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Momentum and heat transfer in the flow of a
viscoelastic fluid past a porous flat plate

subject to suction or blowing
Motahar Reza and Anadi Sankar Gupta

Abstract—An analysis is made of the flow of an incompressible
viscoelastic fluid (of small memory) over a porous plate subject to
suction or blowing. It is found that velocity at a point increases with
increase in the elasticity in the fluid. It is also shown that wall shear
stress depends only on suction and is also independent of the material
of fluids. No steady solution for velocity distribution exists when there
is blowing at the plate. Temperature distribution in the boundary layer
is determined and it is found that temperature at a point decreases
with increase in the elasticity in the fluid.

Keywords—Viscoelastic fluid, Flow past a porous plate, Heat
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I. INTRODUCTION

IT is known that liquids respond like elastic solids to

impulses, which are very rapid compared to the time, it

takes for the molecular order associated with short range forces

in the liquid to relax. After this, all liquids behave like viscous

fluids with signals propagating by diffusion rather than by

waves. For liquids with small molecules this time of relaxation

is estimated as 10−13 or 10−10 seconds depending on the

fluids. Waves associated with such liquids move with speeds

of 105cm/s, or even faster [1]. However, there are liquids,

which are known to have much longer times of relaxation.

Polymers mixed in Newtonian solvents, polymer melts like

molten plastics or high viscosity silicone oils are examples.

These fluids are known as viscoelastic fluids. The longest times

of relaxation for these fluids are of practical interest; times we

can read on clock, of the order of milliseconds to minutes.

Such fluids have become important industrially. Specifically

in polymer processing applications as well as in chemical

industry, one deals with flow of viscoelastic fluids. Kaloni[2]

investigated the fluctuating flow of a viscoelastic fluid past

an infinite porous plate subject to inform suction. The steady

flow of an incompressible second grade fluid past an infinite

porous plate subject to suction or blowing was investigated

by Rajagopal and Gupta[3]. This fluid shows normal stress

differences in shear flow and akin to a viscoelastic fluid. To

the best of our knowledge, heat transfer in the flow of a

viscoelastic fluid past a porous surface subject to suction or

blowing has not been studied in the literature, although this

problem is important in polymer processing applications.

In this paper we investigate momentum and heat transfer

in the steady flow of a viscoelastic fluid (obeying Walters’
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liquid B
′

model[4]) past an infinite porous flat plate subject

to suction or blowing. It is shown that steady solution for

velocity distribution exists only for suction (and not blowing)

at the plate. Steady temperature distribution in the boundary

layer is found in the case when the porous plate subject to

suction is held at constant temperature.

The motivation and the implication of this study is to

explore the influence of suction or blowing on the control

of separation as well as heat transfer in flow of viscoelastic

fluids.
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Fig. 1. A sketch of the physical problem.

II. FLOW ANALYSIS

Consider the steady flow of an incompressible viscoelastic

fluid past an infinite porous flat plate subject to uniform suction

or blowing. The flow configuration is shown in Fig. 1. The

constitutive equation for an incompressible viscoelastic fluid

obeying Walters’ liquid B
′

model[4] is

Sik = −p gik + S
′
ik (1)

S
′
ik = 2

∫ t

−∞
Ψ(t− t

′
)
∂xi

∂x′m .
∂xk

∂x′r .e
(1)mr(x

′
, t

′
)dt

′
,(2)

where covariant suffixes are written below, contravariant suf-

fixes above, and the usual summation convention for repeated

suffixes is assumed. Further

Ψ(t− t
′
) =

∫ ∞

0

N(τ)
τ

e−(t−t
′
)/τdτ (3)
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where N(τ) is the distribution function of relaxation times

τ . In these equations, Sik is the stress tensor, p an arbitrary

isotropic pressure, gik is the metric tensor of a convected

coordinate system xi, x
′i

(
= x

′i(x, t, t
′
)
)

the position at the

time t
′

of the element that is instantaneously at the point xi

at time t, and e
(i)
jk is the rate-of-strain tensor.

In the present paper, we study the flow of liquid B
′

using

boundary layer approximations. Since boundary layer flows

are most likely to develop in viscoelastic fluid that are mobile

and not highly elastic, we restrict the discussion to liquids with

short memories (i.e. small relaxation times). The constitute

equation (2) can then be written in the simplified form as

S
′ik = 2μe(1)ik − 2k0

D

Dt
e(1)ik (4)

where μ
(
=

∫ ∞
0 N(τ)dτ

)
is the limiting viscosity at small

rates of shear, k0 =
∫ ∞
0 τN(τ)dτ , and terms involving∫ ∞

0
τnN(τ)dτ (n ≥ 2) have been neglected. Further D/Dt

denotes convected differentiation of a tensor quantity in rela-

tion to the material in motion as defined by Oldroyd [5]. For

a contravariant tensor bik,

Dbik

Dt
=
∂bik

∂t
+ vm ∂bik

∂xm
− bim

∂vk

∂xm
− bmk ∂v

i

∂xm
, (5)

where vj is the velocity vector. In (4), k0 is the elastic constant

of the fluid and is a measure of the relaxation time of the fluid.

We take x-axis along the plate, y-axis being normal to it.

Since the plate is infinite, in the steady state the physical

variables except pressure depend on y only. We seek a velocity

field of the form

u = v(1) = u(y), v = v(2) = v(y), v(3) = 0. (6)

The equation of continuity then gives

v = −v0, (7)

where v0 is the constant velocity at the plate with v0 > 0 for

suction and v0 < 0 for blowing. Using (1), (4), (5), (6) and

(7), the steady boundary layer equations for the flow are given

by

−v0 du
dy

= −1
ρ

∂p

∂x
+
k0

ρ
v0
d3u

dy3
+
μ

ρ

d2u

dy2
, (8)

∂p

∂y
= O(δ), (9)

where p and ρ denote pressure and density, respectively

and δ stands for the boundary layer thickness. In driving

these equations, it is tacitly assumed that in addition to the

usual boundary layer approximations, the viscoelastic and the

inertial terms in the equations of motion are of the same order

of magnitude. Hence it is necessary that both μ
ρ and k0

ρ are of

O(δ2).
The boundary conditions are

u(0) = 0, u→ U as y → ∞. (10)

Equation (9) shows that p is a function of x only since the

boundary layer thickness is very small. Then equation (8)

shows that ∂p
∂x is at most a constant. Since far away from

the plate the free stream velocity is uniform, it follows from

(8) that ∂p
∂x = 0. Hence p is constant throughout the flow.

Introducing the dimensionless variables

η =
ρUy

μ
, u(η) =

u(y)
U

, (11)

we obtain from (8) with p = constant

k1
d3u

dη3
+

1
s

d2u

dη2
+
du

dη
= 0, (12)

where the dimensionless elastic parameter k1 and the dimen-

sionless suction parameter s are given by

k1 =
ρk0U

2

μ2
, s =

v0
U
. (13)

The boundary conditions follow from (10) as

u(0) = 0, u→ 1 as η → ∞. (14)

It is noticed that presence of elasticity in the fluid

results in a third-order equation, whereas in the viscous case

(k0 = 0), the order of the equation is two. It would thus appear

that an additional boundary condition must be imposed to

obtained a unique solution. However implicit in the derivation

of (12) is the neglect of terms of order k2
1 since k1, which

is measure (dimensionless) of relaxation time, is very small

for a viscoelastic fluid with small memory. This, of course,

means that the characteristic time scale of the fluid flow is

large compared with the relaxation time of the fluid. Thus

following, Ray Mahapatra and Gupta[6], we seek a solution

of (12) of the form

u(η) = u0(η) + k1u1(η) + 0(k2
1), (15)

which is valid for sufficiently small k1. Substituting (15) in

(12) and equating different powers of k1, we get

d2u0

dη2
+ s

du0

dη
= 0, (16)

d2u1

dη2
+ s

du1

dη
= −sd

3u0

dη3
. (17)

The boundary conditions for u0(η) and u1(η) are obtained

from (14) as

u0(0) = 0, u0 → 1 as η → ∞, (18)

u1(0) = 0, u1 → 0 as η → ∞. (19)

The solution of (16) satisfying (18) is

u0(η) = 1 − e−sη. (20)

Substituting for u0(η) from (20) in (17) and solving the

resulting equation using the boundary conditions (19), we

obtain

u1 = s3ηe−sη. (21)

Thus, to neglect O(k2
1), the velocity distribution is given by

u(η) = 1 − e−sη + k1s
3ηe−sη. (22)

It follows from (22) that for a given value of the suction s,
the velocity at a point increases with increase in the elastic

parameter k1.
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Fig. 2 shows the velocity distribution for several values of

s with k1 = 0.01. It is observed that at a given point, the

velocity increases with increase in suction. It can be readily

shown that no steady solution for velocity distribution exists

when there is blowing at the plate. This follows from the fact

that in the case of blowing, s < 0 and there is no solution of

(16) satisfying the boundary conditions (18).
Shear stress at the plate is given by

(τxy)y=0 =
(
μ
du

dy
+ k0v0

d2y

dy2

)
y=0

. (23)

Subnutrition from (11), (13) and (22) in (23) gives the dimen-

sionless shear stress at the plate as

(τxy)y=0 /ρU
2 = s. (24)

This shows that wall shear stress depends only on suction and

is also independent of the material of fluids.
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Fig. 2. Variation of velocity u(η) for several values of the suction
parameter s.

III. HEAT TRANSFER

Let us now consider the heat transfer equation in the flow of

a viscoelastic fluid to determine the temperature distribution

in the flow. In this context it is necessary to establish the

energy balance for a fluid element in motion and to consider

it in conjunction with the equation of motion. It is to be

noted that during the motion of a viscoelastic fluid, a certain

amount of energy is stored up in the fluid as strain energy,

while some energy is lost due to viscous dissipation. Thus

for an incompressible viscoelastic fluid the energy balance is

determined by the internal energy, the conduction of heat, the

convection of heat flow with the flow, the generation of heat

through viscous dissipation and the strain (or deformation)

energy stored in the fluid due to its elastic properties.

The transfer of heat in the steady flow of the viscoelastic

fluid past a porous plate subject to suction can be expressed

in the form of the energy equation given by

−v0 dT
dy

=
λ

ρcp

d2T

dy2
+

μ

ρcp

(
du

dy

)2

+
k0v0
ρcp

du

dy

d2u

dy2
, (25)

where T , λ and cp denote the temperature, thermal conductiv-

ity and the specific heat of the fluid, respectively. Note that the

second and third term on the right hand side of (25) denote the

terms due to viscous dissipation and strain energy, respectively.

The boundary conditions are

T = Tw at y = 0, T → T∞ as y → ∞, (26)

where Tw and T∞ are constants with Tw > T∞.

Introducing the dimensionless temperature θ as

θ =
T − T∞
Tw − T∞

, (27)

we find from (25) upon using (11) and (13)

d2θ

dη2
+ sPr

dθ

dη
= −EPr

[(
du

dη

)2

+ k1s
du

dη

d2u

dη2

]
, (28)

where

Pr =
μcp
λ
, E =

U2

cp(Tw − T∞)
. (29)

It is clear from above that the temperature distribution θ(η)
depends on four dimensionless parameters : (i) the elastic

parameter k1, (ii) the Prandtl number Pr, (iii) the Eckert

number E (which characterizes viscous dissipation in the flow)

and (iv) the suction parameter s. The boundary conditions for

θ(η) are obtained from (26) as

θ(0) = 1, θ(∞) = 0. (30)

Substitution for u(η) from (22) in (28) and integration of

the resulting equation subject to the boundary conditions (30)
gives

θ(η) = (1+M1)e−sPrη−(M1+M2η+M3η
2)e−2sη for Pr �= 2,

(31)

and for Pr = 2,
θ(η) =

[
1 + 2EPr

8s3

{
(2s2A1 + sB1 + C1)η

}]
e−2sη

+
[
2EPr
8s3

{
(2s2B1 + sC1)η2 + 2

3s
2C1η

3
}]
e−2sη

(32)
where

M1 = −E
[

(2s2A1+sB1+C1)
4s4 + (N2

1 A1−N1B1+2C1)

sN3
1

]
,

M2 = −E
[

(s2B1+sC1)
2s4 + (N2

1 B1−2N1C1)

sN3
1

]
,

M3 = −E
[

C1
2s + C1

sN1

]
, N1 = s(Pr − 2),

A1 = s2
(
1 + k1s

2
) (

1 − 2k2
1s

4
)
, B1 = k1s

5
(
3k2

1s
4 − 2

)
C1 = k2

1s
8
(
1 − k1s

2
)
.

Fig. 3 shows the temperature distribution for various values

of the elastic parameter k1 with Pr = 5, E = 4 and s = 2.

It is observed that the temperature at a point decreases with

increase in k1. Fig. 4 displays the temperature distribution for

various values of the Eckert number E with Pr = 5, s = 2,

and k1 = 0.005. As expected, temperature at a point increases

with increasing E and overshoot in temperature (T > Tw)
occurs near the plate for E > 2. It is observed from Fig. 5

that for fixed values of Pr,E and k1, temperature near the

plate increases with increase in the suction parameter s but

further away from the plate, temperature at a point decreases

with increase in suction.

Finally we point out that no steady distribution of tem-

perature exists when there is uniform blowing at the plate.

In fact, Equation (28) governing the temperature distribution
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Fig. 3. Variation of θ for several values of k1 with s = 2, Pr = 10
& E = 4.

does not have any solution satisfying the boundary conditions

(30) in the case of blowing. This is plausible on physical

grounds since the fluid at large distance from the plate gets

continually heated due to convection of heat away from the

plate by blowing.
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Fig. 4. Variation of θ for several values of E with s = 2, Pr = 10
& k1 = 0.005.

IV. CONCLUSION

The analysis of flow of a viscoelastic fluid past an infinite

porous plate shows that steady solution for velocity distribu-

tion exists only when there is suction at the plate. It is observed

that the velocity at a point increases with increase in the elastic

parameter k1. Shear stress at the wall is found to decrease with

increase in k1. Solution of the heat transfer equation shows that

steady temperature distribution exists for flow of a viscoelastic

fluid past a porous plate only when there is suction (and not

blowing) at the plate. It is observed that temperature at a point

decreases with increase in the elastic parameter. It is further

shown that temperature at a point increases with increase in

the suction parameter s near the plate but further away from

the plate, temperature at a point decreases with increase in s.
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Fig. 5. Variation of θ for several values of s with E = 4, Pr = 10
& k1 = 0.005.

In this context, we say a few words about the significance

of these results. For viscoelastic fluids (e.g., polymers and

their solutions), the viscous heating effect might be appreciable

in all viscometers, including capillary tubes (Brodkey[7]).

Since such effects are to be avoided as far as possible, one

should know when they are liable to be important. From our

foregoing analysis of temperature distribution, we find that

for a viscoelastic fluid (small memory), temperature at a point

decreases with increase in the elastic parameter. Thus elasticity

of the fluid mitigates to a large extent the undesirable effects

of viscous heating in not only viscometric flows but also in

flows in other geometries such as the one we have studied

here.
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