with 
the performance of 91.27%. 

Canny edge detector is an effective texture descriptor in our 
application. In a specific texture database all the textures are 
manufactured by the same machining process with differed 
dimension of machine tool used. Thus the number of 
primitives or texture elements in a specified area of the texture 

differs according to the texture class. Hence the number of 
pixels containing edges varies according to the texture pattern. 
Thus it proves to be a very good texture descriptor in this 
application. 

This method of feature extraction and surface texture 
classification will be useful for surface roughness evaluation 
in on line product quality monitoring. 

It is important to note that the rate of correct classification 
differs with respect to the database; that is the machining 
process used to manufacture the surface. This algorithm is 
tested with only three databases namely milling, casting and 
shaping. These images are the surface textures manufactured 
by respective machining processes. The work can be further 
extended to test the performance for the textures manufactured 
by other machining processes namely grinding, gritblasting, 
hand filing, linishing, shot blasting etc. Our future study will 
also undertake the work regarding computation of efficiency 
of these approaches. 
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