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Abstract—Nonlinear finite element method with eight noded 
isoparametric quadrilateral element is used for prediction of load-
deformation behavior including bearing capacity of foundations. 
Modified generalized plasticity model with non-associated flow rule 
is applied for analysis of soil-footing system. Also Von Mises and 
Tresca criterions are used for simulation of soil behavior. Modified 
generalized plasticity model is able to simulate load-deformation 
including softening behavior. Localization phenomena are considered 
by different meshes. Localization phenomena have not been seen in 
the examples. Predictions by modified generalized plasticity model 
show good agreement with laboratory data and theoretical prediction 
in comparison the other models.  
 

Keywords—Localization phenomena, Generalized plasticity, 
Non-associated Flow Rule 

 
I. INTRODUCTION 

HE main objective is to implement available model in 
finite element procedure for load-deformation behavior 

for geotechnical problems. The parameters for model for sand 
are derived from laboratories triaxial stress-strain curves under 
various confining pressures. Then the model is validated at 
element level by comparison prediction with laboratories data. 
For practical problems, the models are validated with respect 
to load-deformation behavior of footing on sand. Footing 
problem is one of the most highly studied areas in 
geotechnical engineering.  

In the past, constitutive models to analyze geotechnical 
problems by finite element method were usually based on von 
Mises and Drucker-Prager criterion (e.g.,[1]-[5]). Although 
Drucker-Prager and Von Mises model are commonly used, 
they may not provide sufficient generality in terms of stress 
path dependency and coupling of volumetric and shear 
response. Desai, C.S. et al in [3] analyzed footing on artificial 
material by use of Drucker-Prager, Critical state and modified 
cap model. They observed that modified cap model provide 
better results. Faruque and Desai [6] analyzed footing 
problems as three dimensional by use of a generalized 
constitutive model. Altaee, A. et al [7] analyzed footing on 
artificial material by use of bounding surface model. They 
compared obtained results of bounding surface plasticity 
model with Drucker-Prager, Critical state and modified cap 
model. They showed results of bounding surface were better 
than the other models.  
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Lee and Salgado [8] estimated the bearing capacity of 

circular footings on sands based on cone penetration test. They 
used shear elastic modulus in the analysis as a hardening 
function of second invariant of deviatoric stress to obtain load-
deformation curves. In order to describe failure and post-
failure soil response, the Drucker-Prager failure criterion was 
adopted by Lee and Salgado. They obtained load-settlement 
curves from the finite element analyses for different footing 
sizes and relative densities (Dr =30, 50, 70 and 90%). The 
predicted load-settlement curves did not show a limit load. 
Therefore, they adopted the load at settlement equal to 20% of 
footing diameter as a limiting bearing capacity of the footing. 
It was found that both the relative density Dr and the lateral 
earth pressure ratio K0 are important factors affecting the load-
deformation curves, and the effect of K0 was greater for lower 
Dr values. The allowable load at 25 mm settlement was also 
studied.   

In this paper, modified generalized plasticity model is 
implemented to analyze a footing on sand. The model is able 
to simulate softening behavior, and prediction of load-
deformation behavior of footings comparing with laboratory 
data.  
 

II. FORMULATION 
For analysis of soil-footing system, generalized plasticity 

theory is applied by using finite element program in SSINA2D 
[9] (Soil Structure Interaction Nonlinear Analysis of two 
dimensional). The formulations used are as follow:  

Zienkiewicz, O.C. et al [10] applied bounding surface 
theory as generalized plasticity theory for analysis of static 
and transient soil loading. They used critical state yield 
surface and modified plastic modulus. They defined plastic 
modulus as product of a function of derivative of yield surface 
respect to plastic strain and a nonlinear function of distance 
between current yield surface and bounding surface in 
bounding surface theory. The same as method for analysis of 
sand in [11] was used. Chen and Baladi [12] expressed stress-
strain relation in terms of the hydrostatic and deviatoric 
components of strain and stress. Therefore, these relations can 
be used simply if there are components of flow rule vector and 
plasticity modulus, then Pastor, M. et al. [13] proposed plastic 
modulus and flow rule dependent on dilatancy of soil without 
using special yield and potential surfaces [13]. They defined 
components of the flow rule in the directions of volumetric 
and shear deformations. Liu, H. et al [14, 15] proposed some 
changes in plastic modulus. Here, the relations are 
reformulated as general and unit vector normal to yield and 
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potential surface are determined from yield and potential 
surface. The flow rule was defined in direction of volumetric 
(nv) and shear strain (ns) as [13]: 
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Where d is dilation in soil as: 
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Mg and Mf are as the slopes defining zero dilatancy in place 
of M, Figure 1, and α is material parameter. Yield and 
potential surfaces are found from Eq. (1) by integration as 
[13]:  
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These surfaces are shown in Figure 1 schematically. where 

1Ip =  and 23Jq = . 1I  and 2J  are first invariant of the 
stress tensor and second invariant of deviatoric stress tensor, 
respectively.  
 

 
Fig. 1 Schematic yield and potential surfaces 

 
The unit vector normal to yield (f) and potential surface (g) 
can be defined as 

2
1

2
1

:

:

⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂

∂
∂

=

⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂

∂
∂

=

σσ

σ

σσ

σ

gg

g

n

ff

f

n

gL

                                                                  (4) 

The derivatives in Eq. (4) can be written in as 
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J3 is third invariant of deviatoric stress tensor. Mf and Mg 
depend on Lode’s angle [13] but in here, they are assumed as a 
constant, therefore derivative of yield surface respect to J3, C3, 
is zero.  
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If Mg is substituted instead Mf, coefficient C1 relates to the 
potential surface. Increment of stress can be determined in 
finite element method as follow [13]: 
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Where H for loading or reloading: 
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where ξ  is the accumulated deviatoric plastic strain and De 

is elastic constitutive matrix. 0β  and 1β  are material 
parameters. The expression of H for unloading [13]:  
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where Uη  is η  for unloading, 0UH  and Uγ   are material 
parameters. Then, increment of stress can be found by using 
Eq. (4) to Eq.(9). It must be noted sign of volumetric 
component of vector perpendicular on potential surface in 
unloading procedure was altered in accordance to [13] as a 
constraint, but in present work, in accordance to Eq. (5) and 
Eq. (6), sign of vector is not changed.  
 

III. NUMERICAL SIMULATION OF FOOTING LOAD 
 

The numerical simulation of footing load response and 
bearing capacity are considered for different sand base on 
obtained stress-strain curve of triaxial test. In first step, it is 
analyzed for a footing on artificial soil and the results are 
compared with observed results in laboratory. In next step, 
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load-displacement and bearing capacity are determined for a 
footing on Tehran and Houston sands for different the situ 
stresses, then a formula is proposed to determine bearing 
capacity of footing based on the situ stress. The analyses are 
also implemented by PLAXIS 7.2 which is used for analysis 
of geotechnical problems. 
 

A. Footing on artificial sand 
 
The finite element program is used to analyze the behavior 

of a model-scale footing. The details of the model-scale 
footing test were reported in [7]. A rigid rectangular box of 
size 114×203×876 mm is used as a container. The footing is 
76mm wide, 19 mm thick, and 114mm long as shown in 
Figure 2, is placed at the center of the box. Vertical load is 
applied on the footing in increments at the center of footing. 
Measurements are taken for vertical displacements 
corresponding to each load increment. 
 

 
 

Model parameters: In this study, ten model parameters for 
generalized plasticity model are required to specify the 
material behavior under generalized three dimensional loading 
conditions. The model parameters are determined based on 
conventional triaxial compression test reported in [7] for 
confining pressure, 3σ , equal to 69 kPa. Obtained results of 
calibration are compared with observed results in Figure 3 and 
Table 1 shows the parameters of generalized plasticity model. 
 

TABLE  I THE PARAMETERS FOR GENERALIZED PLASTICITY MODEL  
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Fig. 3 Comparison predictions and laboratories data for artificial soil 

 
Initial in situ vertical stresses in the soil mass are calculated 

on the basis of the soil density ( 2000 kg/m3 ). Horizontal 
stresses are taken equal to vertical stress (K0=1) as reported in 
[7], where K0 is the coefficient of earth pressure at rest. The 
model scale footing is analyzed with the plain strain 
idealization. Because of the symmetry, only one half of the 
soil-footing system is considered. Figure 4 shows the finite 
element mesh used in the analysis, it consists of 253 eight 
nodded isoparametric quadrilateral elements, whiles 120 
elements was used in [7].  
 

 
 

Fig. 4 Finite element mesh for the footing 
 

Finite element results: The observed load-displacement 
relation of the model-scale footing and the results of the finite 
element analysis in the present study are Compared in Figure 
5. The Figure also includes the results of reported finite 
element analyses in [7] give same deals of the models used 
e.g. Critical state, Bounding surface, Drucker-Prager, 
Modified cap model. Comparisons show that the generalized 
plasticity model is able to simulate the behavior of the footing-
soil system. As illustrated in Figure 5, the best result is 
obtained from generalized plasticity model. Also Drucker-
Prager gives larger limit load and small settlement before limit 
load and critical state shows stiffer behavior than modified cap 
model.  

Fig. 2 Layout of model-scale footing ([7]), 
dimension is mm 

kPa1033 =σ

kPa693 =σ
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Fig. 5. Comparison of different load-displacement curve  

 
B. Footing on Tehran sand 
 
Two cases are considered for Tehran sand. First, strip 

footing with boundary conditions in Figure 6 is analyzed 
under concentrated load. This example analyzed by [16] for 
different material. 

 

  
Fig. 6 Boundary conditions and failure line for lower bound 

 
 Limit load of footing is obtained by use of Lower bound 

and Upper bound theorem. Obtained limit loads of Upper 
bound and Lower bound theorem are the same for this 
boundary condition. Therefore, appropriate is analytical 
solution of the example to be compared with numerical 
solution by use of elastic-perfectly plastic models like Von 
Mises and Tresca model at first and then comparison with 
generalized plasticity model in order to considering softening 
effect and also failure lines for different models are 
considered. Two different uniform meshes are used for 
considering of localization phenomena. The mesh a and b are 
included 16 and 100 elements, respectively.   

Lower bound theorem for rigid footing is considered. Limit 
load in according to Figure 6 is:  
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yσ  is yield stress, then  
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Numerical solution for different models:   

Table 2 shows calibrated parameters for generalized 
plasticity model. Results of the model by use of Eq. (7) for 
calibrated parameters in Table 2 are compared with laboratory 
data [17] and stress-strain curve in accordance to Von-Mises 
and Tresca models in Figure 7.  

 
TABLE II THE PARAMETERS FOR GENERALIZED PLASTICITY MODEL  

P0 
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Fig. 7 Comparison of the results for confining pressure equal to 1 

kg/cm2  
 

Elasticity modulus and Poisson ratio are the same as for all 
of the models and yield stress for Von-Mises and Tresca is 2.6 
kg/cm2 in accordance to Figure 7. Therefore, limit load, Eq. 
(10), is equal to 1501.11 kg/cm by use of upper or lower 
bound theorem. Figure 8 shows obtained results for different 
models by use of the program SSINA2D.  
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Fig. 8 Load-displacement curve for different models 
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Comparison limit load for mesh a and b by Von-Mises 
model with elastic-perfectly plastic behavior show accuracy of 
results in related to fine and coarse mesh. Obtained limit load 
of Tresca model and mesh b has good agreement with 
analytical solution. Therefore, mesh b can be accepted as an 
appropriation mesh to get exact limit load. Obtained load-
displacement curve of generalized plasticity shows effect of 
softening behavior and also slope of softening branch for mesh 
a and b are the same. Therefore, localization phenomena have 
not been seen for different meshes. Amount of limit load was 
obtained equal to 1200 kg/cm while limit load by upper and 
lower bound was 1501.11 kg/cm. Figure 9 shows variation of 
the accumulated deviatoric plastic strain and the deformation 
for last step analysis of mesh b.  

 

 
(a) 

 
(b) 

 
Fig. 9 (a) Accumulated deviatoric plastic strain and (b) the 

deformation of the system 
 

Failure line is clear in Figure 9. This failure area is in 
accordance to failure line of Figure 6 for upper or lower bound 
theorem. In other words, there is only one failure line 
according to capability of footing movement. Therefore, 
obtained results in present work expresses ability of the model 
and written program. Obtained load-displacement curve of 
Tresca criterion in Figure 8 has good agreement with 

analytical solution for mesh b. Therefore, variation of plastic 
strain in direction of x for Tresca criterion and generalized 
plasticity are compared in Figure 10.  
 

 
(a) Generalized plasticity model 

 

 
(b) Tresca criterion  

 
Fig. 10 Variation of plastic strain in direction of x, for (a) modified 

Generalized plasticity and (b) Tresca Criterion  
 

Failure form for Tresca criterion and generalized plasticity are 
like y and oblique line, respectively. The failure form by 
Tresca criterion shows a stiff behavior which is clear in Figure 
8 for obtained load-displacement curve while obtained failure 
line by generalized plasticity expresses a true behavior in 
accordance to ability of movement of system.  
 

IV. CONCLUSION 
Nonlinear finite element method with eight node 

isoparametric quadrilateral element is used for prediction of 
load-deformation behavior including bearing capacity of 
foundations. Generalized plasticity model with non-associated 
flow rule is used to characterize the constitutive behavior of 
soils. The model is able to simulate load-deformation 
including softening behavior. Localization phenomena have 
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not been seen in the examples. Also Generalized plasticity 
model is in accordance with theoretical prediction and 
laboratory data in comparison with Tresca and Von Mises 
criterions.  
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